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ABSTRACT

PREDICTING SLENDER FALSE BROMEBRACHYPODIUM SYLVATICUM)
INVASION IN THE SANTA CRUZ MOUNTAINS, CALIFORNIA

by Janine E. Bird

Early detection of an invasive species facilitatestrol and eradication. Slender
false bromgBrachypodium sylvaticunwas first discovered in the Santa Cruz Mountains
of Central California in 2003 as a non-native giasedwood forests, competing with
native vegetation. The current infestation in $aamta Cruz Mountains, estimated to be
300 acres, is concentrated in San Mateo Countyanld be eradicated. This study
sought to determine most likely locations of slerfdése brome in the Santa Cruz
Mountains by assessing environmental attributdsiofvn presence locations using
species distribution modeling and Maxent softwarbe study used 1,320 species
presence points collected in field surveys conaufitam 2009 to 2012, GIS
environmental layers covering a 940 km? study aaed,the machine-learning program
Maxent to identify slender false brome habitat @0an resolution in the Santa Cruz
Mountains. Maxent models successfully identifiecdtions of potential distribution of
slender false brome (training AUC = 0.961, test AtJ3.960). Annual precipitation,
average annual maximum or minimum temperature sailsl were the most important
predictors. An independent dataset corroborateghénformance of the Maxent model.
Maxent could be used by land managers for targdigsad surveys by predicting most

likely B. sylvaticumhabitat in the Santa Cruz Mountains.
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I ntroduction

Slender false bromé¢achypodium sylvaticuys a perennial bunchgrass native
to Europe and northern Africa. It was cultivatesdaa ornamental in North America
beginning in the early 20th century but becamenaéined, eventually reaching invasive
status in Oregon and later Washington State. Thegbwestern infestations spread
through seed dispersal to eventually cover thousahdcres in Oregon (Oregon
Department of Agriculture, 2013). Slender falserbe (‘BRSY” is the United States
Department of Agriculture symbol f@. sylvaticurp spreads readily in western North
America where conditions are favorable. An outfiepulation of BRSY was found in
San Mateo County, California, in 2003 (Institute Applied Ecology, 2013) and has
since been estimated to have reached at leastcB@f ia size (Midpeninsula Regional
Open Space District staff, personal communicatiamuary 2013) . This California
infestation inhabits the redwood ecosystem of thie Ildateo County portion of the Santa
Cruz Mountains in the Pacific Coast Range andspldcing the native vegetation of the
understory. If the spread of BRSY is not contr|l€alifornia may experience the level
of infestation found in the Pacific Northwest. kigispecies distribution modeling to
determine the most likely locations of BRSY popigias can aid land managers in
planning effective surveys, ensuring that likely®Rhabitat is checked so that the grass
can be controlled. This study was conducted tdiptéocations of slender false brome
in the Santa Cruz Mountains by assessing envirotahatiributes of known presence

locations using species distribution modeling.



Species distribution modeling (SDM) is an analjtical used by biologists to
analyze a landscape and determine where a spediksly to occur, based on the
characteristics of that species’ realized nichee SDM model, Maxent (maximum
entropy), uses machine learning to process presamygalata and environmental
attributes to predict potential distribution. Usfepresence-only data is an appropriate
modeling method for an invasive species whereildigion is unstable and absence data
does not necessarily indicate unsuitable habitahg@Vich & Reynolds, 2011). The
slender false brome presence data in this studg walected from 2009 to 2012 by the
staff of a local land management agency (MidpenaRegional Open Space District)
and consist of geographic coordinates recorded @RS units where BRSY was
observed growing. We surveyed for slender falsenarfor the purpose of treating and
eliminating any infestations. Although we recoraedly the presence of the grass, we
subjectively observed environmental characterisush as vegetation class, or percent
of canopy cover, that seemed to favor existencesprehd of slender false brome, and
noted that these similarities of what appearecetalbal BRSY habitat could be used to
efficiently target future surveys. Maxent allowsanalysis of these environmental
attributes by analyzing geographic information egs{GIS) layers, where the study area
is divided into a grid (in this study, a 30 m by®Ccell size). Each cell of the study area
holds a value for every environmental layer (esgil type, maximum annual
precipitation, canopy cover, or vegetation clagdaxent compares the environmental
layer values for each cell where a presence poird Epecies has been recorded, and

uses these combined attributes to indicate otHkrwhere the environmental values are



similar, indicating suitable habitat for that spescand hence target survey locations.
Maxent showed that annual precipitation, averaggianminimum temperature, and

soils were the most important predictor layerssiaitable slender false brome habitat.

Slender False Brome (Brachypodium sylvaticum)

Slender false brome, &rachypodium sylvaticurfHuds.) P. Beauv., is a
perennial bunchgrass native to Europe, northericdfand western Asia that inhabits
forests, woodlands, and upland prairies (Invasige Genter for Invasive Species and
Ecosystem Health, 2005; Piep, 2012). It reaches280cm in height, with blades 4-15
mm wide. Per stem, the inflorescence produces $pikelets with short to nonexistent
pedicels. Brachypodiumis derived from the Greelbfachys for “short,” and ‘podion?
“foot;” “ sylvaticumi references the Latinsylva) or “forest.”) Slender false brome forms
dense clumps and spreads by seed dispersal, mbizioyne production, with seeds that
are transported away from parent plants by aninhaisians, and waterways. Seedbanks
appear not to persist much longer than one yeaisdrd viability over time has not been
tested in North America (Invasive.org: Center fordsive Species and Ecosystem
Health, 2005). One plant may produce hundredeedsin a season. In the California
Floristic Province, BRSY is documented at elevatiohless than 600 m (Piep, 2012) in
forest understories and open grasslands.

Slender false brome was introduced to North Ameagan ornamental grass,
probably in the early 2bcentury. First records of the species are fro80lear
Eugene, Oregon, and by 1966, near Corvallis, Orgganlarge colonies were

apparently thoroughly naturalized (Chambers, 19@3).2001, BRSY covered thousands



of acres in Oregon, concentrated in the Willam¥t#ey (Invasive.org: Center for
Invasive Species and Ecosystem Health, 2005),ra@807, BRSY was sighted in
Washington State, and has been found in VirgincaBuitish Columbia (Piep, 2012). In
December of 2003, BRSY was first identified in @ainia from samples collected near
Schilling Lake, near Woodside, in San Mateo Cowmtyhe San Francisco Peninsula
(False-brome Working Group, 2004). By 2009, the Bancisco Peninsula population
was estimated to have reached as much as 300(at@shectares), occurring on private
parcels and in public lands such as open spacerpessand a county park, with nearly
all California occurrences found in and adjacenth®Santa Cruz Mountains. A small

BRSY population was recorded in 2009 about 500 d&tiné¢ north, in Del Norte County,

per Calflora records (Calflora, 2013).

Figure 1. Slender false brome forming monoculture on woodland hillside in San Mateo

County, California.



The California population of BRSY may have beemf#d as an ornamental
grass, as in Oregon. Seeds may also have beeduntd in feed for horses (Institute for
Applied Ecology, 2013), as the area around Woodsadea thriving equestrian
community. The North American invasions of BRSYthe Pacific Northwest and in
California have been documented as excluding matstenplant species by completely
dominating the understory and open habitats (Kingr@®y Noxious Weed Control
Program, 2012). As a non-native invader, BRSYlbaspalatability to wildlife (Kaye,
2001). Slender false brome has a very broad eialogmplitude (Kaye), with tolerance
for shade, partial shade, and sun, a range ofte@gaand plant communities, and
varying moisture regimes. Dispersal seems towhoads and trails, as seeds are carried
by human and animal activity, as well as waterwayduding ephemeral streams.
Slender false brome has received an A-level ragg noxious weed in the state
(California Department of Food and Agriculture, BDJ1a designation indicating it is a
species known to cause ecological and economic giaaurad/or be a human health risk,

and is recommended for statewide eradication bYCIDEA.

Santa Cruz Mountains Ecosystem
The ecosystem of the Santa Cruz Mountains compaiséde variety of flora due

to the complex topography and unique weather pettef the area. The Pacific Coast
Range of California is formed of low mountains ated from the northwest to the
southeast, divided into several ranges includieg3anta Cruz Mountains. Spanning the
San Francisco Peninsula southward, the Santa Countdins are bounded by the

Golden Gate to the north, the Pajaro River to thets the Pacific Ocean to the west, and



the San Francisco Bay to the east, with a nortlthstistance of about 120 km, and an
east-west distance of about 45 km. The area iesl&&n Francisco, San Mateo, Santa
Clara, and Santa Cruz Counties, with San Mateo pon the peninsula towards the
north, lying completely inside the Santa Cruz Ma@aimtegion. Elevations in this
northern stretch of the Santa Cruz Mountains deeroeéed 900 m. The presence of the
Pacific Ocean to the west contributes greater m@gb the coastal side of the range.
The complex topography of valleys and ridges witlamnsistent orientation, along with
ocean and bay influences, create a wide range@buolimates within a relatively small
geographic area (Beidleman & Kozloff, 2003). Sumfogris an important attribute of
the area, and is formed when humid air meets tlteamean water offshore, causing the
moisture in the air to condense. Rising warm aitle land mass causes the ocean fog to
be drawn inland, coating the coastal ridges witlistoce. Vegetation in the Santa Cruz
Mountains is adapted to this fog in its moisturguieements. The Mediterranean climate
of Central California brings rainfall only duringe winter months of the year, from
about October to April, but there may be extendgdsgells even during the rainy season
and rainfall amounts can fluctuate greatly. Fatuoes the amount of water loss from
plants and soil. Additionally, the mist of the fogndenses on foliage and drips to the
soil, contributing a significant amount of moistuire some cases more than the rainfall
itself (Beidleman & Kozloff).

The “San Francisco Bay Area” region of the CalifarRloristic Province
includes vegetation community types ranging fron nedwood forest, to dry oak and

pine woodland, to chaparral (Hickman, 1993). Thgetated areas of San Mateo County



have predominantly redwood forest, Douglas-fir $dreak woodlands, annual grassland,
and chaparral. Redwoo8dquoia sempervirengroves thrive in areas with greater
annual rainfall (Beidleman & Kozloff, 2003), anceatharacteristically associated with
Lithocarpus densiflorugianbark oak)Polystichum muniturfwestern sword fern),
Oxalis oregangredwood sorrel), may includémbellularia californica(California bay),
and in drier areas are associated \Wiseudotsuga menziegidouglas-fir) (Beidleman &
Kozloff; Thomas, 1961). The understory of redw@poves supports relatively few
species of vegetation because of the dense camopgcidic duff produced by the
redwood trees; the species that thrive here arkeadlapted to those unique conditions.
Because of the delicate balance of moisture andentsg supporting the redwood plant
community, this association of vegetation is patady sensitive to the pressures of a
non-native invasive plant. The effects of invasiappen at multiple scales, can
influence community structure, ecosystem proceasddunction, and the nature and
intensity of ecological interactions (Brown et &008), possibly leading to disastrous
effects in a sensitive system like the redwood tptammunity. Redwoods themselves
are intolerant of prolonged drought (Ornduff ef 2003) and would suffer if a plant

invader competed for moisture.

Species Distribution Modeling and M axent
Ecological researchers have begun over the paatlddo use species distribution

models (SDMs) to predict potential distributionnative and exotic species (Baldwin,
2009; Phillips et al., 2006). SDMs are tools tteat predict where a species is likely to

occur given the environmental conditions relatethtéd species’ success. Predictive



modeling of a species’ geographic distributionnsaal to land managers who seek to
preserve declining native species, or to elimimatasive exotic species. SDMs may be
used to guide field surveys for species with limhitkstribution (Phillips et al.) by
determining the potential distribution of an inwesspecies, thereby allowing land
managers to focus control efforts. The Maxent @tligm estimates a target probability
distribution by finding the probability distributioof maximum entropy (the distribution
closest to uniform) and identifies suitable habitattside of areas where the species has
been identified.

Presence-only versus presence-absence modeling. Presence-only modeling,
which uses occurrence data, has been shown tebrdkt accurate modeling method for
non-native invasive plant species, providing mageful results than presence-absence
modeling (Anderson et al., 2003; Elith et al., 200&nevich & Reynolds, 2011; Phillips
et al., 2006). Because the non-native speciegpyasared in the location in recent time
and is not in equilibrium with its environment, ahse data may not accurately portray
the inability of the species to thrive at a locaticAbsence at any location may indicate
unsuitability of the environmental features, or nsayply indicate that the species has
not yet invaded

Maximum entropy (Maxent). Maxent is a species distribution modeling
technique that uses machine learning method tyza@resence-only species data
matched with a suite of environmental variablepriict suitability of habitat.
Maximum entropy theory applied to species dynarspecifies that without outside

influences, processes move towards maximum enttbpyis, towards the most random



distribution. In applying a model with environmahtonstraints, the assumption is that
in the absence of those constraints, the speciemawve to the geographical distribution
of maximum entropy (Phillips et al., 2006). By doying a model that analyzes the
environmental constraints, also known as covariatéspossible to identify geographic
locations where the chances are significantly béti@n random that the modeled species
could occur.

Maxent software for species habitat modeling (8.3k, available for free from
http://www.cs.princeton.edu/~schapire/maxe(®hillips et al., 2013) provides a graphic
user interface (GUI) to allow easy manipulationngfuts. Running Maxent incorporates
metrics for evaluating model fit and contributidneach environmental layer. Maxent is
a presence-only modeling technique that represespecies’ geographic distribution by
relating recorded observances of the species tstaadh environmental variables at those
locations. Maxent provides niche-based modeliegresenting an approximation of the
species’ fundamental environmental niche. The &mehtal niche that a species could
occupy is a theoretical construct of potentialribsition. A species will most likely not
occupy its entire fundamental niche; that is, theitebe areas that a species could thrive,
but the species is not found there. The speciegpies only the area known as its
realized niche, because of human influence, binteractions, or geographic barriers
(Pulliam, 2000), not the entire fundamental nidtgwn by modeling, where long-term
survival would be possible (Phillips et al., 2008).eas with environmental variables
that satisfy the requirements of BRSY’s fundamentethe represent the grass’s potential

distribution; areas occupied by BRSY constitute BRSealized distribution. Surveys



of potential distribution sites have provided BR@¥¢sence data to use in the Maxent
model. Environmental conditions at these recomteds of occurrence are samples from
the realized niche (Phillips et al., 2006), and bamused to model BRSY’s fundamental

niche.

M odel Structure and Evaluation

Three components are needed for statistical maglefispecies distribution
(Austin, 2002): an ecological model, a data moded] a statistical model. The
ecological model provides constraints that represeological assumptions about what is
necessary for the species to thrive. An idealagioal model would represent all
environmental features that constrain the geogcapldistribution of the species, with
the assumption that the absence of those featuwreklwend towards the distribution of
maximum entropy (Phillips et al., 2006). The daiadel describes the methods by
which the presence locations were collected. Tétestical model provides a scientific
method for analyzing the environmental attributed species presence data; Maxent is a
statistical model. Maxent uses what is known asg@mce-only data, where coordinates
of species presence have been recorded, and easathatstudy area for potential
distribution by classifying the likelihood of press versus random, rather than presence
versus absence. Maxent models a probability Higion for a species over the pixels in
the study region without interpreting pixels with species records as absences (Phillips
et al.). Use of presence-only data is an apprtgpmeadeling method for an invasive
species where distribution is unstable, and abséatzedo not necessarily indicate

unsuitable habitat (Jarnevich & Reynolds, 2011).
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Maxent evaluates background data by assigning lzapility that a randomly
chosen presence site is ranked above a randomroacksite. The model uses the Area
Under the Receiver Operating Characteristic (RO@y€ (AUC) to evaluate results. An
AUC of 0.5 is considered a random ranking; an AUQ.0 is a perfect ranking. This
means that a model with an AUC of 0.5 is just kalyi to predict a presence point as a
random background point; a model with an AUC ofuildalways predict a presence
point over a random point. Researchers have eiaube default settings of Maxent by
comparing Maxent’s “presence from random” clasatfimn using presence-only data,
with the results of “presence from absence” modekjng the same geographic area.
Maxent consistently produced a high AUC, with a elagenerating an AUC of >0.75
considered to be potentially useful (Elith, 2002).

Species distribution models identify areas of fatdnabitat by relating
environmental variables to locations of known ocence where the species has been
recorded in field-collected data. The best scenarif the whole range of suitability for
each variable is represented in the occurrence tegieeby capturing the entire
possibility of the fundamental niche. A small gesqzhic range represented in occurrence
data may not provide this full distribution (Phpki et al., 2006). Environmental
conditions are described in climatic variables .(eagmperature and precipitation),
topographic variables (elevation; slope; aspeat)ltover variables (vegetation
communities; canopy cover), and potential vegetafsoil; geology). The Maxent user
provides a file of species occurrence points, drabses which environmental variables

to enter into the model. Maxent shows the AUCdach environmental variable entered,
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as well as an AUC for the predictive accuracy efiodel as a whole. Those
environmental variables with a higher AUC contriduatore information to Maxent’'s
prediction across the study area; a model wittgh AUC is much more likely to predict
a presence location than a random location. Rsistidy, eighteen environmental
variables were incorporated for use in Maxent tectepotential slender false brome
habitat in the northern stretch of the Santa CreziMains of California.The purpose of
this analysis was to identify the areas, at a 3@solution, that would best support

slender false brome.

Field Observations
The BRSY species occurrence data for this studg wellected by staff of a local

land management agency, Midpeninsula Regional Gpae District (MROSD,

District) during surveys of private property, DistrOpen Space Preserves (OSPs), and
other public lands, for the purpose of finding a&tdcinating slender false brome
infestations. We traversed land parcels on faatjgiGPS (global positioning system)
units to mark locations where the grass was obdereeorded in geographic
coordinates. Subjective field observations of once locations showed that slender
false brome seemed most likely to thrive in redwbaditat, but was found less in nearby
areas dominated by Douglas-fir trees. Infestgpatterns seemed to show that BRSY
seeds travel downhill with gravity or water flovg, that steeper areas showed dispersal
over greater distances, whereas level terrain sgéoeave denser infestations, as seeds
were most likely to fall close to parent plantsaviEonmental attributes related to these

observations include vegetation categories, cacopgr, slope, hydrologic unit, and

12



stream flow, and were therefore included amondapers used in the model for this
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Figure 2: Study area shown with box outline. Inset map shows location in state of

California.
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Method
Study Area

The location for this study was in the northerntjoor of the Santa Cruz
Mountains of coastal California, comprised of pams of San Mateo County, Santa Clara
County, and a small area of Santa Cruz County (Eig), and consists of a box drawn in
geographic space with all presence data locatednsalie the box. The bounds of the
rectangle were set at -122.46 to -122.03 longit@de24 to 37.50 latitude, forming a box
approximately 38 km west-to-east, and 28 km navteeduth. These study area limits
were chosen by visual map inspection considerirag)| BRSY presence data recorded in
the Santa Cruz Mountains, California, 2) the hyolgat units of the area, and 3) the
northern expanse of MROSD’s Open Space Preserged-(gures 3 and 4).

Most of the known BRSY presence data in Califoar@& concentrated in a small
geographic location, allowing this study to focusaosingle area radiating out from those
points. Hydrologic units were considered importaatause the seeds of BRSY appear
to be transported by waterways and gravity. Weahat subjective field observations
that small infestations of BRSY could be presensatated locations great distances
from the main infestation, but that these outlaations were immediately adjacent to
waterways downstream from the heavy infestatiee]ihg us to conclude that the seeds
had been transported in the streams and that waysreould be important vectors for
long-distance seed dispersal. The nationally neizegl Hydrologic Unit Codes (HUCSs)
used to designate watersheds increase numericéiiyavdecrease in basin size. The

most detailed level, HUC 12, which indicates waieds of second and third order
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streams, was used for this study because of theetirgeographic extent of BRSY
occurrence points, and the presence of small waterm this region.

The presence data used in this study were colldstestiaff working for
Midpeninsula Regional Open Space District, an agémat manages open space
preserves for human enjoyment and for the sakeesiepving the land itself. Part of the
mission of MROSD is to protect native flora andrfaispecies and minimize exotic
invasive ones. Providing BRSY distribution modglotata to a public agency able to
address infestations on their lands and nearbye[saassists the effort in decreasing or

eradicating slender false brome in California, sostdering MROSD preserves in

planning the study area was desirable.

Figure 3: Study area outline showing presence data as dots and local hydrologic units
(HUC 12) as polygons.
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preserves as darker polygons, and other public lands as lighter polygons.

Presence Data
Presence data consisted of 1,321 geographic pmatibns recorded with hand-

held GPS (global positioning system) units wheeadér false brome was observed
growing during 2009 to 2012 field surveys condudigdtaff of Midpeninsula Regional
Open Space District. We recorded only one poihtdtions where BRSY occurred in a
large patch. Although some vegetation monitorifigres use polygons recorded with
GPS units to show species presence, we did notogntiis method because steep and
challenging terrain sometimes prevented on-fooesEto the entire infestation
perimeter, and often tree canopy prevented comsistellite reception. Most surveys
occurred on privately owned parcels in which theremparcel was inspected for the

presence of slender false brome. For the purpioseating BRSY infestations, we drew

16



maps by hand in the field to show the extent ahéestation, using a simple “x,y”
coordinate pair recorded with GPS to locate thigsitation on the surveyed parcel. For
the purpose of this study, the GPS coordinatesegboovide an accurate record of
observed presence of BRSY. Critiques of presendgdata modeling specify that
sampling must be either random or representatiiutl, important covariates not missing
due to inaccessibility or infrequency (Franklif0®; Royle et al., 2012; Syfert et al.,
2013; Yackulic et al., 2013). The presence datahis study are representative in that
entire multi-acre parcels were surveyed and aléokesi BRSY presence was recorded
regardless of proximity to roads or trails, andalated to environmental conditions.
Areas that were inaccessible on foot were still@ily inspected from the nearest vantage
point, and presence of BRSY was recorded.

The GPS units used in field surveys were Garmin &R 60CSx handheld
devices, formatted to collect location data in litunde/latitude decimal degrees using the
WGS 84 datum. One point in the dataset fell inutiEn region considerably to the east
of the survey area, was deemed to have an erroxealse, and was excluded from this
study. The remaining 1,320 points were reprojectedrcGIS v.10.0 (Esri, 2010) to
UTM coordinates of an easting and northing (NAD3,98TM Zone 10N). These
coordinates were exported to a text file and caedeto a .CSV file with the format
“Species,x,y’, (e.g., “BRSY,565971.2849,4138121®B)With one coordinate pair per

presence record, for use in Maxent.
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Environmental Variables

Environmental variables (“layers”, “features”, mdVvariates”) used as inputs for
Maxent should be representative of characterigtiasallow the modeled species to exist
and increase. The choice of variables has a dilgezomponent, but if the modeled
species is a plant, concepts of botany lead towardesing features that influence
vegetation success in any environment: moistugbt,ltemperature, and nutrients.
Choosing environmental variables asserts thatitiyenesent all environmental features
that constrain geographical distribution of thecsge (Phillips et al., 2006); however,
Maxent allows determination of which features asmnfluential for the species
modeled. For this study, environmental variablesducan be classified in four
categories: climate, topography, hydrology, ancpuoél vegetation/vegetation. Climate
variables used (USDA NRCS 30-year normal, averayed 1981 to 2010) were annual
precipitation in inches, and annual maximum temjpeeaand annual minimum
temperature both in degrees Fahrenheit. Topogrephgbles were in meters
(referenced to the North American Vertical Datuni©88), at the 30 m by 30 m scale,
derived from a Digital Elevation Model (DEM), antcluded elevation in meters, slope
in degrees, and aspect in compass degrees. Hgdraioits, at the sub-watershed level
("HUC 127", referring to the twelve-digit code usedtionally), and National
Hydrography Dataset Flowlines (unique stream sed¢sh&ere used. Potential
vegetation features included two sets of soil dathtwo sets of geology data (covering
the same geographic space, but comprised of diffexdaphic and geologic information

respectively). Vegetation features included twad@over classification layers (National
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Landcover Database, with 16 classes, and Calif@mgaal Conservation Atlas, with 12
classes), four vegetation type classificationsnffi@arious sources, with 108, 43, 22, and
22 categories respectively), and total cover friaova (non-overlapping vegetation
cover, from the U.S. Department of Agriculture Fr8ervice, in 11 categories by
percentage).

Environmental variables were derived from varioogrses in both vector
(shapefile) and raster format. All were procedseflrcGIS: reprojected to NAD 83
UTM Zone 10N, clipped to a bounding box larger thiam study area, and converted to
rasters with a 30 m by 30 m cell size aligned te@stration point, so that every layer
matched exactly in grid size and location for digeographical comparison. The 30 m
size creates a grid with cells small enough tdyikapture the environmental factors
associated with BRSY (Franklin, 2009). Althoughaenpling of larger grid cells to
smaller grid cells does not increase the resolusicdhe data, the matched cell sizes allow
all data to be spatially linked. For use in Maxelata is categorized as either Continuous
(e.g., elevation) or Categorical (e.g., soil typeflormat. See Table 1 for environmental

variables used.
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Table 1: Environmental Variables

FEATURE LAYER RANGE UNIT FORMAT SOURCE
NAME OR TYPES ORFIELD

CLIMATE
temperature maximum |[tempmax_clip 56.46to73.3 DEGREES F CONT | USDA NRCS
temperature minimum |tempmin_clip 43.8t051.3 DEGREES F CONT |USDA NRCS
precipitation annual precipann_clip 14.54t061.30 INCHES CONT |USDA NRCS
TOPOGRAPHY
elevation nedutm_clip -2.27to 1156.7 METERS CONT | CaSIL
slope nedutm_slope 0to61.24 DEGREES CONT |CaSIL
aspect nedutm_aspect 8 categories DEGREES CONT |CaSIL
HYDROLOGY
hydrologic units hul2_polygon [*13 HUs in studyarea] |HUC_12 CAT |CaSIL
flowlines nhdflowline_R [1 or nodata] [present /absent] CAT NHD
POTENTIAL VEGETATION / VEGETATION
soil bay_area_soils 29 types MUID_1 CAT | MROSD
soil gsmsoilmu_a_ca 29 types MU_SYM CAT USDA NRCS
geology geology_a_ca 20 types ORIG_LABEL CAT USDA NRCS
geology bay_area_geology 101 types P_TYPE CAT MROSD
landcover, 12 types casil_landcover12 [10 types in studyarea] |GRID_CODE CAT CaSIL
landcover, 16 types nlcdO6utm_clip 16 types NLCD TYPES CAT | USGS
vegetation, 108 types |vegclass4_utm 108 types NUM_NAME CAT | MROSD
vegetation, 22 types usfs_veg_types 22 types TYPE CAT | MROSD
LCMMP regional
dominance evegregdom 43 types REGIONAL_D CAT |USDAFS
LCMMP wildlife-habitat
relationship Evegwhrtyp 22 types WHRTYPE CAT |USDAFS
LCMMP total cover from
above Evegtotcfa 11 categories +nodata |TOTAL_TREE_CFA CAT | USDAFS

CaSIL — California Spatial Information Library

http://atlas.ca.gov/
MROSD - Midpeninsula Regional Open Space District

http://www.openspace.org/

USDA FS — United States Department of Agriculture Forest Service
http://www.fs.fed.us/r5/rsl/projects/mapping/

USDA NRCS - United States Department of Agriculture Natural Resources Conservation Service
http://datagateway.nrcs.usda.gov/

USGS - United States Geological Survey
http://viewer.nationalmap.gov/viewer/
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Maxent M odeling
ASCI I format and mask raster. Maxent input requires all environmental layers

to be converted to ASCII file format with identidadaders:

ncols 2134
nrows 2000
x11corner 541000
yllcorner 4103000
cellsize 30

NODATA_value -9999
52 42 43 90 11 11 90 90 43 71 -9999 -9999...

Environmental rasters were converted to ASCII i “Raster to ASCII” tool in
ArcGIS. Because these rasters were created ((Bolggon to Raster” tool in ArcGIS)
or formatted with an identical bounding box, ceksiand registration point, ASCII
conversion resulted in matching headers and coeerdge “NODATA value” refers to
the listing in the ASCII for any area covered by tounding box but where the original
raster had no coverage, and therefore had no dalaplay. For this study’s dataset, the
“nodata” areas were present in two layeeggclassda polygon layer with fine-scale
vegetation detail, but limited geographical coveraandnhdflowline a polygon layer

that covered the entire bounding box but only pifedidata as lines in areas of
watercourses. Maxent will not process a cell‘i@data” value of -9999 occurs in any
layer in that cell. This means that using thesetdéid rasters may add important
information to the species distribution analysig(emore detailed vegetation classes in
the case ofegclassi but may also confine Maxent to an unacceptaivigls
geographical area and result in overfitting the elod useful function of the “nodata”
limiting feature is that a mask raster can be et&d set the region that Maxent analyzes
once a study area has been determined. For thig,stnvironmental layer rasters were

originally clipped to an area larger than the stadsa, so once the study area was
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determined, a raster was created with a valueinditle the study area, and a value of -
9999 for the rest of the area of the bounding boxluding this mask raster with Maxent

inputs means that Maxent will analyze only thesc#ihat fall within the study area.

|/ Maximum Entropy Species Distribution Modeling, Version 3.3.3k = I
samples i layers
. r
F!I@TD JB_GIS!_XY\BRSY_83UTHZ10N.csv Browse ‘ DirectoryfFile D\JB_GIS\_Layers Browse
[
[v] bay_area_geology.img Categorical -
[¥] bay_area_soils.img Categorical -
[] box_0.img Continuous -
[¥] casil_landcover12.img Categorical -
[v] evegregdom.img Categorical -
[v] evegtotcfa.img Categorical b4
[¥] evegwhrtyp.img Categorical 4
-
| Maximum Entropy Parameters | B [v] geology_a_caimg Categorical =
(Basic | Advanced | | vl iimu_a_caimg Categorical -
[¥] hu12_polygon.img Categorical -
o i =
- il iendom seo [¥] nedutm_aspectimg Continuous >
¥ BRSY {1 Give visual warnings
o Show ik [¥v] nedutm_clip.img Continuous -
[¥] Ask before overwriting [¥| nedutm_siope.img Continuous -
il 3p Dot oists [v| nndfiowiine2_rimg Categorical -
[v] Remove duplicate presence records
e - [] nhafiowline3_r.img Categorical -
{¥] Write clamp grid when projecting
[¥] Do MESSS analysis when projecting [ nicd06utm_clipimg feolagonical =
Random test percentage [v] precipann_clip.img Continuous &
Regularization multiplier 1 T I o
Max number of background points 10000]
| [v] tempmin_clip.im Continuous v
Replicates 1] |I S, SR
Replicated run type Crossvalidate = [ usts_veg_types.mg Calogorical P
Test sample file Browse | [¥] vegclass4_utm.img Categorical oA
3 S L
| selectall Deselectall |
[ Linear features Create response curves [v]
Make pictures of predictions [v]
Do jackknife to measure variable importance [v/]
i il
Output format | Logistic l'
Output file type [asc |r
[} Hinge features Output simcluryfu UB_GIS_Outputi2013-02-24\0utpul_0 || Browse
[v] Auto features Projection layers directoryffile | Browse |
1
‘ Run l Settings 1 Help. i

Figure 5: Maxent graphical user interface, with species and environmental layer inputs,

and parameters window.

Running Maxent. Analysis of species distribution with Maxent mthag starts
with opening the graphical user interface, pointmghe directories of species data,
environmental layers (set to Categorical or Cordus), and an output file, and choosing
the model’s settings (see Figure 5). Maxent alepecifying that part of the presence

data be used for training the model, and partsdedor testing the model. Maxent was
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set to remove duplicate occurrence points, or gecoccurring in the same grid cell, so
that each cell’'s environmental attributes wouldyardntribute once to the model in a
run. In this study, all Maxent runs were completgth 75% (n = 754) training data and
25% (n = 251) testing data out of all non-duplidARSY occurrence points (n = 1,005)
used in the model.

Maxent output includes graphic display of the aealyzed showing AUC, with
a number closer to 1 indicating a greater proligiiiat a randomly chosen presence site
will be ranked above a random background site.iBnmental layers used to run the
model influence output. Visual examination of graphic display and statistical output
can be used to choose which layers to include dudg for subsequent runs, based on
their ecological relevance as shown by the mo8ele Figure 6, showing Maxent’s map
output of suitable habitat.

Maxent was run using all environmental layers (‘{a@uit 0”), then with the
geographically limited vegetation layeegclassdremoved (“Output_1"). These outputs
were evaluated for thjackknife AUC (see Figure 7), all layers with AUQ)<80 were
removed, and two subsequent runs were performedwihvegclass4“Output_4"),
and one without (“Output_2"). An additional rurQtitput_3") was performed using a
separate version of tmhdflowlinelayer, where all non-stream locations have theateod
value, meaning only linear stream areas were aedjyather runs used a version of the
nhdflowlinelayer with all non-stream locations having a vadfi@, so that stream data

was analyzed without excluding non-stream areas.
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Choice of the AUC < 0.80 limit for removing enviroental variables was made
based on Elith’'s assessment that a model AUC o¥% 8 considered useful (Phillips &
Dudik, 2008), and with the objective of not misshmpitat (Jarnevich & Reynolds,
2011), since the modeling purpose is to eliminateaasive species. Because an
invasive species is not in equilibrium with its @omment, full knowledge of the most
influential covariates is not initially possibleyadistribution modeling is ideally an

iterative process.
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Output_0

Area limited
geographically by
vegclass4 raster

extent.
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region is
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distribution.

Scale of AUC

Output_3

Limited by
nhdflowline raster
extent. Streams
near center of
image show higher
AUC.

Figure 6: Maxent output graphics, with study area box superimposed on results. Warmer

colors show better environmental conditions; purple areas show presence data locations.
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Jackknife of AUC for BRSY

bay_area_geology.img
bay_area_soils.img
box_0.img
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evegtotcfa.imag
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hu12_polygon.img
nedutm_aspectimg

nedutm_clip.img

Environmental Variable

nedutm_slope.img
nhdflowline2_r.img
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Figure 7: Maxent output graphics, showing AUC on test data, and dashed line at 0.80
added to select environmental variables with lower AUC and therefore less model

contribution.
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Output Processing

Maxent produces an ASCII grid (.ASC) for each rbowging the presence
probabilities (gain) for each grid cell of the syuatea. These files were converted to
Maxent output raster files in ArcGIS. To meaniryflink the Maxent gain output to the
species presence data, the raster values weretextifar each cell that contained an
original presence location using the “Extract Valte Points” tool. This was completed
for each .ASC-to-raster output resulting from thaxent Output_2 (all layers with >0.80
AUC, exceptvegclass} and Output_4 (all layers with >0.80 AUC, inclagivegclassi
The new point files, now with an appended fieldwimg the Maxent gain in the cell
containing each point, were exported and convedétkcel files. The table was sorted
according to gain value, and the entire list ohp®was divided into cutoff percentages,
with associated gain, for use in creating new rast€utoff percentages selected were
100, 98, 95, 90, 80, 70, and 50, out of the tot@hiber of presence points. At each cutoff
percentage the associated gain value was notedexBmple, with the cutoff gain value
at 98%, ninety-eight percent of the presence pdiatsan equal or greater gain value
than the noted value. Tying Maxent output bacthéopresence points means we can say
that of the cells where Maxent predicts more liketgurrence, we are choosing thest
likely cells, with environmental conditions similar tdlsevhere 98% (in the previous
example) of the presence points occurred. Indasdal inspection showed that the
presence points associated with the lowest gaunegalvere farthest from the main
infestation, where environmental conditions wekellf to be less similar. This sorting

method was employed with the rationale that invasiyecies monitoring is most likely
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not possible at 100% of the area shown by the modehve a chance of supporting the
species. At the same time, a very limited surygy@ach, with a 50% match, will likely
exclude too many actual presence locations. Chgasgain value associated with
presence data location cells means that the madjglibinterpretation is tied to

conditions where the species is present. Choa&lrigus cutoff percentages, with a
proportionally sized presence-likely geography asdged, means that monitoring

surveys able to target limited area can focus emtbst suitable habitat found in that size
area. Table 2 shows gain values associated witteMautput at each chosen cutoff

percentage.

Table 2: Gain Values at Cutoff Percentages

GAIN
CUTOFF POINT

% NUMBER > GAIN VALUE
Output_2 Output_4
100% 1320 0.005985* 0.006041
98% 1294 0.115783* 0.059212
95% 1254 0.290746* 0.023659
90% 1188 0.424793 0.385971
80% 1056 0.490851* 0.481561
70% 924 0.551750 0.532657
50% 660 0.582084 0.582084

* Value also used for Output_3

Using the noted gain value, a new raster was atdateeach cutoff percentage

for Output_2 and Output_4. This was done by stgrvith the Maxent raster results,
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added to the ArcGIS Raster Calculator with, forregke, [Output_2 raster] >= [gain
value]. The resulting raster showed a “1” valueach cell with a gain greater than or
equal to the cutoff gain value chosen, and a “Gilirother cells. With a lower cutoff
percentage, fewer cells received the value of fL{Hmse cells had the greatest likelihood
of supporting BRSY. With each increase in cut@fgentage (50% to 100%), more cells
were given the value of 1 in the resulting radtet,the added cells had decreasing
likelihood of providing a suitable environment 8RSY. Through this process, a bull’s-
eye sort of mapping of suitable BRSY habitat isgiale, with a choice of geographic
size for the survey target, and a means of idangfthe most likely areas if resources are
limited.

Output_3 from the Maxent run incorporating titeflowlinelayer version limited
to stream areas was processed using the Outpun 2ajaes at the percentages of 100,
98, 95, and 80, with rasters created for each tu@btput 3 cells could not be matched
directly to presence point cells because thesarstiee-only cells had such a limited
extent. Because Output_3 geographical coveragehgasame as Output_2, the gains of

Output_2 were substituted.

M easur e of Model Perfor mance

To measure the performance of the Maxent specstsiition model created in
this study, a separate BRSY dataset was used.e ats were recorded observations of
B. sylvaticunfrom the online database maintained by Calfloragmprofit organization
that acts as a repository of information on Caffarplants for education, research, and

conservation (Calflora, 2013). The observatiomsfaom public agencies, non-profits,
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scientists, and private donors. Per Calflora, emmpof identification is not reviewed.
However, most BRSY observations in the Calfloraatdase were made by known
biologists working in the Santa Cruz Mountains &amdiliar with B. sylvaticum From

the “Search for Plant Occurrence Records”, a “Bypoldium sylvaticum” search in the
“full scientific name” field with no other delimite (choosing “plain text” for data
export) gave all the Calflora records for BRSYotal of 149 observations between
January 2004 and March 2011. From these recawdsplbservations had no geographic
coordinates listed, and so were removed. One wéisen was in Del Norte County,
about 500 km north of the study area, and so wasalded because it falls outside the
environmental data assembled for this study. Eheamning 143 observations were
added to ArcMap as x,y data, to compare to ther@i@BRSY dataset. To ensure that
only unique Calflora observations were kept, allflGea observations within 50 m of any
BRSY point in this study’s original dataset wergnghated if observation dates matched.
(The distance of 50 m was chosen because sateltigption in the study area usually
provided GPS accuracy of 50 m or better, so adjgmants inside that range were more
likely to be the same occurrence location.) Theai@ing Calflora observations, thought
to be uniqgue BRSY observations, numbered 37. TBé<ealflora observations were
compared with Maxent modeling results to see ifpbmts fell in areas identified by
Maxent as likely BRSY habitat. To make the evaargtthe Calflora observations were
compared to the raster from Maxent Output_2. Usineg'Extract Values to Points” tool
in ArcMap, each Calflora observation was linkedhe gain value of the Output_2 raster

cell in which it fell, and those values were appahtb the Calflora data attribute table
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for each point. The gain values associated with €2alflora data point were used to
show where on the “bull’'s-eye” of successively msudable BRSY habitat those

independent observations fell.
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Results

All Maxent iterations had similarly high AUC valsieand manipulation of
environmental variables used in running Maxentraitisubstantially change predictive
strength of the model according to AUC (see TableRdr the first model iteration
(Output_0) using the fine-scale vegetation layegclass4and excluding the streams-
only version oihdflowline results were far better than random predictiath wUC =
0.960 for training data and AUC = 0.957 for the 26Ppresence data partitioned for
testing. Removing AUC < 0.80 environmental varahior the next iteration, Output_4,

gave AUC = 0.958, with only a slight improvementitodel performance.

Table 3: Maxent Output Statistics

Receiver Operating Characteristic Curve AUC

AUC
Training Data Test Data

Output_0 0.960 0.957 excluding nhdflowline3

Output_1 0.961 0.959 excluding vegclass4 and nhdflowline3

Output_2 0.961 0.960 excluding vegclass4, nhdflowline3,
and environmental variables with
AUC<0.80

Output_3 0.992 0.984 excluding vegclass4, using
nhdflowline3 (limited to streams)

Output_4 0.960 0.958 excluding nhdflowline3, using
vegclass4 (fine-scale vegetation
detail)

Random prediction AUC=0.5
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The model iterations using the coarse-scale vagatktyer started with AUC =
0.959 for test data in Output_1, and removing emrmental variables with less
contribution marginally improved results, with AU00.960 for test data in Output_2.
The Maxent run for Output_3 was limited to examgnanly the raster cells included in
streambeds and exhibited a very high AUC (0.9&4)hough Maxent is not usually used
to model linear data (Elith et al., 2011), thisateon of the model did show a selection of
stream areas that, according to an acceptable Atéamnore likely to provide suitable
BRSY habitat than most of the streams in the sardg.

Using gain cutoff percentages to create new rasteibled mapping of the areas
predicted by Maxent to be most likely habitat. leswercentages indicated smaller areas
with the most ideal conditions. Increasing peragas added area, but with an inverse
relationship to suitability: these additional areae less matched to ideal environmental
conditions. Figure 8 and Figure 9 show maps af thimparison of using percentage
cutoffs for Output_2 and Output_4, respectively.Flgure 8, the cutoffs of 70, 90, and
100% were mapped for Output_2. The area indicaseslitable with a 70% gain cutoff
was ~650 acres (263 hectares); at 90%, the arezatediwas 2.5 times larger, at 1,638
acres (663 hectares), and at 100%, the area wam@5% larger than the 90% area, at
42,370 acres (17,147 hectares). Table 4 showsizheof the modeled suitable area
indicated by Maxent, using the percentage cutofise shaded lines indicate the
percentages 70, 90, and 100, mapped in Figured 8.akJsing gain cutoffs greatly

changes the size of the mapped area, with a nardroad suitability focus.
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Maxent Output_2

|:J Study Area
[:] Hydrologic Units
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Figure 9: Maxent suitability results for Output_4.
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Table 4: Suitable Area by Maxent Run and Gain Cutoff Percentage

TOTAL NUMBER
GAIN NUMBER  OF CELLS SUITABLE  SUITABLE
CUTOFF CELLS VALUE % OF AREA IN AREA IN
% ANALYZED =1 AREA  HECTARES ACRES
Output_2 1047416
100% 190,517  18.2% 17,146.53  42,369.93
98% 36,078 3.4%  3,247.02 8,023.55
95% 15,114 1.4%  1,360.26 3,361.27
90% 7,367 0.7% 663.03 1,638.38
80% 4,366 0.4% 392.94 970.97
70% 2,917 0.3% 262.53 648.72
50% 1,558 0.1% 140.22 346.49
Output_4 555327

100% 113,967 20.5% 10,257.03  25,345.63
98% 36,424 6.6%  3,278.16 8,100.50
95% 13,364 24%  1,202.76 2,972.08
90% 6,515 1.2% 586.35 1,448.90
80% 3,609 0.6% 324.81 802.62
70% 2,819 0.5% 253.71 626.93
50% 2,166 0.4% 194.94 481.71

The coarse-scale vegetation analysis of Outputdizated 18% of the analyzed
area (the entire study area, about 948 km?2) coellslitable BRSY habitat, using the

100% gain cutoff. Output_4, with the fine-scalge®tion layer, analyzed an area about
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half the size (~500 km?) of the entire study area, iadicated at the 100% cutoff that a
similar percentage of the analyzed area, 20.5%]dMaei suitable BRSY habitat.

Mapping the results of Output_3, using the lindegasn data, showed streambeds
with higher probability of suitable BRSY habitaht the 100% gain cutoff for Output_3,
nearly all the streams falling within the largestt@ut_2 extent (Output_2 at 100%) were
indicated. At the 98% gain cutoff for Output_3nsmerably fewer streambeds were
indicated. Figure 10 shows Output_3 streams a@8d6 cutoff on top of the area

mapped for Output_2 at 100%.

Maxent Output_3

E' Study Area
]:l Hydrologic Units

Gain Cutoff

[ ]98%output_3

(stream layer)

I (00% Output_2

Figure 10: Mapped Maxent results for Output_3, linear stream data, shown on top of

Output_2 results at the 100% cutoff. Inset is expanded area.
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M odel Performance Results

The separate Calflora dataset of BRSY points washed with gain values for

the Maxent Output_2 raster, showing the model galne in each raster cell where a

Calflora point resides. This scenario gives atlahievaluation of what were to happen if

land managers used this study’s Maxent modelirfon¢bB. sylvaticunin the Santa Cruz

Mountains. Using the percentage cutoffs listed@able 2 for Output_2 gain levels, land

managers using the 90% cutoff would have seardiedrea where 14 out of 37 (38%)

of the Calflora observations were located. Indreathe cutoff to 95% would have

meant that surveys for infestations would haveuded the locations of 28 out of 37

(76%) of the Calflora observations. See Table 5.

Table 5: Percent of Calflora Points Included in Survey Area by Gain Cutoff Percentage

% OF

GAIN  SUITABLE  SUITABLE CALFLORA

CUTOFF  AREAIN AREA IN POINTS
% HECTARES ACRES INCLUDED
Output_2

100% 17,146.53 42,369.93 92%
98% 3,247.02  8,023.55 81%
95% 1,360.26  3,361.27 76%
90% 663.03  1,638.38 38%
80% 392.94 970.97 30%
70% 262.53 648.72 27%
50% 140.22 346.49 14%
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Discussion

Performing species distribution modeling with preseonly data entails the
assumption that species sampling is random opigsentative throughout a landscape.
That is, important covariates cannot be missingftbe sampled area and must be
similar to the range of covariate values in theralldandscape. Another assumption is
that detectability probability is constant acro$sss(Yackulic et al., 2013). In the case of
the BRSY data used for this study, the sampling meagandom but was representative
of the target area in the Santa Cruz Mountainse sithiveys that produced the presence
data were an exhaustive inspection of entire pafoelthe purpose of finding all BRSY
for elimination, as opposed to point surveys limhite confined locations. If a 30 m grid
cell in this study was split between an inspectaatg and an unvisited parcel, it would
be possible for that cell not to register as agmes cell if the only BRSY occurred in the
unvisited portion of the cell. Even if this weletcase, the condition that detectability
during sampling not vary with covariates that dii@e occurrence probability would
still be met by the exhaustive surveys of all nbmying parcels. The survey sweep gave
the BRSY a very likely chance of being recordedlbsurveyed sites where it exists.
Additionally, Phillips et al. (2009) stated thaepence-only modeling inferences are
fairly robust to sample selection bias as longhadiias is constant from background
points to presence points, which was true of thidys

The environmental layers that most influenced modgbut were annual
precipitation, average annual minimum tempera@verage annual maximum

temperature, and soils, as was indicated by highkt values (Figure 7). Removal of
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layers with the least influence on model outputsta®wvn by the jackknife AUC < 0.80,
did not substantially change model fit. This maybecause the environmental layers
chosen accurately represent the requirements offBR8s habitat. Alternatively, high
AUC values could indicate overfitting of the modile result of an invasive species not
being in equilibrium with its environment (Gallieh al., 2012), or of analyzing a
geographical area that is too small and too homagen (Thuiller et al., 2004).

Use of a coarse vegetation layer covering theestudy area, or a fine-scale
vegetation layer with about half the extent, did greatly change the statistics of model
output, with both iterations indicating a similarpentage of the analyzed area would be
suitable habitat (18.2 and 20.5% respectively)e @o vegetation layers did indicate
different areas of suitability, showing that themher of vegetation categories in a layer
influences Maxent in predicting habitat areas. &miing data shown in the layer to
ground truthing could indicate whether the finelksaeegetation layer provides more
accurate output. For example, the coarse vegetiyer identifies one presence data
region as “Montane Hardwood-Conifer” that the fstale layer separates into “Douglas-
Fir/Mixed Hardwoods,” “Douglas-Fir/Coast Redwoodatid “Coast Live Oak.”
Subjective field observations indicated that BRS&swnore likely to be found under
redwoods than under Douglas-fir, so having the-fica&le vegetation distinction is most
likely useful.

Mapped outputs showed a strong connection betwgdmlogic unit (HU) and
Maxent results, as indicated by suitable areazbidsllowing HU lines. While BRSY

presence is likely to influence the downstream savgghin that HU, there is likely less
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real connection between upslope areas that happss contained within one HU.
Although the HU_12 environmental layer had a haygtkknife AUC value of almost
0.90, showing a high contribution to Maxent modgliremoval of this variable for
subsequent iterations could possibly improve thdeho

Mapped outputs in some areas showed a blocky gtiénm of “most suitable”
versus “less suitable” regions (Figures 8 and 19, scale matching the resolution of the
precipitation and temperature layers (800 x 80Chsx Conditions in nature would not
follow this arbitrary designation, thus showing timeitations of environmental data
formats. Because these layers of precipitationtangberature were important in model
creation, access to finer-scale climate data cbelduite advantageous and eliminate
some of the grid effect in suitable habit indicato

The linear data provided by tinédflowlinelayer did not contribute to the model
when used in a full study area format (jackknife@8 0.50). When thehdflowline
layer was used in a streams-only format, modelrdmriton was similarly low, but
mapped output showed interesting results. Stredsipelicated as suitable habitat fell
within areas indicated by Output_2 model resulis,dad not match completely, and may
therefore constitute a unique set of informatidfonitoring of an invasive species such
as BRSY that widely disperses seeds via watercewvseld benefit from analyzing
flowlines as part of the hydrological data.

Use of cutoff percentages for gain values, withghlesequent rasters that can be
mapped, is a very useful methodology for turningkbte output into target zones for

field surveys. Land managers can make choicesyasive species monitoring by using
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a higher percentage cutoff to ensure surveys ditremost potential habitat, or, if
resources are limited, a lower percentage thasdess area but with the greatest match
as suitable habitat. Use of a higher percentagelbmanost advantageous for open space
preserves with limited acreage, where invasiveispauaust be kept to a minimum for
best land preservation. Use of a lower percentaayebe most suitable for a county-
wide effort to target areas of greatest probabditproviding suitable BRSY habitat. In
this model, the trade-off of identifying more habitneant adding a significantly greater
burden of area to survey, particularly with gaivels over 95%. A more finely-tuned
model may improve the returns, so that amounted & survey does not increase so
dramatically with higher cutoff percentages.

Model evaluation with the separate Calflora data§&RSY observations
showed that the Maxent model created with the esstale vegetation layer and refined
to include only layers with AUC >0.80 (resultingthire Output_2 gain values) was able
to discriminate likelyB. sylvaticunmhabitat in the Santa Cruz Mountains, and could be
used to define survey size and location. Maxerdetiog gave meaningful thresholds
that land managers could use to target BRSY survegwier thresholds showed the
most suitable BRSY habitat, and higher thresholsls iacluded somewhat suitable
habitat, increasing the chance of finding BRSY tmees but requiring surveys of greater
acreage. If the Maxent model over-predicted BR&Nitat, a much greater percentage
of the Calflora observations would have been inetudt lower cutoff thresholds. If the
model under-predicted BRSY habitat, using everhtgbkest cutoff percentage would not

have indicated all the areas necessary to contast af the Calflora observations.
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Because each increase in model cutoff percentadgdatie locations of more Calflora
points, model output appears to be successfultatrdaing the most favorable habitat
for BRSY.

The model did not predict habitat at 100% of thél@a dataset locations,
however. Three points, or 8% of the sample, felirieas not predicted as habitat by the
model. One of these points was in a location ¢ostbuth, near the edge of the study area
and about 15 kilometers from the closest BRSY sarfipin either dataset. This
southernmost point was an isolated plant that MR@I connected to accidental
spread by OSD vehicles (MROSD staff personal comaation, January 2013),
emphasizing that human influence can greatly chamg@vasion potential of a noxious
weed. The other two points that were not in apgadicted as habitat by Maxent at the
100% gain level were 23 m and 170 m, respectivebym the edge of a grid cell thatas
predicted as habitat. In the case of the 23 neffce, the point fell in the next
hydrologic unit from the majority of samples, se tHU layer in the model most likely
had the greatest influence in excluding the halitare this point fell. The 170-meter
point is surrounded by areas indicated by Maxesugable habitat, inviting closer
examination of which environmental layers influethtleis point’s exclusion. The
Maxent model could be fine-tuned for most effectige by incorporating habitat

observations about outlier points such as thesethr

Conclusion
Maximum entropy (Maxent) modeling was an effectivel in predicting suitable habitat

for the invasive grafBrachypodium sylvaticumm the Santa Cruz Mountains by
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assessing environmental attributes of known preskations. Model outputs
delineated geographical locations that are likelgupport BRSY as an invasive species,
and an independent dataset corroborated the mad&diveness. Modeling results can
be tailored to show the most suitable habitat,thedefore the most likely areas of
slender false brome presence, given an acreagefdingurvey effort. This quantifiable
target output is valuable to land managers sedkirmgntrol invasions while needing to

maximize field investigations.
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