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Figure 7.  Linear geographic distance vs. fitness.  Linear geographic distance is not a 
predictor for plant fitness.  Linear regression y = 1.059x + 18.607, R2 = 0.00584, F1,116  
= 0.682, P = 0.411. 

 

Genetic Divergence 

Linear geographic distance is a weak predictor for genetic divergence between 

parent crosses because even though increasing linear distance reflects increasing genetic 

divergence, the R2 is low (linear regression y = 0.022x + 0.037, R2 = 0.044, F1,116 = 

5.289, P = 0.0232; Figure 8). 
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Figure 8.  Linear geographic distance vs. genetic divergence.  Linear geographic distance 
is not a predictor for genetic divergence.  Linear regression y = 0.022x + 0.037, R2 = 
0.044, F1,116 = 5.289, P = 0.0232. 

 

Nonlinear Geographic Distance (Habitat Barriers) Between Parents 

Overall, seed set increased significantly with nonlinear geographic distance 

(habitat barriers).  As described above, seed set was lowest in self-pollinated plants.  In 

addition, though, within-population seed set was lower than between-population seed set 

(within-population crosses n = 50; between-population crosses n = 68; Kruskal Wallis 

test, P < 0.0001; Dwass-Steel-Chritchlow-Fligner P < 0.0001 for all crosses; Figure 9).  
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Within-population crosses (19.96 seeds/silique) produced about 13% fewer seeds than 

between-population crosses (22.69 seeds/silique).  

 

Figure 9.  Nonlinear geographic distance (habitat barriers) vs. plant fitness.  Within-
population crosses produced about 13% fewer seeds than between-population crosses.  
Lower case letters denote significant differences between medians (P < 0.05).  A Tukey 
boxplot showing the median within the interquartile (IQR) range and whiskers of 1.5 
IQR.  Outliers are represented as open dots. 

 

Characteristics of the crosses that produce the lowest and highest number of seeds 

were examined by analyzing the frequency distribution of seed set.  Slightly fewer 

crosses produced siliques with zero seeds in the between-population crosses compared to 

within-population crosses (9/68 = 13.2% vs. 8/50 = 16.0%, respectively).  When 
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examining the top quartile of seed producing crosses among all outcross treatments (n = 

30 out of a total of 118), there was an excess of between-population crosses (63%) 

compared to within-population crosses (37%).  Given the unequal sample sizes, the 

predicted percentage of crosses in the top quartile should be 57.6% from between-

population crosses and 42.4% from within-population crosses, if they were equal.  Even 

when accounting for unequal sample sizes, there was still 5% excess of between-

population crosses among the top seed-producing crosses.  When analyzing the mean 

seed set in the top quartile, it was not significantly different between the two outcross 

types (between-population = 42.2 seeds/silique, within-population = 40.7 seeds/silique;  

t-test, P > 0.05).  The conclusion was that the differences in seed production in both the 

lowest and highest quartiles were contributing to the weakly significant difference 

between the two nonlinear outcrossing categories (within-population and between-

population). 

 

Genetic Divergence Between Parents 

When all cross data were included (self-pollination and outcross data), seed count 

significantly increased with genetic divergence (linear regression y = 40.3x + 16.459, R2 

= 0.222, F1,159 = 45.438, P < 0.0001; Figure 10).  However, the mating system experiment 

demonstrated that self-pollinations produced low seed set in general.  Therefore, the 

analysis was run to only include outcrossed parents, to see if genetic inbreeding might 

explain the loss of fitness in crosses between nearby parent plants.  When self-pollination 

data are removed, genetic divergence did not explain seed count (n = 118, linear 
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regression y = 40.3x + 16.459, R2 = 0.0151, P > 0.05; Figure 11).  Therefore, self-

pollination genetic data, which have many zero values, are driving the significance of the 

earlier result (Figure 10). 

Figure 10.  Genetic divergence vs. self-pollination and outcross fitness.  Smaller genetic 
divergence numbers denoted parent combinations that were more genetically similar, 
whereas larger genetic divergence numbers indicated parent combinations that were more 
genetically divergent.  Linear regression y = 40.3x + 16.459, R2 = 0.222, F1,159 = 45.438, 
P < 0.0001.  
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Figure 11.  Genetic divergence vs. outcross fitness with self-pollinations removed.  
Smaller genetic divergence numbers denoted parent combinations that were more 
genetically similar, whereas larger genetic divergence numbers indicated parent 
combinations that were more genetically divergent.  Linear regression y = 16.005x + 
19.965, R2 = 0.015, F1,116 = 1.778, P = 0.185.  
 

Population Source 

When comparing each source population, outcross seed set was the greatest for 

Quail Hollow Park and Water District, which were significantly different from Morgan 

Preserve and Eco Reserve (n = 118; Kruskal-Wallis test, P = 0.002; Dwass-Steel-

Chritchlow-Fligner P ≤ 0.001 for all crosses; Figure 12). 
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Figure 12.  Population source vs. fitness.  Outcross seed set was the highest for Quail 
Hollow Park and Water District, which was significantly different from Morgan Preserve 
and Eco Reserve (n = 118; Kruskal-Wallis test, P = 0.002).  Lower case letters denote 
significant differences between medians (P < 0.05).  A Tukey boxplot showing the 
median within the interquartile (IQR) range and whiskers of 1.5 IQR.  Outliers are 
represented as open dots. 

 

Pollinator Survey 

During the spring survey of pollinators, a diverse array of Hymenoptera (bees and 

wasps), Lepidoptera (butterflies and moths), and Diptera (flies) were identified while 

visiting E. teretifolium.  The insects in the video survey tend to be native and many are 
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strong fliers.  There were 125 visits per flower per hour, which resulted in a rate of 0.827 

visits per flower hour.  
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DISCUSSION 

Many species in the Brassicaceae family have sporophytic self-incompatibility 

systems (Anderson and Busch 2006; Charlesworth et al. 2005) and, thus, are reliant on 

pollinators (Ortigosa and Gómez 2010; Pavlik, Ferguson, and Nelson 1993).  However, in 

fragmented habitats where mate selection is low, self-compatible mating systems can 

arise because a single plant can colonize an area (Busch 2005; Pannell and Barrett 1998).  

When comparing self-pollinations and outcross pollinations for E. teretifolium, seed 

production decreased (6.5 times fewer seeds) with self-pollinations.  Due to this dramatic 

difference in seed set, it is likely that E. teretifolium has a self-incompatible mating 

system and therefore relies on outcrossing for reproduction.  The percent of crosses 

producing zero seeds was 4.4 times higher for self-pollinations (27/43 = 62.8%) 

compared to outcross pollinations (17/118 = 14.4%). 

Island biogeography, designed for oceanic islands, is expected to apply to 

continental island-like habitats that exhibit patchy distributions (Barbará et al. 2008; 

Edmands 2007; MacArthur and Wilson 1963; Pickett 1985).  Levin (1981) expects 

geographic distance to correlate with genetic distances among populations.  In isolated 

habitats, local adaptation can lead to outbreeding depression, or anthropogenic 

fragmentation can impact mate selection and drive a population to develop inbreeding 

depression.  In the Santa Cruz Mountains, the sandhills are naturally isolated by mesic 

forests and fragmented from anthropogenic activities such as urbanization, recreation, 

and mining.  Therefore, it is expected that the sandhills could host species that are 

detrimentally impacted by extreme fragmentation.  Holycross and Douglas (2007) studied 
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the impacts of continental habitat fragmentation on the genetics of Crotalus willardi 

obscurus (New Mexican ridge-nosed rattlesnake) and concluded that genetic bottlenecks 

were a result of natural isolation rather than anthropogenic habitat destruction.  Duncan et 

al. (2004) studied pollination success of the partially self-compatible plant, Dianella 

revoluta (Black-anther Flax-lily) in the Gubbata Nature Reserve, Australia.  The study 

populations were artificially fragmented by human-caused soil disturbance.  They found 

that pollen deposition from Hymenoptera did occur, even in the most isolated locations 

(400 m from the pollen source); however, the levels of outcrossed pollen found on these 

stigmas were significantly reduced due to geographic isolation.  Pollinator visitation rates 

were determined to be adequate for the area and did not impact pollination success.  

Duncan et al. (2004) caution that the plant mating system may dictate overall 

susceptibility to inbreeding. 

Results from the geographic and genetic isolation study did not yield clear 

evidence that island biogeography or fragmentation is impacting E. teretifolium.  Linear 

geographic distance between parents does not predict fitness.  While between-population 

crosses performed better than within-population crosses, linear geographic distance 

between parents poorly predicted genetic divergence.  Possible reasons for this include: 

genetic divergence among parents may somewhat improve fitness, but not enough to be 

detected; a resilient genetic structure or historical outcrossing from pollinators may have 

protected populations of E. teretifolium by diversifying the gene pool; and/or there may 

also be an accumulation of self-incompatibility alleles in the genetic source due to the 

increased fragmentation. 
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The spring pollinator survey of wild populations of E. teretifolium identified 

common insect pollinators from the orders of Hymenoptera, Lepidoptera, and Diptera.  

Erysimum taxa are typically pollinator-generalists and attract Hymenoptera, Diptera, 

Lepidoptera, and Coleoptera (Gómez et al. 2007; Ortigosa and Gómez 2010).  Many of 

the insects identified in the pollinator survey were native and considered strong fliers.  

Jabis, Ayers, and Allan (2011) studied pollinators of Abronia alpina (Ramshaw Meadows 

sand verbena), an alpine endemic, and found that strong fliers such as butterflies and 

moths (Lepidoptera) are important pollinators capable of dispersing pollen over long 

distances.  Noctuidae (Lepidoptera) are strong fliers and have been estimated to travel 

750 km during a two-year study in Arkansas that examined specimens for pollen from 

distant sources (Hendrix et al. 1987).  In a study on Euglossine bees in a tropical rain 

forest in Costa Rica, Janzen (1971) found that the bees could forage for pollen up to 23 

km away. 

Although E. teretifolium visitation rates were not unusually high, when 

accounting for the time each flower is available to pollinators, pollination is assured.  In 

the wild, flowers for E. teretifolium stay open a minimum of three days (Parker, Weitz, 

and Webster 2011).  In less than ideal conditions (assuming 50% favorable) due to wind, 

overcast skies, or fog, a conservative estimate is that each flower is potentially visited 15 

times during its lifetime.  Previous studies have shown that there does not appear to be 

pollen limitation from poor pollination rates (Parker, Weitz, and Webster 2011); 

therefore, this rate is adequate for outcrossing for E. teretifolium. 
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REINTRODUCTION PLANS 

This study demonstrates that E. teretifolium exhibits a self-incompatible mating 

system with some exceptions that are provocative, but lacking a discernable pattern.  

Therefore, outcrossing is necessary to improve fitness and promoting pollinators is 

critical for E. teretifolium reproduction.  The mating system experiment found that 

crosses between parents of greater distance perform as well as local crosses, and crosses 

from parents between populations perform better than crosses within a population.  

Crosses with a mother plant from Quail Hollow Park and Water District performed better 

than all other populations.  From analysis of linear geographic isolation, nonlinear 

geographic distance (habitat barriers), and genetic divergence, it appears that island 

biogeography is not a good predictor for this sandhills species. 

The Eco Reserve population appears to be in dire straits.  Between 2006 and 2012 

it declined from 77 to six individuals, and mothers from this site demonstrated 

significantly poorer reproductive success than from other populations in the current study 

(Parker, Weitz, and Webster 2011).  This population is clearly experiencing reproductive 

failure.  Since the mating system experiment has hinted at possible self-incompatibility, 

the Eco Reserve population may be suffering as a result of encountering high levels of 

self-pollination due to the small number of reproductive adults.  Land managers 

interested in formulating restoration and reintroduction plans for the sandhills need to 

consider seed collection options for E. teretifolium. 

There are generally three choices that managers have when collecting seed:  

(1) collect seeds from the local watershed, (2) introduce seed from other populations to 
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reduce the chance of incompatibility, and (3) consciously bring in seed from the most 

successful population (Bischoff et al. 2006; Lesica and Allendorf 1999; McKay et al. 

2005; Vander Mijnsbrugge, Bischoff, and Smith 2010).  The first option mitigates 

possible outbreeding depression by mixing seeds within a local source or watershed, 

which tends to have similar abiotic conditions that drive local adaptation for species.  

However, of the known remaining populations, the Eco Reserve is found in a different 

watershed from the other seven populations that were surveyed during a larger genetic 

study (Herman and Whittall, forthcoming).  Collecting local seed from within the 

watershed is not a viable solution for this population, especially since there are limited 

reproductive adults in the wild, and the mating system study demonstrated that self-

pollinations produced 6.5 times fewer seeds than outcross pollinations. 

Herman and Whittall (forthcoming) found that most of the genetic variation 

(80%) was harbored within each population.  Based on the microsatellite data performed 

in the larger population survey, the geographically disjunct Eco Reserve population did 

not represent a genetically distinct grouping (Herman and Whittall, forthcoming).  Seed 

set was significantly higher for Quail Hollow Park and Water District.  Therefore, those 

populations are the best options for conscious seed collection to select for robust 

populations; however, it is important to conduct further research on possible abiotic 

factors that could impact seed production on non-home soil.  Just as it is important to 

identify where seeds should be collected, the mating system results dictate the need to 

conserve pollinators.  We have some understanding of how to conserve E. teretifolium, 

but further research is required to better manage this endangered species. 
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Future Research 

The next step for this research is to continue common garden experiments using 

later life history fitness assessment measures, such as the vegetative biomass and 

reproduction ability of the F1 generation.  The fitness measure used for the mating 

system study was limited in its ability to detect inbreeding depression.  Further tests of 

the F1 generation will provide additional information about possible inbreeding 

depression, since inbreeding tends to show up in later stages of a plant’s natural history 

(D. Charlesworth and B. Charlesworth 1987; Edmands 2007).  It is also important to 

solidify the presence of a self-incompatible gene by looking at the physiology of E. 

teretifolium. 

The mating system study was conducted in a greenhouse setting in Santa Clara, 

California, which has different conditions from those found at the study sites where the 

captive breeding population was initially harvested.  Therefore, moving beyond common 

garden experiments to reciprocal transplants is important to determine if soil type or other 

abiotic conditions are impacting these populations.  Without field experiments, it is 

challenging to know if there are local factors that contribute to the reproductive success 

of this species. 

Finally, managers need to be aware of the importance of insect pollinators for E. 

teretifolium, since the results of the mating system dictate the reliance on outcrossing for 

fitness.  Further studies should survey important pollinators for E. teretifolium throughout 

its flowering season of March through June (McGraw 2004b).  It is also important to 

identify whether the pollinators are generalists or specialists to determine if there is a 
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need for conservation status, since specialist pollinators are more at risk of extinction 

(Bawa 1990; Packer et al. 2005; Steffan-Dewenter et al. 2002; Strickler 1979; Waser et 

al. 1996).  An assessment of pollinator habitat requirements will better allow land 

managers to protect insect pollinators and provide adequate habitat for the sustainability 

of strong pollinator guilds in the sandhills.  
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