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ABSTRACT 

PREDICTING SLENDER FALSE BROME (BRACHYPODIUM SYLVATICUM) 
INVASION IN THE SANTA CRUZ MOUNTAINS, CALIFORNIA 

 
by Janine E. Bird 

 
 

 Early detection of an invasive species facilitates control and eradication.  Slender 

false brome (Brachypodium sylvaticum) was first discovered in the Santa Cruz Mountains 

of Central California in 2003 as a non-native grass in redwood forests, competing with 

native vegetation.  The current infestation in the Santa Cruz Mountains, estimated to be 

300 acres, is concentrated in San Mateo County and could be eradicated.  This study 

sought to determine most likely locations of slender false brome in the Santa Cruz 

Mountains by assessing environmental attributes of known presence locations using 

species distribution modeling and Maxent software.  The study used 1,320 species 

presence points collected in field surveys conducted from 2009 to 2012, GIS 

environmental layers covering a 940 km² study area, and the machine-learning program 

Maxent to identify slender false brome habitat at a 30 m resolution in the Santa Cruz 

Mountains.  Maxent models successfully identified locations of potential distribution of 

slender false brome (training AUC = 0.961, test AUC = 0.960).  Annual precipitation, 

average annual maximum or minimum temperature, and soils were the most important 

predictors.  An independent dataset corroborated the performance of the Maxent model.  

Maxent could be used by land managers for targeting field surveys by predicting most 

likely B. sylvaticum habitat in the Santa Cruz Mountains. 
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Introduction 

Slender false brome (Brachypodium sylvaticum) is a perennial bunchgrass native 

to Europe and northern Africa.  It was cultivated as an ornamental in North America 

beginning in the early 20th century but became naturalized, eventually reaching invasive 

status in Oregon and later Washington State.  These northwestern infestations spread 

through seed dispersal to eventually cover thousands of acres in Oregon (Oregon 

Department of Agriculture, 2013).  Slender false brome (“BRSY” is the United States 

Department of Agriculture symbol for B. sylvaticum) spreads readily in western North 

America where conditions are favorable.  An outlier population of BRSY was found in 

San Mateo County, California, in 2003 (Institute for Applied Ecology, 2013) and has 

since been estimated to have reached at least 300 acres in size (Midpeninsula Regional 

Open Space District staff, personal communication, January 2013) . This California 

infestation inhabits the redwood ecosystem of the San Mateo County portion of the Santa 

Cruz Mountains in the Pacific Coast Range and is displacing the native vegetation of the 

understory.  If the spread of BRSY is not controlled, California may experience the level 

of infestation found in the Pacific Northwest.  Using species distribution modeling to 

determine the most likely locations of BRSY populations can aid land managers in 

planning effective surveys, ensuring that likely BRSY habitat is checked so that the grass 

can be controlled.  This study was conducted to predict locations of slender false brome 

in the Santa Cruz Mountains by assessing environmental attributes of known presence 

locations using species distribution modeling. 
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Species distribution modeling (SDM) is an analytical tool used by biologists to 

analyze a landscape and determine where a species is likely to occur, based on the 

characteristics of that species’ realized niche.  One SDM model, Maxent (maximum 

entropy), uses machine learning to process presence-only data and environmental 

attributes to predict potential distribution.  Use of presence-only data is an appropriate 

modeling method for an invasive species where distribution is unstable and absence data 

does not necessarily indicate unsuitable habitat (Jarnevich & Reynolds, 2011).  The 

slender false brome presence data in this study were collected from 2009 to 2012 by the 

staff of a local land management agency (Midpeninsula Regional Open Space District) 

and consist of geographic coordinates recorded with GPS units where BRSY was 

observed growing.  We surveyed for slender false brome for the purpose of treating and 

eliminating any infestations.  Although we recorded only the presence of the grass, we 

subjectively observed environmental characteristics, such as vegetation class, or percent 

of canopy cover, that seemed to favor existence and spread of slender false brome, and 

noted that these similarities of what appeared to be ideal BRSY habitat could be used to 

efficiently target future surveys.  Maxent allows an analysis of these environmental 

attributes by analyzing geographic information system (GIS) layers, where the study area 

is divided into a grid (in this study, a 30 m by 30 m cell size).  Each cell of the study area 

holds a value for every environmental layer (e.g., soil type, maximum annual 

precipitation, canopy cover, or vegetation class).  Maxent compares the environmental 

layer values for each cell where a presence point for a species has been recorded, and 

uses these combined attributes to indicate other cells where the environmental values are 
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similar, indicating suitable habitat for that species and hence target survey locations.  

Maxent showed that annual precipitation, average annual minimum temperature, and 

soils were the most important predictor layers for suitable slender false brome habitat. 

Slender False Brome (Brachypodium sylvaticum) 

Slender false brome, or Brachypodium sylvaticum (Huds.) P. Beauv., is a 

perennial bunchgrass native to Europe, northern Africa, and western Asia that inhabits 

forests, woodlands, and upland prairies (Invasive.org: Center for Invasive Species and 

Ecosystem Health, 2005; Piep, 2012).  It reaches 30-120 cm in height, with blades 4-15 

mm wide.  Per stem, the inflorescence produces 3-12 spikelets with short to nonexistent 

pedicels.  (Brachypodium is derived from the Greek “brachys” for “short,” and “podion,” 

“foot;” “ sylvaticum” references the Latin “sylva,” or “forest.”)  Slender false brome forms 

dense clumps and spreads by seed dispersal, not by rhizome production, with seeds that 

are transported away from parent plants by animals, humans, and waterways.  Seedbanks 

appear not to persist much longer than one year, but seed viability over time has not been 

tested in North America (Invasive.org: Center for Invasive Species and Ecosystem 

Health, 2005).  One plant may produce hundreds of seeds in a season.  In the California 

Floristic Province, BRSY is documented at elevations of less than 600 m (Piep, 2012) in 

forest understories and open grasslands.   

Slender false brome was introduced to North America as an ornamental grass, 

probably in the early 20th century.  First records of the species are from 1939 near 

Eugene, Oregon, and by 1966, near Corvallis, Oregon, two large colonies were 

apparently thoroughly naturalized (Chambers, 1966).  By 2001, BRSY covered thousands 
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of acres in Oregon, concentrated in the Willamette Valley (Invasive.org: Center for 

Invasive Species and Ecosystem Health, 2005), and in 2007, BRSY was sighted in 

Washington State, and has been found in Virginia and British Columbia (Piep, 2012).   In 

December of 2003, BRSY was first identified in California from samples collected near 

Schilling Lake, near Woodside, in San Mateo County on the San Francisco Peninsula 

(False-brome Working Group, 2004).  By 2009, the San Francisco Peninsula population 

was estimated to have reached as much as 300 acres (~120 hectares), occurring on private 

parcels and in public lands such as open space preserves and a county park, with nearly 

all California occurrences found in and adjacent to the Santa Cruz Mountains.  A small 

BRSY population was recorded in 2009 about 500 km to the north, in Del Norte County, 

per Calflora records (Calflora, 2013).  

 

Figure 1:  Slender false brome forming monoculture on woodland hillside in San Mateo 

County, California. 
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The California population of BRSY may have been planted as an ornamental 

grass, as in Oregon.  Seeds may also have been introduced in feed for horses (Institute for 

Applied Ecology, 2013), as the area around Woodside has a thriving equestrian 

community. The North American invasions of BRSY in the Pacific Northwest and in 

California have been documented as excluding most native plant species by completely 

dominating the understory and open habitats (King County Noxious Weed Control 

Program, 2012).  As a non-native invader, BRSY has low palatability to wildlife (Kaye, 

2001).  Slender false brome has a very broad ecological amplitude (Kaye), with tolerance 

for shade, partial shade, and sun, a range of elevations and plant communities, and 

varying moisture regimes.  Dispersal seems to follow roads and trails, as seeds are carried 

by human and animal activity, as well as waterways, including ephemeral streams.  

Slender false brome has received an A-level rating as a noxious weed in the state 

(California Department of Food and Agriculture, 2010), a designation indicating it is a 

species known to cause ecological and economic damage and/or be a human health risk, 

and is recommended for statewide eradication by the CDFA. 

 Santa Cruz Mountains Ecosystem 

The ecosystem of the Santa Cruz Mountains comprises a wide variety of flora due 

to the complex topography and unique weather patterns of the area.  The Pacific Coast 

Range of California is formed of low mountains oriented from the northwest to the 

southeast, divided into several ranges including the Santa Cruz Mountains.  Spanning the 

San Francisco Peninsula southward, the Santa Cruz Mountains are bounded by the 

Golden Gate to the north, the Pajaro River to the south, the Pacific Ocean to the west, and 
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the San Francisco Bay to the east, with a north-south distance of about 120 km, and an 

east-west distance of about 45 km.  The area includes San Francisco, San Mateo, Santa 

Clara, and Santa Cruz Counties, with San Mateo County, on the peninsula towards the 

north, lying completely inside the Santa Cruz Mountain region.  Elevations in this 

northern stretch of the Santa Cruz Mountains do not exceed 900 m.  The presence of the 

Pacific Ocean to the west contributes greater moisture to the coastal side of the range.  

The complex topography of valleys and ridges without consistent orientation, along with 

ocean and bay influences, create a wide range of microclimates within a relatively small 

geographic area (Beidleman & Kozloff, 2003). Summer fog is an important attribute of 

the area, and is formed when humid air meets the cold ocean water offshore, causing the 

moisture in the air to condense.  Rising warm air on the land mass causes the ocean fog to 

be drawn inland, coating the coastal ridges with moisture.  Vegetation in the Santa Cruz 

Mountains is adapted to this fog in its moisture requirements.  The Mediterranean climate 

of Central California brings rainfall only during the winter months of the year, from 

about October to April, but there may be extended dry spells even during the rainy season 

and rainfall amounts can fluctuate greatly.  Fog reduces the amount of water loss from 

plants and soil.  Additionally, the mist of the fog condenses on foliage and drips to the 

soil, contributing a significant amount of moisture; in some cases more than the rainfall 

itself (Beidleman & Kozloff).  

The “San Francisco Bay Area” region of the California Floristic Province 

includes vegetation community types ranging from wet redwood forest, to dry oak and 

pine woodland, to chaparral (Hickman, 1993). The vegetated areas of San Mateo County 
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have predominantly redwood forest, Douglas-fir forest, oak woodlands, annual grassland, 

and chaparral.  Redwood (Sequoia sempervirens) groves thrive in areas with greater 

annual rainfall (Beidleman & Kozloff, 2003), and are characteristically associated with 

Lithocarpus densiflorus (tanbark oak), Polystichum munitum (western sword fern), 

Oxalis oregana (redwood sorrel), may include Umbellularia californica (California bay), 

and in drier areas are associated with Pseudotsuga menziesii (Douglas-fir) (Beidleman & 

Kozloff; Thomas, 1961).  The understory of redwood groves supports relatively few 

species of vegetation because of the dense canopy and acidic duff produced by the 

redwood trees; the species that thrive here are well-adapted to those unique conditions.  

Because of the delicate balance of moisture and nutrients supporting the redwood plant 

community, this association of vegetation is particularly sensitive to the pressures of a 

non-native invasive plant.  The effects of invasion happen at multiple scales, can 

influence community structure, ecosystem processes and function, and the nature and 

intensity of ecological interactions (Brown et al., 2008), possibly leading to disastrous 

effects in a sensitive system like the redwood plant community.  Redwoods themselves 

are intolerant of prolonged drought (Ornduff et al., 2003) and would suffer if a plant 

invader competed for moisture.  

 Species Distribution Modeling and Maxent 

Ecological researchers have begun over the past decade to use species distribution 

models (SDMs) to predict potential distribution of native and exotic species (Baldwin, 

2009; Phillips et al., 2006).  SDMs are tools that can predict where a species is likely to 

occur given the environmental conditions related to that species’ success.  Predictive 
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modeling of a species’ geographic distribution is an aid to land managers who seek to 

preserve declining native species, or to eliminate invasive exotic species.  SDMs may be 

used to guide field surveys for species with limited distribution (Phillips et al.) by 

determining the potential distribution of an invasive species, thereby allowing land 

managers to focus control efforts.  The Maxent algorithm estimates a target probability 

distribution by finding the probability distribution of maximum entropy (the distribution 

closest to uniform) and identifies suitable habitat outside of areas where the species has 

been identified. 

Presence-only versus presence-absence modeling.  Presence-only modeling, 

which uses occurrence data, has been shown to be the most accurate modeling method for 

non-native invasive plant species, providing more useful results than presence-absence 

modeling (Anderson et al., 2003; Elith et al., 2006; Jarnevich & Reynolds, 2011; Phillips 

et al., 2006).  Because the non-native species has appeared in the location in recent time 

and is not in equilibrium with its environment, absence data may not accurately portray 

the inability of the species to thrive at a location.  Absence at any location may indicate 

unsuitability of the environmental features, or may simply indicate that the species has 

not yet invaded 

Maximum entropy (Maxent).  Maxent is a species distribution modeling 

technique that uses machine learning method to analyze presence-only species data 

matched with a suite of environmental variables to predict suitability of habitat.  

Maximum entropy theory applied to species dynamics specifies that without outside 

influences, processes move towards maximum entropy; that is, towards the most random 
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distribution.  In applying a model with environmental constraints, the assumption is that 

in the absence of those constraints, the species will move to the geographical distribution 

of maximum entropy (Phillips et al., 2006).  By employing a model that analyzes the 

environmental constraints, also known as covariates, it is possible to identify geographic 

locations where the chances are significantly better than random that the modeled species 

could occur.   

Maxent software for species habitat modeling (v. 3.3.3k, available for free from 

http://www.cs.princeton.edu/~schapire/maxent/) (Phillips et al., 2013) provides a graphic 

user interface (GUI) to allow easy manipulation of inputs.  Running Maxent incorporates 

metrics for evaluating model fit and contribution of each environmental layer.  Maxent is 

a presence-only modeling technique that represents a species’ geographic distribution by 

relating recorded observances of the species to a host of environmental variables at those 

locations.  Maxent provides niche-based modeling, representing an approximation of the 

species’ fundamental environmental niche.  The fundamental niche that a species could 

occupy is a theoretical construct of potential distribution.  A species will most likely not 

occupy its entire fundamental niche; that is, there will be areas that a species could thrive, 

but the species is not found there.  The species occupies only the area known as its 

realized niche, because of human influence, biotic interactions, or geographic barriers 

(Pulliam, 2000),  not the entire fundamental niche, shown by modeling, where long-term 

survival would be possible (Phillips et al., 2006).  Areas with environmental variables 

that satisfy the requirements of BRSY’s fundamental niche represent the grass’s potential 

distribution; areas occupied by BRSY constitute BRSY’s realized distribution.  Surveys 
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of potential distribution sites have provided BRSY presence data to use in the Maxent 

model.  Environmental conditions at these recorded areas of occurrence are samples from 

the realized niche (Phillips et al., 2006), and can be used to model BRSY’s fundamental 

niche.  

  Model Structure and Evaluation   

Three components are needed for statistical modeling of species distribution 

(Austin, 2002): an ecological model, a data model, and a statistical model.  The 

ecological model provides constraints that represent ecological assumptions about what is 

necessary for the species to thrive.  An ideal ecological model would represent all 

environmental features that constrain the geographical distribution of the species, with 

the assumption that the absence of those features would tend towards the distribution of 

maximum entropy (Phillips et al., 2006).  The data model describes the methods by 

which the presence locations were collected.  The statistical model provides a scientific 

method for analyzing the environmental attributes and species presence data; Maxent is a 

statistical model.  Maxent uses what is known as presence-only data, where coordinates 

of species presence have been recorded, and evaluates the study area for potential 

distribution by classifying the likelihood of presence versus random, rather than presence 

versus absence.  Maxent models a probability distribution for a species over the pixels in 

the study region without interpreting pixels with no species records as absences (Phillips 

et al.).  Use of presence-only data is an appropriate modeling method for an invasive 

species where distribution is unstable, and absence data do not necessarily indicate 

unsuitable habitat (Jarnevich & Reynolds, 2011). 
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Maxent evaluates background data by assigning a probability that a randomly 

chosen presence site is ranked above a random background site.  The model uses the Area 

Under the Receiver Operating Characteristic (ROC) Curve (AUC) to evaluate results.  An 

AUC of 0.5 is considered a random ranking; an AUC of 1.0 is a perfect ranking.  This 

means that a model with an AUC of 0.5 is just as likely to predict a presence point as a 

random background point; a model with an AUC of 1.0 will always predict a presence 

point over a random point.  Researchers have evaluated the default settings of Maxent by 

comparing Maxent’s “presence from random” classification using presence-only data, 

with the results of “presence from absence” models, testing the same geographic area.  

Maxent consistently produced a high AUC, with a model generating an AUC of  >0.75 

considered to be potentially useful (Elith, 2002).   

Species distribution models identify areas of suitable habitat by relating 

environmental variables to locations of known occurrence where the species has been 

recorded in field-collected data.  The best scenario is if the whole range of suitability for 

each variable is represented in the occurrence data, thereby capturing the entire 

possibility of the fundamental niche.  A small geographic range represented in occurrence 

data may not provide this full distribution (Phillips et al., 2006).  Environmental 

conditions are described in climatic variables (e.g., temperature and precipitation), 

topographic variables (elevation; slope; aspect), landcover variables (vegetation 

communities; canopy cover), and potential vegetation (soil; geology).  The Maxent user 

provides a file of species occurrence points, and chooses which environmental variables 

to enter into the model.  Maxent shows the AUC for each environmental variable entered, 
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as well as an AUC for the predictive accuracy of the model as a whole.  Those 

environmental variables with a higher AUC contribute more information to Maxent’s 

prediction across the study area; a model with a high AUC is much more likely to predict 

a presence location than a random location.  For this study, eighteen environmental 

variables were incorporated for use in Maxent to detect potential slender false brome 

habitat in the northern stretch of the Santa Cruz Mountains of California.  The purpose of 

this analysis was to identify the areas, at a 30 m resolution, that would best support 

slender false brome.    

 Field Observations 

The BRSY species occurrence data for this study were collected by staff of a local 

land management agency, Midpeninsula Regional Open Space District (MROSD, 

District) during surveys of private property, District Open Space Preserves (OSPs), and 

other public lands, for the purpose of finding and eliminating slender false brome 

infestations.  We traversed land parcels on foot, using GPS (global positioning system) 

units to mark locations where the grass was observed, recorded in geographic 

coordinates.  Subjective field observations of occurrence locations showed that slender 

false brome seemed most likely to thrive in redwood habitat, but was found less in nearby 

areas dominated by Douglas-fir trees.  Infestation patterns seemed to show that BRSY 

seeds travel downhill with gravity or water flow, so that steeper areas showed dispersal 

over greater distances, whereas level terrain seemed to have denser infestations, as seeds 

were most likely to fall close to parent plants.  Environmental attributes related to these 

observations include vegetation categories, canopy cover, slope, hydrologic unit, and 
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stream flow, and were therefore included among the layers used in the model for this 

study. 

 
Figure 2:  Study area shown with box outline.  Inset map shows location in state of 

California. 
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Method 

 Study Area 

The location for this study was in the northern portion of the Santa Cruz 

Mountains of coastal California, comprised of portions of San Mateo County, Santa Clara 

County, and a small area of Santa Cruz County (Figure 2), and consists of a box drawn in 

geographic space with all presence data located well inside the box.  The bounds of the 

rectangle were set at -122.46 to -122.03 longitude, 37.24 to 37.50 latitude, forming a box 

approximately 38 km west-to-east, and 28 km north-to-south.  These study area limits 

were chosen by visual map inspection considering 1) all BRSY presence data recorded in 

the Santa Cruz Mountains, California, 2) the hydrologic units of the area, and 3) the 

northern expanse of MROSD’s Open Space Preserves (see Figures 3 and 4).       

Most of the known BRSY presence data in California are concentrated in a small 

geographic location, allowing this study to focus on a single area radiating out from those 

points.  Hydrologic units were considered important because the seeds of BRSY appear 

to be transported by waterways and gravity.  We noted in subjective field observations 

that small infestations of BRSY could be present in isolated locations great distances 

from the main infestation, but that these outlier locations were immediately adjacent to 

waterways downstream from the heavy infestations, leading us to conclude that the seeds 

had been transported in the streams and that waterways could be important vectors for 

long-distance seed dispersal.  The nationally recognized Hydrologic Unit Codes (HUCs) 

used to designate watersheds increase numerically with a decrease in basin size.  The 

most detailed level, HUC 12, which indicates watersheds of second and third order 
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streams, was used for this study because of the limited geographic extent of BRSY 

occurrence points, and the presence of small waterways in this region. 

The presence data used in this study were collected by staff working for 

Midpeninsula Regional Open Space District, an agency that manages open space 

preserves for human enjoyment and for the sake of preserving the land itself.  Part of the 

mission of MROSD is to protect native flora and fauna species and minimize exotic 

invasive ones.  Providing BRSY distribution modeling data to a public agency able to 

address infestations on their lands and nearby parcels assists the effort in decreasing or 

eradicating slender false brome in California, so considering MROSD preserves in 

planning the study area was desirable. 

 

Figure 3:  Study area outline showing presence data as dots and local hydrologic units 

(HUC 12) as polygons. 
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Figure 4:  Study area outline showing presence data as dots, MROSD open space 

preserves as darker polygons, and other public lands as lighter polygons. 

 Presence Data 

Presence data consisted of 1,321 geographic point locations recorded with hand-

held GPS (global positioning system) units where slender false brome was observed 

growing during 2009 to 2012 field surveys conducted by staff of Midpeninsula Regional 

Open Space District.  We recorded only one point at locations where BRSY occurred in a 

large patch.  Although some vegetation monitoring efforts use polygons recorded with 

GPS units to show species presence, we did not employ this method because steep and 

challenging terrain sometimes prevented on-foot access to the entire infestation 

perimeter, and often tree canopy prevented consistent satellite reception.  Most surveys 

occurred on privately owned parcels in which the entire parcel was inspected for the 

presence of slender false brome.  For the purpose of treating BRSY infestations, we drew 
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maps by hand in the field to show the extent of an infestation, using a simple “x,y” 

coordinate pair recorded with GPS to locate that infestation on the surveyed parcel.  For 

the purpose of this study, the GPS coordinates alone provide an accurate record of 

observed presence of BRSY.  Critiques of presence-only data modeling specify  that 

sampling must be either random or representative, with important covariates not missing 

due to inaccessibility or infrequency  (Franklin, 2009; Royle et al., 2012; Syfert et al., 

2013; Yackulic et al., 2013).  The presence data for this study are representative in that 

entire multi-acre parcels were surveyed and all observed BRSY presence was recorded 

regardless of proximity to roads or trails, and unrelated to environmental conditions.  

Areas that were inaccessible on foot were still visually inspected from the nearest vantage 

point, and presence of BRSY was recorded.     

The GPS units used in field surveys were Garmin GPSMAP 60CSx handheld 

devices, formatted to collect location data in longitude/latitude decimal degrees using the 

WGS 84 datum.  One point in the dataset fell in the urban region considerably to the east 

of the survey area, was deemed to have an erroneous x value, and was excluded from this 

study.  The remaining 1,320 points were reprojected in ArcGIS v.10.0 (Esri, 2010) to 

UTM coordinates of an easting and northing (NAD 1983, UTM Zone 10N).  These 

coordinates were exported to a text file and converted to a .CSV file with the format 

“Species,x,y”, (e.g., “BRSY,565971.2849,4138121.5010”) with one coordinate pair per 

presence record, for use in Maxent.   
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 Environmental Variables 

Environmental variables (“layers”, “features”, or “covariates”) used as inputs for 

Maxent should be representative of characteristics that allow the modeled species to exist 

and increase.  The choice of variables has a subjective component, but if the modeled 

species is a plant, concepts of botany lead towards choosing features that influence 

vegetation success in any environment: moisture, light, temperature, and nutrients.  

Choosing environmental variables asserts that they represent all environmental features 

that constrain geographical distribution of the species (Phillips et al., 2006); however, 

Maxent allows determination of which features are most influential for the species 

modeled.  For this study, environmental variables used can be classified in four 

categories: climate, topography, hydrology, and potential vegetation/vegetation.  Climate 

variables used (USDA NRCS 30-year normal, averaged over 1981 to 2010) were annual 

precipitation in inches, and annual maximum temperature and annual minimum 

temperature both in degrees Fahrenheit.  Topography variables were in meters 

(referenced to the North American Vertical Datum of 1988), at the 30 m by 30 m scale, 

derived from a Digital Elevation Model (DEM), and included elevation in meters, slope 

in degrees, and aspect in compass degrees.  Hydrologic units, at the sub-watershed level 

(“HUC 12”, referring to the twelve-digit code used nationally), and National 

Hydrography Dataset Flowlines (unique stream segments) were used.  Potential 

vegetation features included two sets of soil data and two sets of geology data (covering 

the same geographic space, but comprised of differing edaphic and geologic information 

respectively).  Vegetation features included two landcover classification layers (National 
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Landcover Database, with 16 classes, and California Digital Conservation Atlas, with 12 

classes), four vegetation type classifications (from various sources, with 108, 43, 22, and 

22 categories respectively), and total cover from above (non-overlapping vegetation 

cover, from the U.S. Department of Agriculture Forest Service, in 11 categories by 

percentage).   

Environmental variables were derived from various sources in both vector 

(shapefile) and raster format.  All were processed in ArcGIS: reprojected to NAD 83 

UTM Zone 10N, clipped to a bounding box larger than the study area, and converted to 

rasters with a 30 m by 30 m cell size aligned to a registration point, so that every layer 

matched exactly in grid size and location for direct geographical comparison.  The 30 m 

size creates a grid with cells small enough to likely capture the environmental factors 

associated with BRSY (Franklin, 2009).  Although resampling of larger grid cells to 

smaller grid cells does not increase the resolution of the data, the matched cell sizes allow 

all data to be spatially linked.  For use in Maxent, data is categorized as either Continuous 

(e.g., elevation) or Categorical (e.g., soil type) in format.  See Table 1 for environmental 

variables used. 
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Table 1:  Environmental Variables 

FEATURE LAYER

NAME

RANGE

OR TYPES

UNIT

OR FIELD

FORMAT SOURCE

CLIMATE

temperature maximum tempmax_clip 56.46 to 73.3 DEGREES F CONT USDA NRCS

temperature minimum tempmin_clip 43.8 to 51.3 DEGREES F CONT USDA NRCS

precipitation annual precipann_clip 14. 54 to 61.30 INCHES CONT USDA NRCS

TOPOGRAPHY

elevation nedutm_clip -2.27 to 1156.7 METERS CONT CaSIL

slope nedutm_slope 0 to 61.24 DEGREES CONT CaSIL

aspect nedutm_aspect 8 categories DEGREES CONT CaSIL

HYDROLOGY  

hydrologic units hu12_polygon [~13 HUs in study area] HUC_12 CAT CaSIL

flowlines nhdflowline_R [1 or nodata] [present / absent] CAT NHD

POTENTIAL VEGETATION / VEGETATION

soil bay_area_soils 29 types MUID_1 CAT MROSD

soil gsmsoilmu_a_ca 29 types MU_SYM CAT USDA NRCS

geology geology_a_ca 20 types ORIG_LABEL CAT USDA NRCS

geology bay_area_geology 101 types P_TYPE CAT MROSD

landcover, 12 types casil_landcover12 [10 types in study area] GRID_CODE CAT CaSIL

landcover, 16 types nlcd06utm_clip 16 types NLCD TYPES CAT USGS

vegetation, 108 types vegclass4_utm 108 types NUM_NAME CAT MROSD

vegetation, 22 types usfs_veg_types 22 types TYPE CAT MROSD

LCMMP regional 

dominance evegregdom 43 types REGIONAL_D CAT USDA FS

LCMMP wildlife-habitat 

relationship Evegwhrtyp 22 types WHRTYPE CAT USDA FS

LCMMP total cover from 

above Evegtotcfa 11 categories + nodata TOTAL_TREE_CFA CAT USDA FS  
 
CaSIL – California Spatial Information Library 
 http://atlas.ca.gov/  
MROSD – Midpeninsula Regional Open Space District 
 http://www.openspace.org/  
USDA FS – United States Department of Agriculture Forest Service 
  http://www.fs.fed.us/r5/rsl/projects/mapping/  
USDA NRCS – United States Department of Agriculture Natural Resources Conservation Service 

http://datagateway.nrcs.usda.gov/ 
USGS – United States Geological Survey 
 http://viewer.nationalmap.gov/viewer/  
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 Maxent Modeling 

ASCII format and mask raster.  Maxent input requires all environmental layers 

to be converted to ASCII file format with identical headers: 

ncols         2134 
nrows         2000 
xllcorner     541000 
yllcorner     4103000 
cellsize      30 
NODATA_value  -9999 
52 42 43 90 11 11 90 90 43 71 -9999 -9999... 
 

Environmental rasters were converted to ASCII with the “Raster to ASCII” tool in 

ArcGIS.  Because these rasters were created (using “Polygon to Raster” tool in ArcGIS) 

or formatted with an identical bounding box, cellsize, and registration point, ASCII 

conversion resulted in matching headers and coverage.  The “NODATA_value” refers to 

the listing in the ASCII for any area covered by the bounding box but where the original 

raster had no coverage, and therefore had no data to display.  For this study’s dataset, the 

“nodata” areas were present in two layers: vegclass4, a polygon layer with fine-scale 

vegetation detail, but limited geographical coverage, and nhdflowline, a polygon layer 

that covered the entire bounding box but only provided data as lines in areas of 

watercourses.  Maxent will not process a cell if a “nodata” value of -9999 occurs in any 

layer in that cell.  This means that using these limited rasters may add important 

information to the species distribution analysis (e.g., more detailed vegetation classes in 

the case of vegclass4), but may also confine Maxent to an unacceptably small 

geographical area and result in overfitting the model.  A useful function of the “nodata” 

limiting feature is that a mask raster can be created to set the region that Maxent analyzes 

once a study area has been determined.  For this study, environmental layer rasters were 

originally clipped to an area larger than the study area, so once the study area was 
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determined, a raster was created with a value of 1 inside the study area, and a value of -

9999 for the rest of the area of the bounding box.  Including this mask raster with Maxent 

inputs means that Maxent will analyze only the cells that fall within the study area. 

 

 
Figure 5:  Maxent graphical user interface, with species and environmental layer inputs, 

and parameters window. 

Running Maxent.  Analysis of species distribution with Maxent modeling starts 

with opening the graphical user interface, pointing to the directories of species data, 

environmental layers (set to Categorical or Continuous), and an output file, and choosing 

the model’s settings  (see Figure 5).  Maxent allows specifying that part of the presence 

data be used for training the model, and part set aside for testing the model.  Maxent was 
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set to remove duplicate occurrence points, or records occurring in the same grid cell, so 

that each cell’s environmental attributes would only contribute once to the model in a 

run.  In this study, all Maxent runs were completed with 75% (n = 754) training data and 

25% (n = 251) testing data out of all non-duplicate BRSY occurrence points (n = 1,005) 

used in the model.     

Maxent output includes graphic display of the area analyzed showing AUC, with 

a number closer to 1 indicating a greater probability that a randomly chosen presence site 

will be ranked above a random background site.  Environmental layers used to run the 

model influence output.  Visual examination of the graphic display and statistical output 

can be used to choose which layers to include or exclude for subsequent runs, based on 

their ecological relevance as shown by the model.  See Figure 6, showing Maxent’s map 

output of suitable habitat. 

Maxent was run using all environmental layers (“Output_0”), then with the 

geographically limited vegetation layer, vegclass4, removed (“Output_1”).  These outputs 

were evaluated for the jackknife AUC (see Figure 7), all layers with AUC < 0.80 were 

removed, and two subsequent runs were performed, one with vegclass4 (“Output_4”), 

and one without (“Output_2”).  An additional run (“Output_3”) was performed using a 

separate version of the nhdflowline layer, where all non-stream locations have the nodata 

value, meaning only linear stream areas were analyzed; other runs used a version of the 

nhdflowline layer with all non-stream locations having a value of 0, so that stream data 

was analyzed without excluding non-stream areas. 
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Choice of the AUC < 0.80 limit for removing environmental variables was made 

based on Elith’s assessment that a model AUC of > 0.75 is considered useful (Phillips & 

Dudik, 2008), and with the objective of not missing habitat (Jarnevich & Reynolds, 

2011), since the modeling purpose is to eliminate an invasive species.  Because an 

invasive species is not in equilibrium with its environment, full knowledge of the most 

influential covariates is not initially possible, and distribution modeling is ideally an 

iterative process.  
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Output_0 

Area limited 

geographically by 

vegclass4 raster 
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Output_1 

Includes full 
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image show higher 
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Scale of AUC 

Figure 6:  Maxent output graphics, with study area box superimposed on results.  Warmer 

colors show better environmental conditions; purple areas show presence data locations. 



 

 

  Output_1

 

Figure 7:  Maxent output graphics, 

added to select environmental 

contribution.  
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Output_1 

Maxent output graphics, showing AUC on test data, and dashed line at 0.80 

environmental variables with lower AUC and therefore less model 

 

 

 

dashed line at 0.80 

less model 



27 

 

 Output Processing 

Maxent produces an ASCII grid (.ASC) for each run showing the presence 

probabilities (gain) for each grid cell of the study area.  These files were converted to 

Maxent output raster files in ArcGIS.  To meaningfully link the Maxent gain output to the 

species presence data, the raster values were extracted for each cell that contained an 

original presence location using the “Extract Values to Points” tool.  This was completed 

for each .ASC-to-raster output resulting from the Maxent Output_2 (all layers with >0.80 

AUC, except vegclass4), and Output_4 (all layers with >0.80 AUC, including vegclass4).  

The new point files, now with an appended field showing the Maxent gain in the cell 

containing each point, were exported and converted to Excel files.  The table was sorted 

according to gain value, and the entire list of points was divided into cutoff percentages, 

with associated gain, for use in creating new rasters.  Cutoff percentages selected were 

100, 98, 95, 90, 80, 70, and 50, out of the total number of presence points.  At each cutoff 

percentage the associated gain value was noted.  For example, with the cutoff gain value 

at 98%, ninety-eight percent of the presence points had an equal or greater gain value 

than the noted value.  Tying Maxent output back to the presence points means we can say 

that of the cells where Maxent predicts more likely occurrence, we are choosing the most 

likely cells, with environmental conditions similar to cells where 98% (in the previous 

example) of the presence points occurred.  Indeed, visual inspection showed that the 

presence points associated with the lowest gain values were farthest from the main 

infestation, where environmental conditions were likely to be less similar.  This sorting 

method was employed with the rationale that invasive species monitoring is most likely 
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not possible at 100% of the area shown by the model to have a chance of supporting the 

species.  At the same time, a very limited survey approach, with a 50% match, will likely 

exclude too many actual presence locations.  Choosing a gain value associated with 

presence data location cells means that the model output interpretation is tied to 

conditions where the species is present.  Choosing various cutoff percentages, with a 

proportionally sized presence-likely geography associated, means that monitoring 

surveys able to target limited area can focus on the most suitable habitat found in that size 

area.  Table 2 shows gain values associated with Maxent output at each chosen cutoff 

percentage. 

 

Table 2:  Gain Values at Cutoff Percentages 

GAIN 

CUTOFF 

% 

POINT 

NUMBER   ≥ GAIN VALUE 

   

Output_2 

 

Output_4 

100% 1320 

 

0.005985* 

 

0.006041 

98% 1294 

 

0.115783* 

 

0.059212 

95% 1254 

 

0.290746* 

 

0.023659 

90% 1188 

 

0.424793 

 

0.385971 

80% 1056 

 

0.490851*     

 

0.481561 

70% 924 

 

0.551750 

 

0.532657 

50% 660   0.582084   0.582084 

      * Value also used for Output_3 

   

Using the noted gain value, a new raster was created for each cutoff percentage 

for Output_2 and Output_4.  This was done by starting with the Maxent raster results, 
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added to the ArcGIS Raster Calculator with, for example, [Output_2 raster] >= [gain 

value].  The resulting raster showed a “1” value in each cell with a gain greater than or 

equal to the cutoff gain value chosen, and a “0” in all other cells.  With a lower cutoff 

percentage, fewer cells received the value of 1, but those cells had the greatest likelihood 

of supporting BRSY.  With each increase in cutoff percentage (50% to 100%), more cells 

were given the value of 1 in the resulting raster, but the added cells had decreasing 

likelihood of providing a suitable environment for BRSY.  Through this process, a bull’s-

eye sort of mapping of suitable BRSY habitat is possible, with a choice of geographic 

size for the survey target, and a means of identifying the most likely areas if resources are 

limited. 

Output_3 from the Maxent run incorporating the nhdflowline layer version limited 

to stream areas was processed using the Output_2 gain values at the percentages of 100, 

98, 95, and 80, with rasters created for each cutoff.  Output_3 cells could not be matched 

directly to presence point cells because these streamline-only cells had such a limited 

extent.  Because Output_3 geographical coverage was the same as Output_2, the gains of 

Output_2 were substituted. 

 Measure of Model Performance 

To measure the performance of the Maxent species distribution model created in 

this study, a separate BRSY dataset was used.  These data were recorded observations of 

B. sylvaticum from the online database maintained by Calflora, a non-profit organization 

that acts as a repository of information on California plants for education, research, and 

conservation (Calflora, 2013).  The observations are from public agencies, non-profits, 
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scientists, and private donors.  Per Calflora, accuracy of identification is not reviewed.  

However, most BRSY observations in the Calflora database were made by known 

biologists working in the Santa Cruz Mountains and familiar with B. sylvaticum.  From 

the “Search for Plant Occurrence Records”, a “Brachypodium sylvaticum” search in the 

“full scientific name” field with no other delimiters (choosing “plain text” for data 

export) gave all the Calflora records for BRSY, a total of 149 observations between 

January 2004 and March 2011.  From these records, five observations had no geographic 

coordinates listed, and so were removed.  One observation was in Del Norte County, 

about 500 km north of the study area, and so was not included because it falls outside the 

environmental data assembled for this study.  The remaining 143 observations were 

added to ArcMap as x,y data, to compare to the original BRSY dataset.  To ensure that 

only unique Calflora observations were kept, all Calflora observations within 50 m of any 

BRSY point in this study’s original dataset were eliminated if observation dates matched.  

(The distance of 50 m was chosen because satellite reception in the study area usually 

provided GPS accuracy of 50 m or better, so adjacent points inside that range were more 

likely to be the same occurrence location.)  The remaining Calflora observations, thought 

to be unique BRSY observations, numbered 37.  These 37 Calflora observations were 

compared with Maxent modeling results to see if the points fell in areas identified by 

Maxent as likely BRSY habitat.  To make the evaluation, the Calflora observations were 

compared to the raster from Maxent Output_2.  Using the “Extract Values to Points” tool 

in ArcMap, each Calflora observation was linked to the gain value of the Output_2 raster 

cell in which it fell, and those values were appended to the Calflora data attribute table 



31 

 

for each point.  The gain values associated with each Calflora data point were used to 

show where on the “bull’s-eye” of successively more suitable BRSY habitat those 

independent observations fell. 
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Results 

 All Maxent iterations had similarly high AUC values, and manipulation of 

environmental variables used in running Maxent did not substantially change predictive 

strength of the model according to AUC (see Table 3).  For the first model iteration 

(Output_0) using the fine-scale vegetation layer vegclass4, and excluding the streams-

only version of nhdflowline, results were far better than random prediction, with AUC = 

0.960 for training data and AUC = 0.957 for the 25% of presence data partitioned for 

testing.  Removing AUC < 0.80 environmental variables for the next iteration, Output_4, 

gave AUC = 0.958, with only a slight improvement to model performance.   

 

Table 3:  Maxent Output Statistics 

Receiver Operating Characteristic Curve AUC   

  

AUC 

 

  

Training Data 

 

Test Data 

 Output_0  0.960  0.957 excluding nhdflowline3 

Output_1  0.961  0.959 excluding vegclass4 and nhdflowline3 

Output_2  0.961  0.960 excluding vegclass4, nhdflowline3, 

and environmental variables with  

AUC < 0.80 

Output_3  0.992  0.984 excluding vegclass4, using 

nhdflowline3 (limited to streams) 

Output_4   0.960   0.958 excluding nhdflowline3, using 

vegclass4 (fine-scale vegetation 

detail) 

      Random prediction AUC = 0.5 
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The model iterations using the coarse-scale vegetation layer started with AUC = 

0.959 for test data in Output_1, and removing environmental variables with less 

contribution marginally improved results, with AUC = 0.960 for test data in Output_2.  

The Maxent run for Output_3 was limited to examining only the raster cells included in 

streambeds and exhibited a very high AUC (0.984).  Although Maxent is not usually used 

to model linear data (Elith et al., 2011), this iteration of the model did show a selection of 

stream areas that, according to an acceptable AUC, are more likely to provide suitable 

BRSY habitat than most of the streams in the study area. 

Using gain cutoff percentages to create new rasters enabled mapping of the areas 

predicted by Maxent to be most likely habitat.  Lower percentages indicated smaller areas 

with the most ideal conditions.  Increasing percentages added area, but with an inverse 

relationship to suitability:  these additional areas are less matched to ideal environmental 

conditions.  Figure 8 and Figure 9 show maps of this comparison of using percentage 

cutoffs for Output_2 and Output_4, respectively.  In Figure 8, the cutoffs of 70, 90, and 

100% were mapped for Output_2.  The area indicated as suitable with a 70% gain cutoff 

was ~650 acres (263 hectares); at 90%, the area indicated was 2.5 times larger, at 1,638 

acres (663 hectares), and at 100%, the area was 25 times larger than the 90% area, at 

42,370 acres (17,147 hectares).  Table 4 shows the size of the modeled suitable area 

indicated by Maxent, using the percentage cutoffs.  The shaded lines indicate the 

percentages 70, 90, and 100, mapped in Figures 8 and 9.  Using gain cutoffs greatly 

changes the size of the mapped area, with a narrow or broad suitability focus. 
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Figure 8:  Maxent suitability results for Output_2. 

 
Figure 9:  Maxent suitability results for Output_4.  



35 

 

Table 4:  Suitable Area by Maxent Run and Gain Cutoff Percentage 

  

GAIN 

CUTOFF 

% 

TOTAL 

NUMBER 

CELLS 

ANALYZED 

NUMBER 

OF CELLS 

VALUE 

=1 

% OF 

AREA 

SUITABLE 

AREA IN 

HECTARES 

SUITABLE 

AREA IN 

ACRES 

Output_2  1047416     

 

100% 

 

190,517 18.2% 17,146.53 42,369.93 

 

98%  36,078 3.4% 3,247.02 8,023.55 

 

95%  15,114 1.4% 1,360.26 3,361.27 

 

90%  7,367 0.7% 663.03 1,638.38 

 

80%  4,366 0.4% 392.94 970.97 

 

70%  2,917 0.3% 262.53 648.72 

  50%  1,558 0.1% 140.22 346.49 

Output_4  555327     

 

100% 

 

113,967 20.5% 10,257.03 25,345.63 

 

98%  36,424 6.6% 3,278.16 8,100.50 

 

95%  13,364 2.4% 1,202.76 2,972.08 

 

90%  6,515 1.2% 586.35 1,448.90 

 

80%  3,609 0.6% 324.81 802.62 

 

70%  2,819 0.5% 253.71 626.93 

 

50%  2,166 0.4% 194.94 481.71 

 

The coarse-scale vegetation analysis of Output_2 indicated 18% of the analyzed 

area (the entire study area, about 948 km²) could be suitable BRSY habitat, using the 

100% gain cutoff.  Output_4, with the fine-scale vegetation layer, analyzed an area about 
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half the size (~500 km²) of the entire study area, and indicated at the 100% cutoff that a 

similar percentage of the analyzed area, 20.5%, would be suitable BRSY habitat.     

Mapping the results of Output_3, using the linear stream data, showed streambeds 

with higher probability of suitable BRSY habitat.  At the 100% gain cutoff for Output_3, 

nearly all the streams falling within the largest Output_2 extent (Output_2 at 100%) were 

indicated.  At the 98% gain cutoff for Output_3, considerably fewer streambeds were 

indicated.  Figure 10 shows Output_3 streams at the 98% cutoff on top of the area 

mapped for Output_2 at 100%. 

 

 
Figure 10:  Mapped Maxent results for Output_3, linear stream data, shown on top of 

Output_2 results at the 100% cutoff.  Inset is expanded area. 
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 Model Performance Results 

The separate Calflora dataset of BRSY points was matched with gain values for 

the Maxent Output_2 raster, showing the model gain value in each raster cell where a 

Calflora point resides.  This scenario gives a limited evaluation of what were to happen if 

land managers used this study’s Maxent modeling to find B. sylvaticum in the Santa Cruz 

Mountains.  Using the percentage cutoffs listed in Table 2 for Output_2 gain levels, land 

managers using the 90% cutoff would have searched the area where 14 out of 37 (38%) 

of the Calflora observations were located.  Increasing the cutoff to 95% would have 

meant that surveys for infestations would have included the locations of 28 out of 37 

(76%) of the Calflora observations.  See Table 5. 

 

Table 5:  Percent of Calflora Points Included in Survey Area by Gain Cutoff Percentage 

  

GAIN 

CUTOFF 

% 

SUITABLE 

AREA IN 

HECTARES 

SUITABLE 

AREA IN 

ACRES  

% OF 

CALFLORA 

POINTS 

INCLUDED 

Output_2      

 

100% 17,146.53 42,369.93  92% 

 

98% 3,247.02 8,023.55  81% 

 

95% 1,360.26 3,361.27  76% 

 

90% 663.03 1,638.38  38% 

 

80% 392.94 970.97  30% 

 

70% 262.53 648.72  27% 

  50% 140.22 346.49  14% 
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Discussion 

Performing species distribution modeling with presence-only data entails the 

assumption that species sampling is random or is representative throughout a landscape.  

That is, important covariates cannot be missing from the sampled area and must be 

similar to the range of covariate values in the overall landscape.  Another assumption is 

that detectability probability is constant across sites (Yackulic et al., 2013).  In the case of 

the BRSY data used for this study, the sampling was not random but was representative 

of the target area in the Santa Cruz Mountains.  The surveys that produced the presence 

data were an exhaustive inspection of entire parcels for the purpose of finding all BRSY 

for elimination, as opposed to point surveys limited to confined locations.  If a 30 m grid 

cell in this study was split between an inspected parcel and an unvisited parcel, it would 

be possible for that cell not to register as a presence cell if the only BRSY occurred in the 

unvisited portion of the cell.  Even if this were the case, the condition that detectability 

during sampling not vary with covariates that determine occurrence probability would 

still be met by the exhaustive surveys of all neighboring parcels.  The survey sweep gave 

the BRSY a very likely chance of being recorded at all surveyed sites where it exists.  

Additionally, Phillips et al. (2009) stated that presence-only modeling inferences are 

fairly robust to sample selection bias as long as the bias is constant from background 

points to presence points, which was true of this study. 

The environmental layers that most influenced model output were annual 

precipitation, average annual minimum temperature, average annual maximum 

temperature, and soils, as was indicated by higher AUC values (Figure 7).  Removal of 
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layers with the least influence on model output, as shown by the jackknife AUC < 0.80, 

did not substantially change model fit.  This may be because the environmental layers 

chosen accurately represent the requirements of BRSY in its habitat.  Alternatively, high 

AUC values could indicate overfitting of the model, the result of an invasive species not 

being in equilibrium with its environment (Gallien et al., 2012), or of analyzing a 

geographical area that is too small and too homogeneous (Thuiller et al., 2004). 

Use of a coarse vegetation layer covering the entire study area, or a fine-scale 

vegetation layer with about half the extent, did not greatly change the statistics of model 

output, with both iterations indicating a similar percentage of the analyzed area would be 

suitable habitat (18.2 and 20.5% respectively).  The two vegetation layers did indicate 

different areas of suitability, showing that the number of vegetation categories in a layer 

influences Maxent in predicting habitat areas.  Connecting data shown in the layer to 

ground truthing could indicate whether the fine-scale vegetation layer provides more 

accurate output.  For example, the coarse vegetation layer identifies one presence data 

region as “Montane Hardwood-Conifer” that the fine-scale layer separates into “Douglas-

Fir/Mixed Hardwoods,” “Douglas-Fir/Coast Redwoods,” and “Coast Live Oak.”  

Subjective field observations indicated that BRSY was more likely to be found under 

redwoods than under Douglas-fir, so having the fine-scale vegetation distinction is most 

likely useful. 

Mapped outputs showed a strong connection between hydrologic unit (HU) and 

Maxent results, as indicated by suitable areas closely following HU lines.  While BRSY 

presence is likely to influence the downstream areas within that HU, there is likely less 
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real connection between upslope areas that happen to be contained within one HU.  

Although the HU_12 environmental layer had a high jackknife AUC value of almost 

0.90, showing a high contribution to Maxent modeling, removal of this variable for 

subsequent iterations could possibly improve the model. 

Mapped outputs in some areas showed a blocky grid pattern of “most suitable” 

versus “less suitable” regions (Figures 8 and 9), at a scale matching the resolution of the 

precipitation and temperature layers (800 x 800 m cells).  Conditions in nature would not 

follow this arbitrary designation, thus showing the limitations of environmental data 

formats.  Because these layers of precipitation and temperature were important in model 

creation, access to finer-scale climate data could be quite advantageous and eliminate 

some of the grid effect in suitable habit indications. 

The linear data provided by the nhdflowline layer did not contribute to the model 

when used in a full study area format (jackknife AUC = 0.50).  When the nhdflowline 

layer was used in a streams-only format, model contribution was similarly low, but 

mapped output showed interesting results.  Streambeds indicated as suitable habitat fell 

within areas indicated by Output_2 model results, but did not match completely, and may 

therefore constitute a unique set of information.  Monitoring of an invasive species such 

as BRSY that widely disperses seeds via watercourses would benefit from analyzing 

flowlines as part of the hydrological data. 

Use of cutoff percentages for gain values, with the subsequent rasters that can be 

mapped, is a very useful methodology for turning Maxent output into target zones for 

field surveys.  Land managers can make choices for invasive species monitoring by using 
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a higher percentage cutoff to ensure surveys cover the most potential habitat, or, if 

resources are limited, a lower percentage that gives less area but with the greatest match 

as suitable habitat.  Use of a higher percentage may be most advantageous for open space 

preserves with limited acreage, where invasive species must be kept to a minimum for 

best land preservation.  Use of a lower percentage may be most suitable for a county-

wide effort to target areas of greatest probability of providing suitable BRSY habitat.  In 

this model, the trade-off of identifying more habitat meant adding a significantly greater 

burden of area to survey, particularly with gain levels over 95%.  A more finely-tuned 

model may improve the returns, so that amount of area to survey does not increase so 

dramatically with higher cutoff percentages. 

Model evaluation with the separate Calflora dataset of BRSY observations 

showed that the Maxent model created with the coarse-scale vegetation layer and refined 

to include only layers with AUC >0.80 (resulting in the Output_2 gain values) was able 

to discriminate likely B. sylvaticum habitat in the Santa Cruz Mountains, and could be 

used to define survey size and location.  Maxent modeling gave meaningful thresholds 

that land managers could use to target BRSY surveys.  Lower thresholds showed the 

most suitable BRSY habitat, and higher thresholds also included somewhat suitable 

habitat, increasing the chance of finding BRSY locations but requiring surveys of greater 

acreage.  If the Maxent model over-predicted BRSY habitat, a much greater percentage 

of the Calflora observations would have been included at lower cutoff thresholds.  If the 

model under-predicted BRSY habitat, using even the highest cutoff percentage would not 

have indicated all the areas necessary to contain most of the Calflora observations.  
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Because each increase in model cutoff percentage added the locations of more Calflora 

points, model output appears to be successful at determining the most favorable habitat 

for BRSY.   

The model did not predict habitat at 100% of the Calflora dataset locations, 

however.  Three points, or 8% of the sample, fell in areas not predicted as habitat by the 

model.  One of these points was in a location to the south, near the edge of the study area 

and about 15 kilometers from the closest BRSY sample from either dataset.  This 

southernmost point was an isolated plant that MROSD staff connected to accidental 

spread by OSD vehicles (MROSD staff personal communication, January 2013), 

emphasizing that human influence can greatly change the invasion potential of a noxious 

weed.  The other two points that were not in areas predicted as habitat by Maxent at the 

100% gain level were 23 m and 170 m, respectively, from the edge of a grid cell that was 

predicted as habitat.  In the case of the 23 m difference, the point fell in the next 

hydrologic unit from the majority of samples, so the HU layer in the model most likely 

had the greatest influence in excluding the habitat where this point fell.  The 170-meter 

point is surrounded by areas indicated by Maxent as suitable habitat, inviting closer 

examination of which environmental layers influenced this point’s exclusion.  The 

Maxent model could be fine-tuned for most effective use by incorporating habitat 

observations about outlier points such as these three.     

 Conclusion 

Maximum entropy (Maxent) modeling was an effective tool in predicting suitable habitat 

for the invasive grass Brachypodium sylvaticum in the Santa Cruz Mountains by 
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assessing environmental attributes of known presence locations.  Model outputs 

delineated geographical locations that are likely to support BRSY as an invasive species, 

and an independent dataset corroborated the model’s effectiveness.  Modeling results can 

be tailored to show the most suitable habitat, and therefore the most likely areas of 

slender false brome presence, given an acreage limit for survey effort.  This quantifiable 

target output is valuable to land managers seeking to control invasions while needing to 

maximize field investigations.  
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