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ABSTRACT 

MASTERMIND-LIKE 1-DEPENDENT NOTCH TARGET GENE ACTIVATION 

REQUIRES A SEQUENCE-PAIRED SITE AND A TATA BOX 

 

by Cassandra Agbayani Ramos 

 

 Notch signaling plays an important role in mammalian cellular proliferation, 

apoptosis, and differentiation.  To activate target genes, the Notch intracellular domain 

(NICD) forms a complex with CBF1 and Mastermind-like protein (MAM).  The Notch 

activation complex binds to a response element containing the consensus sequence 

RTGRGAR (R= purine) on target gene promoters.  The promoter of one well 

characterized target gene, Hes1, contains four Notch response elements (NREs).  Site-

directed mutagenesis and reporter gene assays were used to examine the activation of 

Hes1 by mutating individual and combinations of NREs.  Results indicated that NREs 2 

and 4 are important for Hes1 activity, confirming previous results that this sequence-

paired site (SPS) is an important feature of Notch target genes.  Orientation and spacing 

between elements on the SPS were mutated in these studies.  Other mutations included 

the Hes1 TATA box and the spacing between the SPS and TATA box.  Additionally, a 

charged residue on NICD was mutated; this residue is believed to be responsible for 

Notch complex dimers.  These results showed that SPS spacing and orientation as well as 

dimerization of Notch complexes are important for the promoter activity of Hes1.  The 

TATA box was found to be necessary for promoter activation, and this activity is 

independent of spacing between the SPS and TATA box up to 173 base pairs.  Taken 

together, these findings suggest that NICD- and MAM-mediated activation of target 

genes requires orientation- and spacing-dependent SPS and TATA box elements. 
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INTRODUCTION 

 Notch is a transmembrane protein with an extracellular receptor used to 

communicate with adjacent cells (1).  When the receptor binds to ligands from the 

Delta/Serrate/LAG-2 (DSL) family, there is a conformational change of Notch, allowing 

its cleavage by a gamma-secretase complex.  This proteolytic cleavage releases the Notch 

intracellular domain (NICD), which translocates to the nucleus to bind to the promoters 

of target genes and initiate transcription (Fig. 1) (2, 3).  In mammals, NICD binds to the 

transcription factor, C-promoter binding factor (CBF) 1, and the coactivator, 

Mastermind-like protein (MAM).  This ternary complex binds to a Notch response 

element (NRE) containing the consensus sequence RTGRGAR (R=purine) on target gene 

promoters (4).  This complex is essential for promoter activation.  In mammals, there are 

four Notch proteins and three MAM proteins; however, it is still unclear how these 

homologs differentially modulate Notch signaling. 

 The Notch ternary complex recruits additional coactivators for transcription 

initiation.  MAM recruits p300, a histone acetyltransferase, which is essential for 

transcription initiation (5).  MAM also recruits cyclin dependent kinase (CDK) 8, as it is 

necessary for Notch turnover (6).  CDK8 can associate with the Mediator coactivator 

complex, which recruits the basal transcription machinery.  The working model of Notch 

and MAM mediated target gene activation postulates that Mediator is responsible for 

recruiting RNA polymerase II (RNAPII) in order to initiate transcription (Fig. 2) (6). 

1



 

 
FIGURE 1: Overview of Notch signaling.  The mature Notch transmembrane is cleaved 

after binding to ligands from the DSL family of proteins in adjacent cells.  The NICD is 

released from the cell membrane and translocates to the nucleus. The assembly of NICD 

and MAM on CBF1 displaces a corepressor complex and activates target genes. Adapted 

by permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell Biol. (3), copyright 

2006. 

 
FIGURE 2: Model of transcription initiation by Notch complex.  The Notch signaling 

complex binds to an NRE on target gene promoters.  MAM recruits CDK8, which may 

recruit RNAPII through Mediator.  Adapted by permission from Elsevier Ltd.: Mol. 

Cell (6), copyright 2004. 
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 In the studies presented here, Notch target genes were investigated by studying 

the promoter of mouse Hairy/Enhancer of Split (mHes) 1 (Fig. 3).  mHes1 has over 95% 

homology with the human Hes1 promoter.  The mHes1 (hereinafter referred to as Hes1) 

promoter has four NREs, which are conserved in all vertebrates.  Three of the Hes1 

NREs have been studied by other research groups, whereas one NRE has not been 

investigated in previous literature until now (7-9).  These NREs have a specific 

orientation depending on whether the consensus sequence is located on the forward or 

reverse strand of the promoter.  NREs on the forward strand are designated as Head sites, 

whereas NREs on the reverse strand are Tail sites.  The Hes1 promoter also has a putative 

TATA box, a region rich in thymines and adenines that binds to the Transcription Factor 

II (TFII) D complex.  TFIID is a component of the pre-initiation complex that assembles 

the core transcription machinery.  TFIID has been shown to recruit RNAPII to the 

promoter (10).  The NRE-to-TATA (NT) region on the Hes1 promoter refers to the 24 

base pairs between the NREs and the TATA box. 

 
FIGURE 3: Hes1 gene fragment used for promoter analysis studies.  Hes1 contains 

four Notch Response Elements (NREs) and a TATA box.  The 24 base pairs between the 

NREs and the TATA box comprise the NT Region.  Triangles pointing right signify a 

Head site and triangles pointing left signify a Tail site.  TSS represents the transcription 

start site. 
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 Previous research groups have shown that two of the four NREs recruit Notch 

activation complexes that form a dimer, which is an essential element of transcription 

initiation of Hes1 (8, 9).  NREs 2 and 4 comprise a sequence-paired site (SPS), a 

response element architecture for two transcription factors.  The orientation of the NREs 

within the SPS is Head and Tail.  The Notch dimer crystal structure was solved on a 

synthetic promoter, and this dimerization appears to depend on residue 1985 in the 

ankyrin (ANK) domain of NICD (Fig. 4) (9, 11).  A mutant form of NICD with this 

residue altered from an arginine to an alanine showed a decrease in Hes1 promoter 

activity compared to activity of wildtype NICD.  In addition, altering the spacing and 

orientation of the SPS was shown to reduce dimerization activity in electrophoretic 

mobility shift assays (EMSAs) (9).   

 To further elucidate the essential promoter elements of Hes1 and other Notch 

target genes in the studies reported here, the promoter activity was examined directly 

through reporter gene assays.  Because MAM has been shown to recruit important 

proteins that are essential for proper transcriptional regulation, these experiments 

examined the promoter activity in the presence of both NICD and MAM.  Mutation 

analysis was used to determine which promoter elements are necessary for transcriptional 

activation of Hes1.  Individual and combinations of NREs were mutated along with the 

SPS spacing and orientation.  The residue responsible for forming a NICD dimer was 

also mutated.  The Hes1 TATA box was mutated, as well as the TATA box in 

Hairy/Enhancer of Split 5 (Hes5), another Notch target gene that contains an SPS.  The 

4



 

number of base pairs between SPS and the TATA box were both increased and decreased 

in mutant Hes1 promoters. 

 

FIGURE 4: Crystal structure of Notch complex dimers assembled on the Hes1 

promoter.  Dark and light green ribbons represent CBF1 protein bound to NREs 2 and 4.  

Red and pink ribbons represent the N-terminal helix of MAM.  Light and blue ribbons 

represent ANK domain on NICD.  Adapted by permission from Macmillan Publishers 

Ltd.: Nat. Struct. Mol. Biol. (11), copyright 2010. 

 

 These findings demonstrated that the SPS on NREs 2 and 4 on Hes1 are both 

essential to promoter activity since mutations of individual or both SPS elements 

abolished activation.  NREs 1 and 3 did not appear to contribute to activation.  Perturbing 

the spacing between the SPS elements produced reduced promoter activity, so proper 

SPS spacing is essential for promoter activation.  The NICD mutant data confirmed that 

the dimer between the activation complexes is essential for promoter activity.  Changing 

the SPS orientation to Tail-Head and Head-Head from the wildtype Head-Tail orientation 

significantly reduced promoter activity, suggesting that SPS orientations are crucial for 
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transcription.  The Tail-Tail orientation showed promoter activity at the same level as 

wildtype.  Results also showed that the TATA box is crucial for Hes1 and Hes5 

activation, meaning that the TFIID complex or TATA-binding protein (TBP) alone is 

necessary for transcription.  The SPS was effective in activating the promoter when 

moved up to 150 base pairs upstream from the TATA box, suggesting that Notch 

activation complexes may stabilize the TFIID complex through other proteins bridging 

their interaction, or directly through a DNA looping mechanism.  Taken together, these 

results suggest that NICD- and MAM-mediated transcription activation requires a TATA 

box and a spacing- and orientation-dependent SPS.  
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LITERATURE REVIEW 

Overview of Notch Signaling 

 

 

 Notch was first discovered 100 years ago when a mutation that disrupted the gene 

produced a notched wing phenotype in Drosophila melanogaster (12).  Since then, Notch 

has been genetically and molecularly characterized in various organisms.  Notch 

signaling regulates important cellular processes, such as differentiation, growth, and 

death (1).  This pathway is named after Notch, a transmembrane protein with an 

extracellular receptor used to communicate with adjacent cells.  Notch signaling is found 

in all metazoans; the number of Notch receptors, however, varies with the complexity of 

the organism.  For example, while the fruit fly Drosophila melanogaster has only one 

Notch receptor, mammals have four Notch receptors to accommodate more diversified 

pathways.  The pathway serves important and diverse functions, and aberrancies in Notch 

signaling often result in disease and dysfunction in many types of tissues.  In aberrant 

Notch signaling, Notch functions as an oncoprotein or tumor suppressor depending on the 

cellular context (13).  Mutated Notch has been linked to cancers, such as T-cell acute 

lymphoblastic leukemia and mammary tumorigenesis, and neurological disorders, such as 

CADASIL and Alzheimer’s disease (14-17). 

 Synthesis of the Notch protein is synthesized in the endoplasmic reticulum, where 

the protein O-fucosyltransferase (OFUT) 1 binds to Notch.  The fucosyltransferase 

activity of OFUT1 is responsible for the proper folding of Notch (18).  After Notch is 

transported to the Golgi body, it is cleaved by a furin-like convertase, resulting in a Notch 

extracellular subunit (NECD) and a Notch transmembrane subunit (NTM) that are 
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tethered together non-covalently at a site called S1 in the heterodimerization (HD) 

domain (19, 20).  Notch is transported to the cell membrane, where it functions as a 

single-pass transmembrane protein that appears at the cell surface (20).  The NECD also 

contains Epidermal Growth Factor (EGF)-like repeats and three conserved Lin12/Notch 

repeats (LNR).  The LNR and HD domains together comprise the negative regulatory 

region (NRR), which is essential for the prevention of non-specific, ligand-independent 

proteolytic cleavage that prematurely dissociates the NECD and NTM (21). 

 Notch communicates with cells through direct contact by binding its NECD to 

ligands expressed as transmembrane proteins in adjacent cells.  This selective cell-cell 

interaction is believed to mediate spatiotemporal Notch signaling in vertebrate 

development.  Notch ligands are members of the Delta/Serrate/LAG-2 (DSL) family of 

proteins.  Delta and Serrate were the first ligands to be identified as Notch ligands in 

Drosophila (22).  In mammals, Notch ligands include Jagged 1 and 2, homologs of 

Serrate, and Delta-like 1, 3, and 5.  The DSL ligands bind to the NECD on its EGF-like 

repeats.  The Golgi body contains Fringe, which can site-specifically glycosylate Notch 

EGF-like repeats during protein processing; modifications by Fringe appear to adjust 

Notch responsiveness to different ligands (23).  When a ligand binds to Notch, Notch 

becomes sensitive to cleavage by tumor necrosis factor-α converting enzyme (TACE), a 

protease from the ADAM (A Disintegrin And Metalloprotease) family, at a site called S2 

in the Notch HD domain (24).  When the NECD is dissociated from NTM after 

proteolytic cleavage, this results in an intermediate form of Notch that acts as a substrate 

for a presenilin-dependent gamma-secretase.  This enzyme cleaves NTM inside the cell 
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membrane between G1743 and V1744 on a site called S3.  Cleavage at S3 releases the 

Notch intracellular domain (NICD) (2, 25). 

 The NICD contains a Recombination Binding Protein-associated module (RAM) 

domain and several ANK repeats for interactions with other proteins.  The NICD also has 

a proline, glutamate, serine, and threonine rich (PEST) domain that is necessary for 

degradation.  When released, NICD proteins form multimers within the cell in an 

antiparallel orientation through its N- and C-terminal regions.  Ski-interacting protein 

(SKIP) binds to the NICD multimers, forming a docking site for MAM (26).  Next, the 

NICD is then released from SKIP as a monomer bound to MAM (26).  This forms the 

Notch transcription activation ternary complex consisting of CBF1, NICD, and MAM.  

SKIP has been shown to associate with CBF1 upon activation by NICD, and it is 

postulated that the NICD RAM domain contains a region that can bind to CBF1 at its 

four amino acid ΦWΦP (Φ = hydrophobic residue) motif and also a separate region 

necessary for multimerization with other NICD proteins (6, 26, 27).  CBF1 may displace 

SKIP from the RAM domain by steric crowding; therefore, the NICD RAM domain 

could be responsible for toggling between the pre-activation complex and the ternary 

activation complex.  Because SKIP delivers NICD and MAM to CBF1, SKIP appears to 

be a limiting factor in Notch transcriptional activation.  It has been shown that addition of 

SKIP significantly increases target gene promoter activation by NICD and MAM in 

vivo (6). 

 The four mammalian Notch receptors have the same major domains, but vary 

slightly in their structure.  These differences appear to play a role in differential 
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expression, both throughout different types of tissues and within the same tissue.  The 

extracellular portion of Notch contains between 29 and 36 EGF-like repeats, and these 

help to determine binding to specific ligands (28).  Only Notch 1 and 2 contain a 

transactivation domain (TAD), and it has been postulated that the phosphorylation sites 

on TAD allows Notch 1 and 2 to selectively modulate signaling activity (29).  It has also 

been postulated that the number of ANK repeats dictates target gene activation (30).  

With different combinations of ligands, four Notch receptors, and three MAM 

coactivators, this suggests that the Notch signaling pathway can elicit differential 

responses depending on cellular context.  However, additional data suggests that different 

MAM proteins dictate activation strength of target genes, regardless of which Notch 

homolog is used.
1
 

 CBF1 is the mammalian version of the CBF1/Su(H)/Lag-1 (CSL) protein, which 

is named for the orthologs in mammals, Drosophila, and C. elegans, respectively.  CBF1 

is made up of an N-terminal domain, which interacts with the major groove of DNA, a β-

trefoil domain that interacts with DNA minor grooves, and a C-terminal domain that does 

not bind DNA.  CBF1 binds to target genes at the consensus sequence RTGRGAR.  This 

sequence varies in different target genes, but the internal guanines of the consensus 

sequence are essential for CBF1 binding (4).  In the absence of Notch, CBF1 binds to a 

transcriptional corepressor complex comprising Silencing Mediator of Retinoid and 

Thyroid hormone receptors (SMRT).  The SMRT complex recruits histone 

deacetylase (HDAC)-1 and SMRT/HDAC-1 Associated Repressor Protein (SHARP), and 

                                                             
1
 T. M. Burke and J. B. White, unpublished data 
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CBF1 Interacting Corepressor (CIR) with HDAC-2 (31-33).  Interaction of CBF1 with 

amino acids 640-811 in SMRT is also necessary for correct nuclear translocation of 

CBF1 (34).  It is unclear how the presence of NICD displaces the corepressors, but it has 

been hypothesized that NICD competes with the corepressor complex for binding to 

CBF1.  CBF1 is responsible for the interaction of the activation complex with target 

genes and also for mediating the protein interactions within the complex.  The CBF1 β-

trefoil domain interacts with a 23-residue segment of the RAM domain in NICD, while 

the CBF1 C-terminal domain simultaneously interacts with the NICD ANK domain and 

MAM N-terminal helix.  In addition, the CBF1 N-terminal interacts with MAM at its C-

terminal helix (35).  Notch is essential for the correct conformation of CBF1 in the 

activation complex.  Without the Notch RAM domain, the CBF1 N-terminal loop has a 

closed configuration that cannot interact with MAM.  Furthermore, when Notch RAM 

binds to the CBF1 β-trefoil domain, the CBF1 N-terminal changes into an open 

conformation that is suitable for binding to MAM (36). 

 MAM, a component of the Notch ternary activation complex, has been identified 

by its similar functionality to its orthologs: LAG-3 in C. elegans and Mastermind in 

Drosophila.  MAM was discovered to only form a complex with CBF1 in the presence of 

Notch (37).  MAM contains a recognition motif with a 52 residue helix that detects 

binding sites on both CBF1 and Notch simultaneously; NICD with CBF1 without MAM 

is not sufficient to activate transcription, nor is MAM alone or MAM with CBF1 

sufficient (5, 38, 39). 
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 MAM has been shown to bind to p300 and c-AMP response element binding 

protein (CBP), which is necessary for p300- and p300/CBP-associated factor (PCAF)-

acetylation of nucleosomes at Notch target genes.  This histone acetyltransferase activity 

is necessary for activation at chromatin templates (40).  Only p300, not CBP, appears to 

strongly associate to MAM in the presence of NICD (6).  CBP is recruited by c-AMP 

response element binding protein (CREB) transcription factor on Notch responsive genes, 

as it has been shown on Hes1 (41).  Nuclear MAM also selectively recruits CDK8, which 

hyperphosphorylates NICD by targeting serines at the PEST domain.  This Notch ternary 

complex interaction with CDK8 has been shown to have an inhibitory effect on Notch 

signaling (6, 42).  Hyperphosphorylated NICD is a target for SEL10 (Suppressor/ 

Enhancer of lin-12 10), which contains seven regions with about 40 repeats of tryptophan 

and aspartate that bind directly to phosphorylated NICD (43).  SEL10 is a component of 

the S-phase kinase-association protein/Cullin/F-box (SCF) complex that functions as an 

E3 ubiquitin ligase.  When ubiquitin is transferred to the phosphorylated proteins, they 

subsequently become targets for proteasome-mediated degradation.  In protein 

immunoblots, proteasome inhibitors and dominant negative SEL10 without E3 ubquitin 

ligase activity stabilized NICD (44).  While SEL10 has been previously shown to reduce 

presenilin activity, SEL10 does not modulate Notch signaling through the presenilin-

dependent gamma-secretase cleavage of the receptor (44). 

 MAM’s role in Notch signaling, therefore, appears to activate expression of target 

genes by integrating with the Notch ternary activation complex and recruiting chromatin 

modifiers.  Upon activation, MAM appears to immediately inactivate gene expression by 
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recruiting CDK8, whose phosphorylation of NICD PEST domain becomes the target of 

proteasomal degradation.  This dual role of MAM reflects an important aspect of Notch 

signaling, highlighting the significance of proper timing of target gene activation.  When 

this simultaneous on-and-off switch cannot occur, diseased states in humans often results, 

usually when Notch signaling is overexpressed.  The first Notch mutation found in 

humans was identified in T-cell acute lymphoblastic leukemia (T-ALL) patients who had 

a t(7;9)(q34;q34.3) translocation (14).  The disrupted locus on chromosome 9 contained a 

mutant Notch1 gene that transcribed truncated forms of Notch1 that resembled NICD.  

NICD is expressed in T-ALL cells regardless of ligand interaction with the Notch 

receptor, and constitutively active Notch signaling was shown to transform T-cells.  

Because degradation of NICD is arranged by MAM and CDK8, overexpressed Notch 

signaling may be due to disruption of the proteasomal pathway. 

 

Overview of Transcription in Class II Promoters 

 

 

 A protein-encoding gene is transcribed by RNA polymerase, the enzyme that 

polymerizes nucleotides to form an RNA molecule.  In mammals, there are three types of 

RNA polymerases that encode different RNA molecules: RNA polymerase I produces 

ribosomal RNA, RNAPII transcribes messenger RNA (mRNA), small nuclear RNA, and 

microRNAs, and RNA polymerase III synthesizes transfer RNA and other small 

RNAs (45).  RNA polymerase I, II, and III transcribe Class I, II, and III genes, 

respectively. Target genes of Notch signaling are Class II genes, which are the most well 

characterized group of genes.  
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 On Class II genes, RNAPII binds to a region called a core promoter.  Some core 

promoters contain a TATA box, which typically has the consensus sequence 

TATAA (46).  TBP interacts with the TATA box, causing the bound DNA to bend nearly 

90 degrees (10).  The TATA sequence becomes distorted and general transcription 

factors (GTFs) are allowed to bind to the core promoter. TBP along with TBP-associated 

factors (TAFs) make up one GTF, the TFIID complex.  Some other GTFs include TFIIA, 

which stabilizes the interaction between TFIID and DNA, TFIIB, which recruits RNAPII, 

and TFIIH, which contains helicase activity that unwinds DNA to create the transcription 

bubble.  Together, the GTFs and RNAPII form the pre-initiation complex (10).  In core 

promoters that do not contain a TATA box, the pre-initiation complex can assemble on 

other promoter elements, such as the Initiator sequence, which contains the consensus 

sequence YYANWYY (Y= C or T; W= A or T), where A is the transcription start site.  

The pre-initiation complex can also bind to upstream and downstream promoter elements. 

 In addition to a pre-initiation complex, other activators can stimulate transcription 

initiation.  This can occur when gene-specific transcription factors, or activators, bind to 

the promoter to help stabilize or recruit TFIID to the core promoter. One important 

coactivator is Mediator.  Mediator is not necessary for the function of the basal 

transcription machinery of the pre-initiation complex, but it increases basal transcription 

levels.  It has been shown in mammalian cells that abolishing Mediator results in a loss of 

transcription (47, 48).  Mediator is 1.4 MDa and made up of over 30 subunits in 

mammals.  The coactivator consists of a core complex with a head, middle, and tail 

module, and a kinase module that is loosely associated with the core complex (49).  Due 
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to Mediator’s large size, it can act as a linker between the pre-initiation complex and 

other gene-specific transcription factors and coactivators.  Some researchers refer to 

Mediator as a GTF since Mediator can act as an adaptor between transcription activators 

and the core promoter factors.  Mediator has been seen to have direct interactions with 

TBP, TFIIE, and TFIIH, suggesting that Mediator plays a role in recruiting RNA 

polymerase and helps stabilize the pre-initiation complex (50-52).  Mediator has been 

seen both as a required activator in housekeeping genes that are constitutively expressed 

and as a recruited activator in target gene activation.  Mediator can also interact 

synergistically with transcriptional coactivators that are involved in chromatin 

remodeling, such as p300, a histone acetyltransferase (53).  Mediator has also been 

shown to direct the assembly of the pre-initiation complex by binding p300 to 

TFIID (54).  Nucleosomes are acetylated by p300, causing the DNA to dissociate from 

the histone and subsequently allowing TFIID to bind. 

 In addition to Mediator’s extensive role as a transcriptional coactivator, Mediator 

has also been shown to repress transcription when it is associated with the kinase module.  

The Mediator kinase module is composed of four subunits: Med12, Med 13, CDK8, and 

CycC.  Mammalian CDK8 has been shown to be associated with inactive transcription 

complexes, and leaves when the transcription is activated (55).  Structural studies have 

shown that CDK8 binds to the core region of Mediator, preventing RNA polymerase 

binding (56).  However, CDK8 has also been shown to positively influence transcription 

initiation in both mouse in vivo and in vitro studies (57).  Mediator has been shown to 

activate and repress transcription initiation activities; however, the roles of each subunit 

15



 

and module in transcription initiation and activator recruitment are still not clearly 

defined.  The Notch activation complex utilizes MAM to recruit CDK8, a component of 

the Mediator kinase module, but it is still unclear whether or not Notch- and MAM-

mediated activation is Mediator-dependent.  

 Class II promoters can also be activated by enhancer elements that recruit proteins 

that activate transcription. Enhancers are defined as elements that are located upstream or 

downstream of the core promoter and can activate transcription regardless of their 

orientation (58).  The distance from the core promoter can vary greatly among genes.  

One enhancer for the Sonic hedgehog gene in developing mouse limb buds has been 

located over 1 Mb away from the promoter (59).  One mode of action used by enhancers 

is the looping of DNA so that the activator and the GTFs on the core promoter are 

brought close together.  DNA looping was first discovered in the L-arabinose operon in 

E. coli, and can be determined today using chromosome conformation capture to examine 

if a distal element is brought closer to the promoter (60).  One simple mechanism of 

enhancers utilizes free diffusion in the nucleus to join the activator and core promoter 

complex.  Activators bound to enhancers can also dynamically scan DNA until 

interacting with the core promoter complex to initiate transcription (61). 

 

Hes1 Promoter and Sequence-Paired Sites 

 

 One well characterized mammalian target gene of the Notch signaling pathway is 

Hes1, a paralog of Drosophila Hairy and Enhancer of Split.  The HES1 protein in 

Drosophila inhibits neurogenesis.  Additionally, HES1 has been shown to be a 
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transcriptional repressor in mouse models as well (62).  HES1 is a basic helix-loop-

helix (bHLH) protein that binds to N boxes (CACNAG) on its target gene promoters.  

This is a unique characteristic of HES1 since most bHLH proteins preferentially bind to 

promoter E boxes (CANNTG) (63).  By directly binding to the DNA, HES1 can recruit 

additional repressors such as Drosophila Groucho or mammalian Grg (62).  HES1 plays 

crucial roles in neural, muscle, endocrine, exocrine, and T-cell development, as well as 

other important functional tissues (64).  HES1 is necessary for maintenance of 

undifferentiated cells.  HES1-deficient mice show premature differentiation and 

developmental abnormalities in various tissues, such as brain, eye, and pancreas (65, 66).  

Therefore, HES1 is responsible for maintaining populations of precursor cells until 

signaled by differentiation cues.  Because of its diverse functions, control of Hes1 is 

tightly regulated in a tissue-specific manner.  Regulation of HES1 expression is 

heightened by its autoregulatory negative feedback loop in which HES1 protein binds to 

its own promoter at N boxes to repress transcription (67). 

 The Hes1 promoter has over 95% sequence homology with human and rat 

Hes1 (68).  Structural characterization of the Hes1 showed that the gene is located on 

chromosome 16 and contains four exons.  The first coding region begins 248 base pairs 

after the transcription start site (TSS).  There is a TATA box at 31 base pairs upstream 

and a CAAT box for CAAT-protein binding at 151 base pairs upstream of the TSS.  Hes1 

contains four N boxes at -165, -132, -58, and +16, and HES1 protein binds to the Hes1 

promoter at the three N boxes upstream of the TSS (69).  In addition to the N boxes, Hes1 

promoter contains four additional regulatory elements called Notch response 
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elements (NREs), where the Notch ternary activation complex binds through CBF1.  

These NREs are located upstream of the TSS at -107 (NRE 1 on the negative strand),  

-85 (NRE 2 on the positive strand), -71 (NRE 3 on the positive strand), and -62 (NRE 4 

on the negative strand).  NREs typically contain the consensus RTGRGAR; although 

NREs 3 and 4 contain a single base pair that do not match the consensus, all the NREs 

contain the guanines that are necessary for CBF1 binding (4).  The putative CBF1 

binding site at NRE 3 has not been addressed in previous literature, and it appears that 

this site being addressed for the first time in the experimental studies presented here. 

 The Drosophila promoter Enhancer of Split, or E(spl), is a homolog of Hes1 and a 

Notch signaling target gene.  E(spl) contains two NREs oriented as a sequence-paired 

site (SPS), an evolutionarily conserved pattern of inverted repeats of NREs (70).  The 

first NRE of the SPS is located on the positive strand and designated as a Head site, while 

the second NRE of the SPS is on the negative strand and designated as a Tail site.  These 

NREs are separated by 17 base pairs.  Cave et al. examined the importance of the SPS as 

well as bHLH binding sites in activation of E(spl) promoter by Drosophila 

NICD (dNICD) and the proneural bHLH proteins Achaete and Daughterless 

(Ac/Da) (71).  They found that the native promoter is activated synergistically by dNICD 

and Ac/Da, but not by dNICD or Ac/Da alone.  When either of the NRE sites are 

mutated, the E(spl) promoter is only weakly activated by dNICD and Ac/Da alone or 

together.  This study framed a promoter code for Notch target gene activation in which 

the SPS is necessary for promoter activity, and the Notch complex can work 

synergistically with other proteins in order to activate transcription. 
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 Like the synergistic activation of Notch target genes in Drosophila, Notch and 

MAM work together through Notch ternary complexes in order to stimulate transcription 

initiation (6, 72).  On Hes1, the SPS motif appears on NRE 2, a head site, and NRE 4, a 

tail site, and these are separated by 16 base pairs.  Studies have shown that a Notch 

complex binds to a single NRE site and many groups believe this assembly can activate 

transcription in mammals (11, 73).  However, it has been shown that abolishing the SPS 

on Hes1, either by mutating a single NRE or by changing the orientation of the second 

NRE, produces a decreased level of promoter activity compared to wildtype when NICD 

is transfected into cell culture with Hes1 fused to a reporter gene (8).  Nam et al. 

examined the importance of the SPS and reported that the Notch complexes cooperatively 

dimerize on the Hes1 SPS in order to induce transcription.  This group solved a crystal 

structure containing dimerized Notch ternary complexes on a synthetic promoter derived 

from Hes1.  The dimerization occurred on NREs 2 and 4 through key residues that form 

salt bridges between the Notch ANK domains.  These residues are conserved across a 

wide range of animals, including Drosophila (9).  When the native Hes1 promoter was 

transfected with a NICD construct containing one mutated ANK residue at amino acid 

1985, promoter activity was abolished.  Additionally, this study used EMSAs to show 

that proper dimerization cannot occur when NRE 2, NRE 4, or both are mutated, when 

NRE 4 is inverted, nor when the spacing between the SPS is increased by four base pairs 

or decreased by two.  

 These studies raised questions of whether or not the SPS is important for Notch- 

and MAM-mediated transcription activation of the native Hes1 promoter and other Notch 
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target genes.  Hes1 has a TATA box which recruits the general transcription factor 

TFIID, but it is not been determined whether or not TATA boxes contribute to 

transcription activation on Notch target genes.  It has been postulated that Notch- and 

MAM-mediated activation occurs when MAM recruits CDK8, which may recruit the 

Mediator complex to assemble the transcription pre-initiation complex (6).  While the 

two NREs on Hes1 comprising an SPS were found to be necessary to activate the 

promoter, these tests had yet to be performed to assess to synergistic activation by NICD 

and MAM together.  Also, it has not yet been determined whether or not the two unpaired 

sites on Hes1 contributed to NICD- and MAM-mediated activation.  Additionally, new 

research questions can assess whether Notch and MAM activation of Hes1 is dependent 

on the orientation of the SPS, the spacing between the SPS, and the spacing between the 

SPS and the TATA box.  Ong et al. showed that increasing the distance between the SPS 

and the TSS by 1 kb decreased promoter activation by Notch; however, MAM was not 

included in these studies, so it was still undetermined whether or not the coactivators 

recruited by MAM account for activation by the SPS from a distance (8).  Additionally, 

Notch has been shown to regulate position-dependent transcriptional enhancers in 

Drosophila, and therefore the role of Notch as a activator bound to enhancer sequences 

can be further studied in mammals (74).  
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EXPERIMENTAL PROCEDURES 

Materials and Equipment 

 

 

 HeLa cells were purchased from the American Type Culture Collection.  Cells 

were grown in Dulbecco’s modification of Eagle’s medium (DMEM).  The DMEM was 

supplemented with 10% fetal bovine serum (FBS) axnd 1% penicillin and 

streptomycin (denoted as complete medium) and was stored at 37°C and 5% CO2.  

DMEM with high glucose, L-glutamine, and sodium pyruvate was purchased from 

Mediatech (Manassas, VA). 

 Transfection reagent Lipofectamine 2000, Opti-MEM Reduced Serum Medium, 

Subcloning Efficiency DH5α Competent Cells, and Gateway LR Clonase II Enzyme mix 

were purchased from Life Technologies (Carlsbad, CA).  Custom DNA Oligos for use as 

mutagenic primers were also purchased from Life Technologies (Table 1).  QuikChange 

II XL Site-Directed Mutagenesis Kit was purchased from Agilent Technologies 

(Santa Clara, CA).  GenCatch Plasmid DNA Maxi Prep Kit was purchased from Epoch 

Life Science (Missouri City, TX).  Buffers P1, P2, P3, QBT, QC, and QF were purchased 

from QIAGEN (Germantown, MD).  Dual Luciferase Reporter Assay System, pRL-TK, 

and PureYield Plasmid Miniprep System was purchased from Promega (Madison, WI).  

pGL2-Hes1 was a gift from K.A. Jones (Salk Institute for Biological Studies), and this 

construct was originally cloned in Reference (7).  pGL2-Hes5 was a gift from R. 

Kageyama (Kyoto University), as was originally cloned in Reference (75).  Human Notch 

1 intracellular domain and Mastermind-like 1 were cloned in frame to Myc tags in the 

pCS2-6MT vector, which was originally cloned in Reference (76). 

21



 

 Luminescence readings were obtained on two machines manufactured by 

Promega: the Veritas Microplate Luminometer and the Modulus II Microplate Multimode 

Reader.  Data analysis was performed using Microsoft Excel and IBM SPSS Statistics 20 

software. 

 

Generation of Mutant Plasmids by Site-Directed Mutagenesis  

 

 Reagents from the QuikChange II XL Site-Directed Mutagenesis Kit were used 

for the site-directed mutagenesis reactions.  One reaction contained the reagents and 

thermal cycler parameters listed in Tables 1 and 2. 

 

TABLE 1 

Reaction conditions for site-directed mutagenesis. 

Volume (μl) Reagent 

5 10x Reaction Buffer 

0.5 Template DNA [50 ng/μl] 

1 Forward primer [150 ng/μl] 

1 Reverse primer [150 ng/μl] 

1 dNTP mix 

3 QuikSolution 

38.5 water 

1 PfuUltra HF DNA polymerase 

 

TABLE 2 

Thermal cycler conditions for site-directed mutagenesis reactions. 

Segment Cycles Temperature (°C) Time 

1 1 95 1 min  

2 18 

95 50 s 

60 50 s 

68 7 min 

3 1 68 10 min 
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 The cycled reaction was incubated with 1 μl DpnI at 37°C for 2 h in order to 

digest template DNA.  Next, the digested reaction was transformed into Subcloning 

Efficiency DH5α competent cells.  A volume of 3 μl was pipetted into a microcentrifuge 

tube containing 25 μl thawed cells, then the mixture was incubated on ice for 30 min.  

The mixture was incubated in a 42°C water bath for 20 s, then moved to ice for 2 min.  

Next, 475 μl NZ-amine and yeast (NZY) broth was added to the cell mixture, and the 

tube was shaken at 37°C for 1 h at 225 rpm.  On lysogeny broth (LB) and agar plates 

with 100 μg/μl ampicillin, 100 μl of the transformation reaction was plated and incubated 

at 37°C for 16 h.  A single colony of bacteria was inoculated in 5 ml LB broth with 100 

μg/μl ampicillin and shaken at 37°C for 1 h at 225 rpm. 

 The plasmid was purified from 4.5 ml bacterial culture using PureYield Plasmid 

Miniprep System.  The culture was centrifuged at 5,000 rpm.  After discarding the 

supernatant, the bacterial pellet was resuspended in 600 μl Tris-EDTA (TE) buffer.  The 

cell lysate was prepared by adding 100 μl Cell Lysis Buffer and 350 μl of 4°C 

Neutralization Solution, mixing the solution after the addition of each buffer.  The 

mixture was centrifuged at 13,000 rpm for 3 min, and then the supernatant was 

transferred to a minicolumn in a collection tube.  The collection tube waste was discarded 

and replaced with the minicolumn.  The minicolumn was washed with 200 μl Endotoxin 

Removal Wash and 400 μl Column Wash Solution, spinning at 13,000 rpm for 30 s after 

addition of each buffer.  The minicolumn was removed from the collection tube and 

placed in a clean 1.5 ml microcentrifuge tube.  Next, 50 μl TE buffer was added directly 

to column matrix.  After letting column stand for 1 min at 25°C, the microcentrifuge tube 
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was centrifuged at 13,000 rpm for 30 s.  The eluted plasmid was submitted to Sequetech 

DNA sequencing service (Mountain View, CA) to verify that the plasmid had the correct 

mutation.  

 The columns from the GenCatch Plasmid DNA Maxi Prep Kit with QIAGEN 

buffers were used to obtain transfection quality plasmids.  The remaining 500 μl bacterial 

culture was inoculated in 200 ml LB medium and 100 ng/μl ampicillin.  This culture was 

shaken for 16 h at 225 rpm.  After incubation, the culture was centrifuged at 5,000 rpm 

for 10 min and the supernatant was discarded.  The bacterial pellet was resuspended in 10 

ml Buffer P1, Buffer P2, and Buffer P3, with mixing by inverting after addition of each 

buffer.  The column was washed with 30 ml Buffer QBT.  The bacteria and buffer 

mixture was centrifuged at 15,000 rpm for 15 min at 4°C, and the supernatant was poured 

into the maxiprep column.  The column was washed with 30 ml of Buffer QC and then 

eluted with 15 ml of Buffer QF.  The eluted plasmid was mixed with 10.5 ml isopropanol 

and centrifuged at 15,000 rpm for 30 min at 4°C.  The supernatant was discarded and the 

remaining DNA pellet was mixed with 5 ml 70% ethanol and centrifuged at 15,000 rpm 

for 10 min at 4°C.  The supernatant was discarded and the DNA was allowed to dry.  The 

purified plasmid DNA was resuspended in TE buffer. 

 

Transfection into HeLa Cells 

 

 

 HeLa cells were plated in complete medium 24 h prior to transfection in a 96-well 

plate at 2.5×10
4 
cells per well.  On day of transfection, the complete medium was 

replaced with 50 μl Opti-MEM.  Expression constructs (Table 4) for one well were 
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diluted in 25 μl Opti-MEM in the following amounts: 100 ng promoter DNA fused to 

Firefly luciferase, 10 ng NICD, 100 ng MAM, and 10 ng pRL-TK to express Renilla 

luciferase.  pCS2-6MT was added DNA mixture to bring the total DNA amount to 200 

ng.  Transfection reagent for one well was diluted by adding 0.5 μl Lipofectamine 2000 

in 25 μl of Opti-MEM and incubating for 5 min.  The Lipofectamine mixture was then 

mixed with the DNA dilution and incubated for 20 min.  The Lipofectamine and DNA 

mixture was transferred to one well of HeLa cells.  Transfections were performed as 

technical triplicates.  

 

FIGURE 5: Hes1 promoter fragment used in reporter gene studies.  This construct 

was originally cloned into the pGL2-Basic vector with KpnI and BglII in Reference (7).  

The TSS is denoted as A. 
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FIGURE 6: Hes5 promoter fragment used in reporter gene studies.  This construct 

was originally cloned into the pGL2-Basic vector in Reference (77).  The TSS is denoted 

as A.
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Reporter Gene Assays 

 

 The reporter gene assay was performed 48 h after the transfection reaction using 

reagents from the Promega Dual Luciferase Reporter Assay System.  The Opti-MEM was 

aspirated from the well and replaced with 30 μl 1X Passive Lysis Buffer, which is 

incubated with the cells at room temperature with light shaking for 15 min.  After the 

cells were lysed, 20 μl cell extract was transferred to an opaque plate and read on the 

luminometer.  The luminescence readings were measured under the following conditions: 

50 μl Luciferase Assay Reagent II, 50 μl Stop & Glo Reagent, 5 s delay between 

injection and measurement, 10 s integration time.  The readings were obtained in 

Microsoft Excel software.  The measurement readings were given as relative light units, 

and analyzed as a ratio of the Firefly luciferase measurements to the control Renilla 

luciferase measurements.  

 

Statistical Analysis 

 

 For comparison between activation levels of the wildtype promoter and one other 

mutant promoter, the data were analyzed using two-tailed independent samples t-tests, 

and a p value less than 0.05 indicated a statistically significant result.  When comparing 

activation levels of the wildtype promoter and two or more mutant promoters, pairwise 

independent samples t-tests were performed with the wildtype data.  A statistically 

significant result was indicated by a p value less than a Bonferroni-adjusted α, where 

α = 0.05/k and k = total number of promoters compared in the dataset. 
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 In the studies reported here, the null hypothesis (H0) stated that the activation of 

the mutant promoter and Notch mutants are not different from the wildtype expression 

constructs.  The minimum acceptable risk for a Type I false positive error, where H0 is 

true but is incorrectly rejected, is 5% for experimental studies, therefore α was set to 0.05.  

When analyzing the mean values of two samples, a p value less that α indicates that the 

H0 was rejected and the values from one sample set were significantly different from the 

values of the set to which it was being compared.  A p less than α is indicated by an 

asterisk (*) on the reported figures.  Many of the datasets included more than two 

samples, such as the NRE site mutants which have several samples from the different 

mutant NRE sites.  When multiple samples are compared to wildtype, the risk of a Type I 

error was increased.  In order to combat the problem of multiple comparisons, a 

Bonferroni correction was applied to α values to restrict the conditions in which H0 was 

rejected.  The smaller α value, which is indirectly proportional to the number of samples, 

accounted for the H0 that none of the samples is significantly different from 

wildtype (78).  It has been debated that using Bonferroni corrections is a very 

conservative method for multiple comparisons (79).  However, this methodology places 

much importance on the promoter elements that are found to be statistically significant 

and assists in powerfully supporting the conclusions presented here.  
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RESULTS 

 

Activation of Hes1 with Notch 1 and Mastermind-like 1 

 

 

 A luciferase reporter construct containing the wildtype Hes1 promoter was 

transfected into HeLa cells with either coactivator expression plasmid Notch1 

intracellular domain (N1ICD), Mastermind-like 1 (MAM1), or both.  The promoter 

activity of Hes1 alone was normalized to 1; the activity of Hes1 with N1ICD and MAM1 

are shown as fold promoter activities compared to Hes1 alone (Fig. 7).  These results are 

consistent with other research groups that have shown that NICD and MAM work 

synergistically to activate Hes1 transcription, but show very weak activation 

individually (6, 72). 

 

 
FIGURE 7: Fold promoter activities of Hes1 with N1ICD and MAM1.  Fold promoter 

activities of are normalized to Hes1 promoter alone.  Data are shown from at least three 

independent experiments.  Standard deviation bars are shown. 
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Notch 1- and Mastermind-like-1-Mediated Hes1 Activation with Mutated Notch 

Response Elements 

 

 

 The NREs on Hes1 were mutated by changing the internal guanines to cytosines 

so that CBF1 could no longer bind.  N1ICD and MAM1 were transfected with Hes1 

promoter and Hes1 promoters with mutant NRE sites (Fig. 8).  N1ICD- and MAM1-

mediated activations of Hes1M1, Hes1M3, and Hes1M1M3 were not significantly 

different from Hes1, demonstrating that NREs 1 and 3 do not contribute to activation on 

the Hes1 promoter.  Activations of Hes1M2, Hes1M4, and Hes1M2M4 were significantly 

decreased compared to wildtype, showing that NRE 2 and NRE 4 are necessary for Hes1.  

 

 
FIGURE 8: Activation of Hes1 NRE site mutants.  The Hes1 promoter activation by 

MAM1 and N1ICD is normalized to 100% and the activity of the mutant promoters with 

MAM1 and N1ICD is shown as a percentage compared to wildtype.  Data are shown 

from at least three independent experiments.  Standard deviation bars are shown.  

* denotes p<0.0055. 
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produced significantly decreased promoter activity of Hes1M1M3M4 and 

Hes1M1M2M3.  NRE 2 and NRE 4 separately are not sufficient to activate Hes1. 

 

Hes1 Promoter Activity with a Notch Dimerization Mutant 

 

 

 Site-directed mutagenesis was used to create a mutation in N1ICD by changing 

the arginine on residue to 1985 to an alanine.  Nam et al. proposed that this residue was 

necessary for the Notch complexes to dimerize on the SPS (9).   

 

 
FIGURE 9: Activation of Hes1 with N1ICD R1985A.  The Hes1 promoter activation by 

MAM1 and N1ICD is normalized to 100%, and the activity of Hes1 with MAM1 and the 

mutant N1ICD is shown as a percentage compared to wildtype.  Data are shown from at 

least three independent experiments.  Standard deviation bars are shown.  * denotes 

p<0.05 
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with Nam et al. and confirms that the dimerization of the Notch complexes assembled on 

the SPS is important for Hes1 activation. 

 

Notch- and Mastermind-like-Mediated Activation of Hes1 with a Sequence-Paired 

Site Separated by Additional Base Pairs 

 

 

 The Hes1SPS+7 promoter construct contained a seven base pair insertion on the 

5’ end of NRE 4, separating NREs comprising the SPS.  According to Nam et al., 

separating the SPS by an additional seven base pairs eliminates the ability of the Notch 

complexes to dimerize (9). 

 

 
FIGURE 10: Activation of Hes1 with separated SPS elements.  The wildtype Hes1 

promoter activity is normalized to 100%, and the Hes1SPS+7 promoter activity is shown 

as a percentage compared to wildtype.  Data are shown from at least three independent 

experiments.  Standard deviation bars are shown.  * denotes p<0.05 
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result strengthens the hypothesis that the dimer assembled on the SPS of Hes1 is 

necessary for maximum promoter activation by NICD and MAM. 

 

Notch- and Mastermind-like-Mediated Activation of Hes1 with Different 

Orientations of the Sequence-Paired Site 

 

 

 To examine whether or not the orientation of the NREs within the SPS are 

important for Hes1 activation, site-directed mutagenesis was used to change the 

orientation of NRE 2, NRE 4, or both.  The NREs in the wildtype Hes1 SPS are located 

16 base pairs apart and are arranged as Head-Tail.  When the SPS was arranged as Tail-

Head in Hes1 T2-H4 or Head-Head in Hes1 H2-H4, the promoter activity was 

significantly decreased compared to Hes1.  However, when the NREs were positioned as 

Tail-Tail in Hes1 T2-T4, promoter activity was not significantly different from wildtype 

(Fig. 11A). 

 NRE 1 and NRE 2 on Hes1 are located 15 base pairs apart.  Although this differs 

from the SPS on the native Hes1 promoter that is separated by 16 base pairs, results from 

Nam et al. have shown that Notch dimers still form when there is a one base pair 

reduction between the SPS (9).  NREs 1 and 2 are arranged as Tail-Head. In the Hes1 

H1-T2 mutant promoter, NREs 1 and 2 were mutated so their orientation is Head Tail, 

and NRE 4 was mutated so that CBF1 cannot bind.  Hes1 H1-T2 promoter activity did 

not differ significantly from wildtype Hes1 (Fig. 11B). 

 Taken together, these results suggest that the Head-Tail wildtype orientation or 

the Tail-Tail orientation is necessary for Hes1 activation. 
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FIGURE 11: Activation of Hes1 SPS orientation mutants.  The wildtype Hes1 

promoter activity is normalized to 100%, and the mutant promoter activities are shown as 

a percentage compared to wildtype.  A, Activation is shown for mutant promoters where 

the NREs of the SPS were mutated to show different orientation combinations.  B, 

Activation is shown for a mutant promoter in which NRE 1 and NRE 2 were mutated to a 

Head-Tail orientation to match the wildtype SPS orientation.  Data are shown from at 

least three independent experiments.  Standard deviation bars are shown.  * denotes 

p<0.01. 
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Notch- and Mastermind-like-Mediated Activation of Target Genes with a Mutated 

TATA Box 

 

 

 Hes1 contains a TATA box, which recruits RNA polymerase through the TFIID 

complex.  In order to study the contribution of the TATA box to Hes1 activation, site-

directed mutagenesis was used to mutate the TATA box sequence of TATATAT to 

GAGAGAG.  Changing the TATA box thymines to guanines has been previously shown 

to abolish the functionality of the promoter element (81). 

 The Hes1 TATA-less promoter, Hes1TATA, had a significantly lower activation 

by N1ICD and MAM1 than Hes1 (Fig. 12A).  This suggests that the pre-initiation 

complex assembles at the TATA box during transcription initiation.  This also indicates 

that the activation complexes assembled at the NREs alone are not sufficient to activate 

transcription. 

 To assess whether or not a TATA box is necessary for other Notch target genes, 

the TATA box on Hes5 was examined.  Hes5 is a Notch target gene that has a TATA box 

as well as an SPS (11).  Hes5TATA is a mutant promoter in which the thymines of the 

TATA box are mutated to guanines.  Activation of Hes5TATA was significantly lower 

than Hes5 (Fig. 12B).  

 Taken together, these results suggest that a TATA box is a necessary promoter 

element on Notch target genes that contain an SPS.  
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FIGURE 52: Activation of Notch target genes with a mutant TATA box.  The 

wildtype Hes1 promoter activity is normalized to 100%, and the TATA-less promoter 

activities are shown as a percentage compared to wildtype.  A, TATA-less Hes1 promoter 

activity activation was compared to wildtype activation.  B, Hes5 TATA box was 

mutated to assess promoter activity.  Data are shown from at least three independent 

experiments.  Standard deviation bars are shown.  * denotes p<0.05. 
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Notch- and Mastermind-like-Mediated Activation of Hes1 with Altered Base Pair 

Spacing between the Sequence-Paired Site and TATA Box 

 

 

 Since the Hes1 SPS and TATA box have been shown to contribute to promoter 

activation, altering the number of base pairs between these promoter elements can offer 

insight into the nature of the interactions between the Notch activation complexes and the 

pre-initiation complex.  The 24 base pairs between the NREs and TATA box on Hes1 are 

designated as the NT region.  

 Hes1NT-10 and Hes1NT-20 mutants contained the Hes1 promoter with 10 and 20 

base pairs, respectively, removed from the NT region.  When activated by N1ICD and 

MAM1, both Hes1NT-10 and Hes1NT-20 had significantly reduced promoter activity 

compared to Hes1 (Fig. 13A).  This suggests bringing the Notch activation complex 

closer to the protein complex bound to the TATA box on the Hes1 is detrimental for 

promoter activity. 

 Hes1NT+10, Hes1NT+15, Hes1NT+20, Hes1NT+25, Hes1NT+50, and 

Hes1NT+150 contained the Hes1 promoter with 10, 15, 20, 25, 50, and 150 base pairs, 

respectively, added to the NT region.  All of these Hes1 promoters with an increased NT 

region did not have significantly different promoter activations from wildtype 

Hes1 (Fig. 13B).  This suggests that the Notch activators on SPS can interact with the 

TFIID complex on the TATA box when the SPS is moved further upstream on the 

promoter.  
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FIGURE 13: Activation of Hes1 with modified spacing between SPS and TATA box.  

The wildtype Hes1 promoter activity is normalized to 100%, and the mutant promoter 

activities are shown as a percentage compared to wildtype.  A, Activation is shown from 

mutant promoters where the Hes1 NT region had 10 and 20 base pairs removed.  B, 

Activation is shown when up to 150 base pairs were added to the Hes1 NT region.  Data 

are shown from at least three independent experiments.  Standard deviation bars are 

shown.  * denotes p<0.0055. 
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DISCUSSION 

 Uncovering the mechanism of MAM-dependent Notch target gene activation is 

crucial for understanding Notch signaling gene regulation.  This is important from a 

scientific discovery perspective because little is known about Notch signaling, including 

how target genes are activated, which functional domains contribute to activation, and 

how combinations of ligands and Notch homologs selectively modulate gene expression.  

Studying Notch has beneficial consequences for clinical research as well since Notch 

signaling influences cell immunity, tumor angiogenesis, and stem cell maintenance (81). 

 Transcriptional coactivators of Notch have been identified, but the mechanisms of 

transcription machinery assembly and initiation still need further clarification.  Studying 

promoter elements of Notch target genes and their effect on activation provides insight 

into transcription initiation mechanisms.  The results presented here show that two of the 

NREs on the Hes1 promoter are necessary for Notch- and MAM-mediated activation.  

NRE 2 and NRE 4 comprise the SPS and appear to contribute to wildtype levels of Hes1 

promoter activity; however, neither NRE 2 nor NRE 4 alone is sufficient for activation.  

NRE 1 and NRE 3 do not appear to play any role in transcription.  The lack of activation 

influence by NREs 1 and 3 is surprising given that these sequences contain the necessary 

components for CBF1 binding (4).  Future studies can discern if these NREs do not 

contribute to activation because of their incorrect arrangement on the promoter or 

because there are other activators bound to the promoter that block CBF1 binding.  

 In order to activate Hes1, the Notch complexes on the SPS must be dimerized 

through the NICD proteins.  This is shown by the N1ICD R1985A mutation on the ANK 
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domain presented here.  This is an agreement with reporter gene results from Nam et 

al. (9).  Unlike Nam et al., the assay results of Hes1 with the N1ICD mutant shown here 

include MAM.  The formation of the NICD dimer regardless of the presence of MAM 

signifies that the dimerization of the Notch complexes does not depend on MAM.  Nam 

et al. also showed that a Notch complex dimer did not form when the SPS elements were 

spaced more than four base pairs apart.  The results shown here provide the promoter 

activity of the Hes1 promoter where seven base pairs are inserted between the SPS.  

Along with previous results, these findings show that the Notch complex dimers bound to 

the SPS is necessary to activate the Hes1 promoter at wildtype levels. 

 In addition to the dimer, the orientation of the SPS plays a role in Hes1 promoter 

activity.  The wildtype SPS orientation is Head-Tail.  When site-directed mutagenesis 

was used to manipulate the promoter to form an SPS orientation of Tail-Head and Head-

Head, Hes1 activation by N1ICD and MAM1 was significantly reduced.  Interestingly, 

the Tail-Tail SPS orientation promoter activity is not statistically significant from the 

wildtype orientation.  This is a more complete analysis of SPS orientation to supplement 

studies by Nam et al., which used EMSAs to show that the Head-Head orientation did not 

form a Notch dimer on Hes1, as well as studies by Ong et al. that utilized reporter gene 

assays to show that the SPS in a Head-Head orientation gives a reduced activation of 

Hes1 (8, 9).  Further studies are required to determine if a dimer is formed during 

activation of the Tail-Tail SPS.   

 The importance of SPS for transcription initiation was shown when a simulated 

SPS was created on NREs 1 and 2.  On the wildtype promoter, the orientations of NREs 1 
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and 2 are Tail and Head, respectively.  At 15 base pairs apart, NREs 1 and 2 meet the 

spacing requirements for the SPS (9).  When they were changed to Head-Tail using site-

directed mutagenesis techniques, the promoter activation was the same level as the 

wildtype promoter.  The Hes1 SPS, a strict layout for orientation, spacing of response 

elements, and activator interaction, is a required element for Notch- and MAM-mediated 

transcription initiation.  This work opens the possibility that the SPS promoter motif 

occurs in Notch responsive genes.  Future research can utilize the SPS promoter 

architecture to discover novel direct target genes of the Notch signaling pathway. 

 In addition to the SPS on which the Notch activation complexes assemble, Hes1 

promoter activity also depends on a TATA box.  Eliminating the ability of TFIID to bind 

to Hes1 produces about 20% promoter activation by N1ICD and MAM1 compared to 

wildtype Hes1.  The importance of the TATA box was also assessed in Hes5, a Notch 

target gene that contains both an SPS and TATA box.  The Hes5TATA mutant also 

produced about 20% promoter activation compared to wildtype.  This indicates that 

TFIID, the GTF bound directly to the TATA box, assembles the pre-initiation complex 

and recruits RNAPII. 

 Hes1 promoter activity is also regulated by the distance between the SPS and the 

TATA box.  When spacing was reduced, fold promoter activity was proportionally 

decreased.  This suggests that the Notch complexes and TFIID complex encountered 

steric crowding and therefore competed for binding sites on the promoter.  When the 

spacing between the SPS and TATA was increased up to 150 base pairs, there was not a 

significant difference in activation compared to the wildtype promoter.  This indicates 
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that the interaction between the Notch complexes and the pre-initiation complex may not 

depend on a fixed promoter distance.  Since mechanisms such as DNA looping and 

promoter tracking are utilized by enhancer regions that are located upstream of the core 

promoter, these results suggest that the SPS is an enhancer element on the Hes1 

promoter (61).  However, previous studies have shown that the TATA box must remain 

at a fixed distance from other promoter elements in order to cooperatively initiate 

transcription.  For example, activation of the Pal promoter of Oryza sativa depends on 

both a TATA box and Initiator element, and when six base pairs were inserted or deleted 

between the TATA box and Initiator sequence, TATA-dependent activation was 

abolished (82).  Proper spacing of the TATA box has also been shown to be important for 

selective recognition by other promoter elements.  Studies of the adenovirus major late 

promoter show that transcription does not begin on the preferred transcription start site 

when the TATA box is not located 21 to 25 base pairs from the Initiator sequence (83).  

Further investigation of the spacing between SPS and TATA box and the role of SPS as 

an enhancer can provide insight into additional regulatory mechanisms of Notch 

signaling.  

 The results proposed here provide evidence for a new model of Notch activation 

that may include the CDK8 module interacting with the core Mediator complex, which 

stabilizes TFIID at the TATA box (Fig. 14A).  However, CDK8 only loosely associates 

with the core Mediator complex and may not recruit Mediator during Notch signaling.  

Instead of CDK8 bridging the connection between the Notch complexes and the pre-

initiation complex, the interaction might occur through another protein, such as p300.  
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The histone acetyltransferase, p300, is recruited by MAM and in vivo and in silico 

research has shown that p300 interacts with many transcriptional coactivators, 

particularly with proteins associated with open chromatin (84-86).  Another model of 

Notch- and MAM-mediated activation can include a transcription machinery assembly 

that does not depend on transcription factor stabilization by direct protein interactions, 

but instead depends on the chromatin remodeling activity of the Notch activation 

complexes (Fig. 14B). 

 It has not gone unnoticed that abolishing the SPS or TATA box on Hes1 

decreases activation by NICD and MAM only by 80% and not a complete 100%.  

Further, although SPS manipulations, such as rearranging the orientation, produce 

statistically significantly less promoter activity than wildtype, the activation is decreased 

by only 40-50%.  This launches new research questions about whether or not a single, 

unpaired Notch activation complex can substantially contribute to target gene activation.  

This may occur by the Notch complex synergizing with other transcription factors bound 

to the promoter.  Alternatively, nuclear MAM separate from NICD may synergize with 

additional transcription factor complexes.  Previous results suggest that MAM is targeted 

for a ubiquitination-dependent degradation pathway that is separate from NICD 

degradation.
2
  This implies that MAM is involved in functional mechanisms outside its 

role of target gene activation with NICD and CBF1.  Further studies are required to 

determine MAM’s role with other transcription activation complexes.  

                                                             
2
 M. Farshbaf and J.B. White, unpublished data  
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FIGURE 14: Proposed models of MAM-dependent Notch target gene activation.  The 

Notch complexes dimerize through the ANK domain of NICD and assemble on the SPS 

of the gene promoter.  The TFIID complex is bound to the TATA box through TBP.  

A, MAM recruits CDK8, which may recruit the Mediator core complex.  Mediator can 

interact with TFIID and recruit RNAPII.  B, MAM recruits p300, which may recruit a 

complex with the ability to remodel chromatin to an open conformation.  This can allow 

the pre-initiation complex to assemble on TBP in order to recruit RNAPII. 
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