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ABSTRACT 
 

THE EFFECTS OF POST-OPERATIVE ANALGESICS ON OVARIAN SURFACE 
ANGIOGENESIS AFTER TRANSPLANTATION OF YOUNG OVARIES INTO 

AGED MICE 
 

by Christine A. Petrovec 

The formation of new blood vessels from pre-existing vasculature, termed 

angiogenesis, is essential for tissue viability and continuous organ function after murine 

ovary allotransplantation.  Interference with the process of angiogenesis can result in 

cellular injury and tissue necrosis in the transplanted ovarian tissue.  Although 

recommended, the use of analgesics for post-operative pain management has been shown 

to alter angiogenesis and could negatively affect transplanted ovarian tissue viability.  

The present study evaluated the effects of two analgesics, the opiate buprenorphine and 

the non-steroidal anti-inflammatory drug meloxicam, on superficial ovarian vessel 

formation after the transplantation of young ovaries into aged mice.  One-Way ANOVA 

evaluation indicated a significant increase in total surface vessel number (p= 0.001) and 

total number of vessel branches (p= 0.027) in meloxicam-treated mice when compared to 

the saline control or buprenorphine-treated mice.  Additionally, the meloxicam-treated 

mice showed a significantly greater concentration of vessels at an ovary surface depth of 

approximately 90 µm (p< 0.001) when compared to both saline control and 

buprenorphine-treated mice.  These results suggest that meloxicam is a post-operative 

analgesic that could be used after ovary allotransplantation to limit disruptions in 

angiogenesis and to maximize vessel formation to establish successful ovary function. 
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Introduction 

 

In order to immediately preserve tissue viability in modern organ transplantation 

the anastomosis of larger vessels is required for successful vascular perfusion leading to 

consistent gas and nutrient distribution and swift metabolic waste removal (Brodie, 1903; 

Starzi, 1960; von Frey, 1885).  Although highly effective suture techniques used to 

connect major vessels were originally perfected by 1912 Nobel Prize winner Alexis 

Carrel (Carrel, 1905; Carrel, 1907), using similar methods to exogenously conjoin smaller 

vessels of the microvasculature intra-operatively proved to be an impracticable and 

unsuccessful way of creating microvascular patency (Acland, 1977; Baxter, 1972; Brooks, 

1959).  Therefore, regrowth and remodeling of the microvasculature in areas of cellular 

hypoxia is primarily the work of endogenous cell signaling that results in the emergence 

of new vasculature from pre-existing vessels, a biological phenomenon termed 

angiogenesis (Ladoux, 1993; Shweiki, 1992; Stone, 1995).  

 

Angiogenesis 

First described by British surgeon John Hunter in 1787 to characterize new vessel 

growth from the pre-existing microcirculation after ligation of the carotid artery perfusing 

a reindeer antler (Kobler, 1960), angiogenesis did not become common terminology until 

revisited by Arthur Hertig when he described vessel formation in the placenta of pregnant 

monkeys (Hertig, 1918).  As a well known, essential biological event in both normal 

physiological and divergent pathological processes, the mechanisms of angiogenesis 
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continue to be investigated to understand the pathways and components involved in the 

formation of new vessels and vascular regeneration. 

 The process of angiogenesis usually takes place in the microvasculature, 

predominantly in capillaries, but it can also be observed in small venules (Schoefl, 1963).  

The basic structure of nascent capillary parent vessels consist of a single layer of 

endothelial cells surrounded by a thin extracellular matrix (ECM) with structurally 

supportive pericytes wrapped around individual endothelial cells and embedded in the 

ECM to propagate external signals through cell-cell gap junctions (Bar, 1972; Cuevas, 

1984; Florey, 1926; Orlidge, 1987).  In addition, the ECM is comprised of proteoglycans, 

Type I collagen, and elastin that provide additional support for the delicate 

microvasculature (Form, 1986; Kubota, 1988; Lohler, 1984; Sauter, 1998).   

When angiogenic stimulators such as vascular endothelial growth factor (VEGF) 

and basic fibroblast growth factor (bFGF) are released via proteolysis of the ECM, both 

VEGF and bFGF bind specific endothelial cell transmembrane receptors activating 

mitogenesis (Connolly, 1989; Ferrara, 1989; Fisher, 1994; Folkman, 1988; Healy, 1992; 

Hiraoka, 1998; Jakeman, 1992; Montesano, 1986; Unemori, 1992).  These endothelial 

transmembrane tyrosine kinase receptors, such as VEGF binding VEGFR-2/flk-1 and 

VEGFR-1/flt-1, and bFGF binding FGFR1/2, become phosphorylated and activate 

phospholipase-C.  Activated phospholipase-C subsequently stimulates the mitogen-

activated protein (MAP) kinase extracellular signal-regulated kinases (ERK) 1/2 signal 

transduction pathway by phosphorylation of its G-protein coupled receptor alpha subunit 

(Lee, 1989; Takahashi, 1997; Yamane, 1994).  After phosphorylation, the alpha subunit 
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signals the activation of Ras, which eventually activates MAP kinase transcription factors 

Myc and cAMP response-element binding protein (CREB) to translocate into the 

endothelial cell nucleus leading to increased mitogenesis, vascular fenestration, and 

increased permeability (Berra, 2000; Connolly, 1989; Pearson, 2001; Senger, 1983; 

Unemori, 1992).  These vascular changes are necessary to release extracellular matrix 

proteolytic enzymes, such as matrix metalloproteinases, which remodel existing ECM 

structures, and facilitate the secretion of newly assembled ECM components after cellular 

proliferation forms the beginning of a new microvessel (Fernandez, 1999; Pepper, 1998). 

As parent endothelial cells are rapidly multiplying, angiogenic growth factors 

angiopoietin-1 (ang-1) and angiopoietin-2 (ang-2) are released from the damaged 

extracellular matrix and bind to endothelial cell surface tie-1and tie-2 tyrosine kinase 

receptors (Maisonpierre, 1997; Puri, 1995; Sato, 1995; Suri, 1996; Thurston, 1999).  

Specifically, the ang-1 ligand binds to the endothelial cell tie-2 receptor leading to 

receptor phosphorylation.  This binding prevents excessive vessel leakage due to 

fenestrations caused by the degradation of cell-cell interaction molecules PECAM/CD31 

and VE-cadherin.  Limiting vessel permeability allows the vessel to retain adequate 

structural integrity during the proliferative process (Puri, 1995; Thurston, 1999).  Ang-2 

activates the endothelial tie-2 receptor to induce the release of pericytes from the 

basement membrane (Sato, 1995).  This disruption of pericyte attachment is expedited by 

the dissolution of the extracellular matrix by endothelial cell secreted proteolytic 

enzymes on the side of the vessel closest to the angiogenic stimulus (Ausprunk, 1977; 

Korff, 2001; Maisonpierre, 1997; Papapetropoulos, 1999).  At this juncture, ang-2 
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stimulation of the endothelial tie-2 receptor acts concomitantly with VEGF to facilitate 

endothelial cell sprouting from the area of degraded ECM (Asahara, 1998; Sawamiphak, 

2010; Witzenbichler, 1998).   

  The degraded area of ECM is invaded by proliferating endothelial cells forming 

a sprout, with a small number of apical cells leading the bulk of new cells in a linear 

progression.  Those cells that follow behind or to the sides of the apical cells are referred 

to as stalk cells, which divide and elongate as the stalk moves forward (Witzenbichler, 

1998).  Simultaneously, the sprout interacts with the remodeled ECM as new basement 

membrane components such as fibronectin, collagen, and laminin are secreted through 

the parent vessel fenestrations and deposited while maintaining contact with the 

proliferating endothelial cells (Saunders, 2006; Stratman, 2009).   

As the sprout matures, endothelial cellular polarity is maintained due to ang-1/tie-

1 receptor signaling (Asahara, 1998).  The new lumen is constructed when endothelial 

cells form VE-cadherin/VEGF mediated intercellular adhesions and secreted protease 

inhibitors such as tissue inhibitors of metalloproteinases (TIMPs) stop the degradation of 

the ECM, allowing new ECM components to assemble (Form, 1986; Saunders, 2006).  

As soon as sufficient basement membrane is deposited and endothelial junctions are 

established, pericytes synthesized after VEGF-stimulation are recruited to position 

themselves around the new capillary endothelial cells, signifying the maturation of the 

vessel wall (Stratman, 2009; Yamagishi, 1999).  Upon the loop formation from the 

coalescence of two sprouts or with another vessel branch, blood flow is initiated into the 

newly formed microvessel.  Once the new vessel is patent, the incorporated endothelial 
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cells will become dormant for months to years.  These quiescent endothelial cells and the 

surrounding pericytes in the vascular network suppress proliferation unless signaled again 

by stimulatory mitogens such as VEGF and bFGF (Montesano, 1986; Unemori, 1992). 

 

Murine Ovary  

Re-establishing an adequate angiogenic pathway after surgeries such as murine 

ovarian allotransplantation allows for the continued maturation and development of 

primordial follicles into mature follicles and the maintenance of estrus cyclicity (Gosden, 

1994).  Studies investigating neovascularization after human ovarian xenografts 

demonstrated a rapid rate of angiogenesis in transplanted ovarian tissue resulting in 

complete vascular perfusion at the graft-host interface within 48 hours (Nisolle, 2000; 

Van Eyck, 2010).  This is most likely due to the ongoing presence of VEGF and bFGF 

angiogenic factors responsible for vessel formation during folliculogenesis and 

development of the corpus luteum during the luteal phase (Boron & Boulpaep, 2008; 

Dissen, 1994; Ferrara, 1998; Li 1994).  In mice, the ovaries are enclosed in an ovarian 

bursa which includes an inner mesothelium lining composed of blood vessels and nerves 

(Treuting & Dintzis, 2011).  The ovarian artery, ovarian vein, and major nerves join the 

ovary at the narrow opening called the hilum and enter and leave through a small hole in 

the bursa lining.  The ovarian bursa is continuous with the murine oviducts which 

connect to the uterine horns of a bicornuate uterus (Treuting & Dintzis, 2011).   

In the ovary, the process of folliculogenesis describes the maturation of 

primordial follicles to preovulatory follicles in response to gonadotropin releasing 
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hormone (GnRH) released from the hypothalamus as well as follicle-stimulating hormone 

(FSH) and lutenizing hormone (LH) released from the anterior pituitary gland (Boron & 

Boulpaep, 2008).  Proliferation of follicular granulosa cells and the surrounding theca cell 

layers continue in response to LH and FSH as the follicle develops.  As follicles advance 

from the primary follicle stage through the tertiary stage, increasing nutritional demands 

stimulate endogenous secretion of VEGF and bFGF from the bursa, ovarian endothelial 

cells, and granulosa cells to increase vascularization surrounding the developing follicle 

(Bassett, 1943; Doyle, 2009; Mattioli, 2001; Nilsson, 2001; Zheng, 1994).  It has been 

hypothesized that the introduction of a murine ovary homograft will be met with rapid 

angiogenesis due to an already large production of VEGF and bFGF from bursa 

endothelial, thecal, and granulosa cell origins in addition to the increased production 

stimulated from cellular hypoxia (Kamat, 1995; Koos, 1991; Van Eyck, 2010; Zheng, 

1994).  Studies have also indicated that tie-1 and tie-2 receptors are present on ovary 

endothelial cells and bind vascular growth factors ang-1 and ang-2 released from bursa 

mesodermal cells in response to increased VEGF signaling promoting post-operative 

angiogenesis (Teilmann, 2005).  It has also been hypothesized that during the avascular 

period of local ischemia in the host bursa after ovary transplantation the increased VEGF 

signaling stimulates both local angiogenesis and the release of bone marrow derived 

endothelial progenitor cells necessary for postnatal vasculogenesis (Asahara, 1999; 

Roberts, 2007).   
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Vasculogenesis 

Vasculogenesis refers to the formation of nascent vascular structures de novo and 

is traditionally used to describe new vessel formation in the developing embryo.  After 

the early mesodermal layer is formed via gastrulation (Tam, 1997), mitogens from the 

fibroblast growth factor (FGF) family stimulate mesodermal stem cells to differentiate 

into an early hematopoietic precursor, the hemangioblast (Amaya, 1991; Choi, 1998; 

Coumoul, 2003; Flamme, 1992; Gospodarowicz, 1974; Wilt, 1965).  These VEGFR-

2/flk-1 positive hemangioblasts migrate toward high concentrations of mitogen VEGF, 

often traveling long distances to specific tissue locations to begin forming a primordial 

vascular plexus (Drake, 1995; Schuch, 2003; Shalaby, 1995; Shalaby, 1997).  After 

stimulation by VEGF, the hemangioblast proliferates and differentiates into endothelial 

progenitor cells, or angioblasts, and hematopoietic stem cells (Breier, 1995; Ferrara, 

1996; Leung, 1989; Millauer, 1993).  Once these cells have reached their extraembryonic 

destination, the hematopoietic stem cells and angioblasts aggregate to form ‘blood 

islands’, with the hematopoietic stem cells in the lumen, surrounded by a fused layer of 

angioblasts at the periphery (Drake, 2000; Risau, 1988).  To form nascent vessel lumina, 

neighboring blood islands coalesce and the angioblasts merge, differentiating into 

embryonic endothelial cells with downregulated VEGFR2/flk-1 receptors and 

upregulated growth factor receptors.  These growth factor receptors include CD34 and 

CD31 prolific angiogenic factors and VE-cadherin, E-selectin extracellular matrix and 

cell-cell adhesion factors (Doetschman, 1985; Hirakow, 1981).  Eventually, the newly 

established endothelial cells will generate stable cell-cell interactions using CD31 and 
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VE-cadherin, and recruit pericytes to stabilize the vessel and stimulate the generation of 

extracellular matrix components (Bar, 1972).   

In vasculogenesis of the ovary, the primitive gonad is formed from the migration 

of primordial germ cells to the mesothelial layer of the mesoderm and the endothelial 

cells that line this layer connect these germ cells to the vascular plexus of the primitive 

microcirculation (Bullejos 2002; Coveney, 2008).  More complex ovary vascular 

structures develop by continued endothelial cell proliferation and branching of these early 

endothelial vessel formations extending from the larger vascular plexus of the 

mesonephros (Bullejos 2002; Coveney, 2008).  After the female gonad becomes fully 

vascularized via further vessel reorganization and migration, PECAM-1/CD31 cell-cell 

adhesions and characteristic angiogenic microvessel branching indicate the end of 

vasculogenesis (Coveney, 2008; DeLisser, 1997; Horace, 1997).   

Recent studies have detected quiescent undifferentiated endothelial progenitor 

cells similar to early embryonic progenitor cells in the bone marrow and peripheral blood 

of adult humans (Asahara, 1997; Asahara, 1999; Jin, 2006; Vaughan, 2012).  Referred to 

as angioblasts in the developing embryo, these newly-identified adult circulating 

endothelial progenitor cells (EPCs) can be summoned and up-regulated in adults by 

ischemia, cytokines, and growth factors such as VEGF.  Once in circulation, EPCs 

contribute to the production of new vessels in areas of decreasing oxygen tension, 

elevated blood viscosity or excessive luminal pressure.  Research has shown that many of 

these quiescent EPCs reside in the bone marrow without need for proliferation, and 

modest amounts are available in circulation to assist in the formation of new capillary 
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networks (Asahara, 1999).  The bone marrow derived endothelial progenitor cells (BM-

EPCs) that can be mobilized by mitotic VEGF activation are directed in a chemotaxic 

manner towards large secretions of VEGF (Jin, 2006).  In the mature murine ovary, 

VEGF is necessary for the formation of the corpus luteum (Ferrara, 1998) and subsequent 

studies have identified BM-EPCs in the vascularization process during luteal formation 

and neovascularization in the endometrium (Asahara, 1999).  After localization to 

reproductive tissues, it is hypothesized that BM-EPCs can replicate embryonic pathways 

of vessel creation to assist with the formation of new capillary beds in areas of vascular 

injury, such as murine ovary allotransplantation into a host bursa, increasing regional 

perfusion, and restoring tissue function (Asahara, 1999). 

 

Post-operative analgesia 

Any alteration to angiogenesis, vasculogenesis or the release of BM-EPCs could 

alter the host’s ability to maintain transplanted tissue viability by prolonging wound 

healing or sufficient organ perfusion.  Although many post-operative precautions are 

taken to ensure the host’s comfort, post-operative analgesia has been shown to cause 

significant reduction in immunosuppressive stress hormone secretion from hypothalamic-

pituitary axis activation thus resulting in adequate secretion of proinflammatory cytokines 

required for wound repair (Beilin, 2003; Glaser, 1999; Hubner, 1996; Padgett, 1998; 

Skjelbred, 1982).  It has been demonstrated in various species that providing patients 

with analgesia after both major and minor procedures is beneficial, and in rodents such as 

mice, post-operative analgesia decreases the risk of sepsis, stimulates healthy immune 
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function, increases animal mobility, and decreases stress-induced delays in wound 

healing (Hubner, 1996; Padgett, 1998).   

The current recommendation given by Institutional Animal Care and Use 

Committees (IACUC) as well as veterinary medical practitioners is to provide adequate 

post-operative pain management for laboratory animals undergoing surgical procedures 

(Kohn, 2007).  In an effort to comply with these reasonable guidelines but still maintain 

reliable research results in studies evaluating surgical transplantation procedures such as 

the murine ovarian homograft, multiple genres of available analgesia should be evaluated 

for possible effects on post-operative angiogenesis and vasculogenesis.  Currently, the 

most widely used post-operative analgesics are from either the opioid class or non-

steroidal anti-inflammatory drugs (NSAIDs).  Evaluating which of these two types of 

analgesia will have the least negative effect on angiogenic factors or vasculogenesis 

endothelial progenitor signaling could be determined by looking at the mechanism of 

action and reviewing previous literature for evidence of enhanced or inhibited post-

operative transplant neovascularization. 

 

Buprenorphine 

The most common opioid used ubiquitously in both human and animal studies, 

buprenorphine hydrochloride, is a semi-synthetic µ-opioid partial agonist used for the 

relief of moderate to severe pain (Cowan, 1977).  In 1966 John Lewis, lead chemist of the 

pharmaceutical division of United Kingdom consumer goods company Reckitt & Colman 

(currently Reckitt Benckiser) in conjunction with chemist Kenneth Bentley, formulated a 
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potent novel analgesic by adding a C-7 side-chain containing a t-butyl group to opiate 

alkaloid thebaine (Bentley, 1967).  Injectable buprenorphine became commercially 

available in 1978 as an alternative analgesic for severe pain.  By 1985, both injectable 

and sublingual tablets were approved by the FDA and available in the United States.  

Currently, the Food and Drug administration lists buprenorphine as a schedule III 

narcotic (DEA, 2002). 

 Approved for intraperitoneal (IP), intravenous (IV), oral, and intramuscular 

administration, buprenorphine has a high affinity for central nervous system G-protein 

coupled µ-opioid receptor subclasses, and it demonstrates a prolonged receptor 

disassociation rate, which generates low buprenorphine plasma concentrations leading to 

extended analgesic effects (Boas, 1985; Cowan, 1977; Huang, 2001; Sadee, 1982; Yassen, 

2007).  After binding to the µ-opioid receptor, buprenorphine disinhibits the presynaptic 

release of GABA leading to analgesia, sedation, bradypnea, hypotension, and dysphoria 

(Gal, 1989; North, 1987; Saarialho-Kere, 1987; Vaughn, 1997).  Subsequent disruption of 

G-protein coupled receptor (GPCR) signaling requires inactivation of the G-protein alpha 

subunit by stimulating GTP hydrolysis rendering the subunit inactive by regulators of G-

protein signaling (RGSs) and/or desensitization by binding of Arrestin proteins which 

eliminates further signal transduction by blocking the buprenorphine binding site 

(Ferguson, 1996; Zhang, 1998). 

 After thoroughly analyzing all routes of buprenorphine administration, 

researchers demonstrated that the sublingual and IV routes had the longest half-life at 3-5 

hours and the most rapid post-administration bioavailability.  Although convenient, 
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studies revealed the sublingual application required a higher dose due to an increased 

hepatic first-pass effect (Brewster, 1981; Bullingham, 1980; Kuhlman, 1996).  With a 

hepatic elimination rate of approximately 40 hours, buprenorphine is deactivated via N-

dealkylation by Cytochrome P450-3A4 enzymes in the liver and the resulting metabolite 

norbuprenorphine is then bound to a glucuronic acid and excreted in feces via bile 

(Iribarne, 1997; Zhang, 2003). 

 As one of the most common post-operative analgesics used in medicine today, 

buprenorphine’s parent alkaloid morphine has been analyzed in numerous studies 

investigating the pro-angiogenic or inhibitory effects of opioids on wound healing and 

transplant neovascularization.  By using morphine instead of buprenorphine specifically, 

research studies can evaluate the effects of all opioid plant alkaloid derivatives which 

include thebaine, codeine, and buprenorphine.  In early studies by Pasi et al (1991) the 

chorioallantoic membrane (CAM) of the chicken embryo was used to evaluate the effects 

of morphine on angiogenesis.  By displaying the CAM through shell fenestrations after 

the third incubation day, Pasi et al inoculated the eggs with control (saline) or morphine 

in varying doses and counted daily vessel growth.  Since Zagon and Mclaughlin (1981) 

had suggested in earlier research that opioid therapy resulted in the inhibition of murine 

tumor growth, Pasi et al hypothesized that the inhibitory mechanisms of these opioids on 

the developing membrane may be due to decreased endothelial cell proliferation leading 

to slower vessel formation.  Pasi et al found morphine treated CAM had decreased 

neovascularization in a dose dependent manner with the negative effects of morphine 

easily visible at low doses (5 µg) within the first 24 hours, and high-dose morphine (10 
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µg and 15 µg) maintaining significant angiostatic effects over the 96-hour observation 

period.  These results suggested that opioids might inhibit cellular mitosis and/or DNA 

synthesis which would prevent cellular proliferation in tumor formation as seen by Zagon 

and Mclaughlin (1981). 

 Although the mechanisms causing these results were still unclear, 

Balasubramanian et al (2001) evaluated hypoxic cultures of murine heart endothelial cells 

(mEC), human umbilical vein endothelial cells (HUVECs), and rat cardiomyocytes to 

analyze how exogenous morphine might interfere with VEGF angiogenic signaling.  

Normally, endogenous VEGF binds to VEGFR-1/2 (flt-1/flk-1) tyrosine kinase receptors 

to induce gene expression and ultimately endothelial proliferation resulting in the 

angiogenic growth of the microvasculature in conditions such as myocardial infarctions 

and tissue ischemia.  After the cells were cultured in hypoxic conditions and treated with 

either morphine or saline for 24 hours, results demonstrated that VEGF was significantly 

increased in cells that were treated with saline and exposed to hypoxic conditions, but 

morphine-treated hypoxic cells showed a dose dependent decrease in VEGF expression.  

Interestingly, in all cell types, when the µ-receptor antagonist naloxone was applied 

simultaneously with morphine, the morphine-induced inhibition of VEGF expression was 

reversed and expression closely resembled the saline-treated hypoxic cell cultures.  Their 

study suggested that morphine interferes with VEGF expression in both hypoxic cardiac 

myocytes and hypoxic HUVECs, reducing the likelihood of endothelial cell survival in 

ischemic tissues due to decreases in angiogenesis.  
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  Roy et al (2003) analyzed the effect of morphine on serum VEGF increases 

during myocardial infarctions due to decreased oxygen tension and upregulation of the 

transcription factor hypoxia inducible factor-1 alpha (HIF-1a) in hypoxic tissues.  It was 

hypothesized that morphine administration may inhibit myocyte VEGF expression by 

inhibiting HIF-1a and/or ERK 1/2 MAP kinase signal transduction pathways leading to 

decreased endothelial cell proliferation and vessel sprouting.  To test this hypothesis, in 

vitro rat cardiac tissue and cultures of cardiac myocytes were placed in a hypoxic 

chamber and infused with one dose of either 100 ng/ml morphine or saline.  Results 

demonstrated morphine-induced inhibition of specific VEGF isotypes and HIF-1a 

expression and a significant decrease in the binding of HIF-1a to the VEGF activation 

promoter.  In addition, in vivo analysis of hypoxic rat cardiac tissue showed significantly 

decreased VEGF expression in the tissues surrounding the induced infarct, inhibited HIF-

1a expression in the same region and a decreased amount of phosphorylated (active) ERK 

1/2 when compared to total ERK concentrations.  This analysis by Roy et al (2003) 

reiterates the study by Balasubramanian et al (2001) as both demonstrate morphine’s 

ability to inhibit cardiac myocyte VEGF synthesis and interrupt specific angiogenic 

signal transduction pathways in hypoxic tissues.  When considering buprenorphine, a 

commonly used morphine derivative, as a post-operative analgesic therapy, possible 

alterations in mitogen production and subsequent decreases in endothelial cell 

proliferation need to be evaluated to ensure that proper tissue perfusion is attained. 

 In addition to studies strictly evaluating morphine’s effects on angiogenesis, Lam 

et al (2008) hypothesized that prolonged use of morphine not only impairs angiogenesis 
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but can prevent the mobilization of endothelial progenitor cells in adult vasculogenesis 

resulting in decreased wound healing.  Using a mouse dermal wound model, mice were 

subjected to excisional wounds and placed in either the intraperitoneal (IP) administered 

high-dose 20 mg/kg·day morphine or saline treatment groups.  Results after 14 days 

showed an increased number of circulating BM-EPCs in both treatment groups indicating 

that excisional wounds stimulated their release, but a significant decrease in the amount 

of circulating BM-EPCs in the morphine treated group was seen compared to control.  As 

a result, delayed wound healing in vivo and quantities of negatively charged toxic 

superoxide anion (O2
-) in the wound tract were significantly increased in the morphine 

treated mice.  This experiment yields evidence that high systemic doses of morphine 

negatively influence angiogenesis and endothelial progenitor cell distribution, leading to 

delayed wound healing and an increase in oxidative stress.  

With a large amount of research demonstrating the tendency for morphine to 

inhibit angiogenesis, vasculogenesis and subsequent new vessel formation, a study by 

Gupta et al (2002) showed that morphine actually stimulates angiogenesis by activating 

the MAP kinase ERK1/2 pathway for gene expression; a pathway normally stimulated by 

VEGF binding VEGFR-1 receptors on endothelial cells.  In neuronal cells, this MAP 

kinase ERK1/2 pathway is stimulated by morphine binding the specific µ3-opioid 

receptor, suggesting a similar increase in cellular proliferation could be induced if 

morphine bound a similar µ3-opioid receptor found on vascular endothelial cells (Stefano, 

1995).  Gupta et al used morphine-treated, saline-treated (control), and VEGF-treated 

groups of cultured human dermal microvascular endothelial cells (HDMECs), murine 
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Matrigel angiogenesis assays, and murine breast tumor xenografts to analyze differences 

in angiogenesis.  Results showed morphine increased HDMEC proliferation in culture 

comparable to cultured cells incubated in vascular endothelial growth factor (VEGF) 

alone.  In this mouse Matrigel study, morphine-only treated mice had increased 

endothelial tube formation and neovascular growth similar to VEGF-only treated mice, 

but at high concentrations the morphine treated Matrigel cultures showed significant 

endothelial cell cytotoxicity creating aggregates of dead cells with no endothelial tube 

formation or neovascularization.  In addition, results demonstrated morphine induced 

stimulation of the MAPK/ERK signaling pathway in HDMECs, prevented apoptosis by 

stimulating cell survival signal Akt and increased breast tumor xenograft volume by 

amplifying tumor neovascularization.  After analyzing these results, Gupta et al 

concluded that morphine stimulated the MAPK/ERK 1/2 signal transduction pathway in 

vascular endothelial cells normally targeted by endogenous VEGF, leading to enhanced 

cellular proliferation and increased angiogenic activity.  These findings conflict with 

results acquired by Roy et al (2003) and Balasubramanian et al (2001), which suggested 

morphine caused decreased angiogenesis by inhibition of signal transduction pathways 

including MAPK/ERK 1/2, leading to reduced VEGF production and endothelial cell 

proliferation in cultures of rat cardiac myocytes, murine heart endothelial cells (mEC), 

and HUVECs.  Although all three studies demonstrated these changes in vascularization 

by Western Blot analysis for MAPK/ERK 1/2 and Akt proteins and reporter assays for 

CD31 or VEGF, the inhibitory effects of morphine on VEGF production and 

angiogenesis could only be reversed with the addition of µ-receptor antagonist naloxone 
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in studies by Balasubramanian et al (2001) and Roy et al (2003).  In the study by Gupta et 

al (2002), the addition of naloxone did not inhibit MAPK/ERK 1/2 production and 

endothelial cell proliferation as would be expected if angiogenesis was stimulated by 

morphine alone suggesting that separate angiogenic signaling pathways could have been 

a contributing factor to the reported increases in neovascularization. 

 A subsequent study by Poonawala et al (2004) theorized that morphine stimulates 

the production of nitric oxide synthase (NOS) which creates the potent vasodilator nitric 

oxide (NO) and results in the repair of wounded tissue via tissue granulation, cellular 

proliferation and angiogenesis.  Poonawala et al used a topical application of morphine 

on a rat open-wound healing model to evaluate possible NO-signaling via cytokine-like 

stimulation.  Morphine and two other opioid derivatives, hydromorphone and fentanyl, 

were applied to ischemic excisional wounds twice daily.  Wounds were grossly observed 

and at the end of eight days wound scars were collected and evaluated for microvessel 

density, collagen formation, and nitric oxide synthase (NOS) concentrations.  Results 

indicated that fentanyl out of the three opioid creams had the highest increase in wound 

healing (66%) with hydromorphone second (55%) and morphine third (42%) compared 

to control (15%).  For all treatment groups, wound healing was dose dependent with 

higher concentrations resulting in significant increases in granulation tissue formation 

and accelerated wound closure.  Histologically, fentanyl treated wounds most closely 

resembled normal tissue and had significant increases in angiogenesis, cell proliferation 

and collagen content compared to controls.  Immunofluorescent staining also 

demonstrated an upregulation of VEGF receptor Flk-1 on the surface of endothelial cells 
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indicating a possible increase in cell proliferation due to augmented VEGF angiogenic 

signaling.  In addition, all three opioids resulted in increased concentrations of NOS in 

the dissected scar tissue suggesting nitric oxide formation significantly contributed to the 

accelerated wound healing.  Contrary to previous work indicating an inhibition of vessel 

formation by morphine, this study demonstrates that topically applied opioids can 

expedite wound healing by increasing endothelial cell proliferation, intracellular 

signaling and angiogenesis via increased VEGF receptors or nitric oxide signaling in a 

cytokine-like manner similar to VEGF.   

 With conflicting data regarding the effect of opioids on angiogenesis, 

vasculogenesis, and wound healing, alternative post-operative analgesics have to be 

considered to provide patient comfort and maintain tissue viability, especially in 

conditions resulting in cellular hypoxia and ischemia, such as organ transplantation.  

Common alternatives to buprenorphine, morphine, and other opioid derivatives are a 

group of medications referred to as non-steroidal anti-inflammatory drugs (NSAIDs).  

These include ibuprofen, naproxen and meloxicam.   

 

Meloxicam 

Meloxicam is an NSAID that exhibits potent analgesic and anti-inflammatory 

properties with minimal deleterious gastrointestinal and renal effects.  Chosen from an 

arranged drug design search of different tautomerizations and structural substitutions of 

the original oxicam chemical structure, meloxicam was created by adding a 5-methyl-2-

thiazolyl at N-1 and a hydroxyl to the 1,2-benzothiazine at C-4 (Amzoiu, 2010; 
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Engelhardt, 1995).  The addition of the methyl in the thiazolyl group created a third 

generation bioisosteric oxicam compound resulting in effective analgesia with quickly 

eliminated metabolites (Schmid, 1995a).  Studies have demonstrated efficient, safe pain 

amelioration with meloxicam administration (Engelhardt, 1995).  

 Well absorbed through oral, subcutaneous, and intravenous routes, meloxicam has 

an 89-99% bioavailability and binds strongly to plasma albumin, reaching a mean 

maximum plasma concentration within 2-5 hours (Schmid, 1995a).  Transported through 

the vasculature to sites of agonist receptor activation or cell damage, meloxicam binds 

preferentially to cyclooxygenase-2 (COX-2), a catalytic enzyme that ultimately oxidizes 

the cleaved membrane phospholipid (20:4ω6) arachidonic acid (AA) into the prostanoid 

precursor prostaglandin H2 (PGH2) (Engelhardt, 1996; Vane, 1971).  The resulting PGH2 

is the substrate for several prostaglandin synthases creating various isoforms of the 

prostanoid bioactive mediators thromboxane, prostacyclin, and prostaglandin to quickly 

propagate inflammatory responses in an autocrine and paracrine dependent manner 

(Boron & Boulpaep, 2008).  When meloxicam binds to COX-2, it inhibits the enzyme’s 

catalytic ability preventing the conversion of AA into PGH2 and the formation of 

inflammation-mediating prostanoids (Engelhardt, 1996; Vane, 1971).  With decreased 

inflammation signaling molecules, the pain and symptoms associated with acute and 

chronic inflammation are alleviated. 

 The preferential binding selectivity of meloxicam to COX-2 over homologous 

enzyme cyclooxygenase-1 (COX-1) is what differentiates meloxicam from many of its 

oxicam-derived NSAID precursors.  Prescribed to treat osteoarthritis, rheumatoid arthritis, 
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and often recommended for post-operative inflammation and analgesia, meloxicam 

steady-state plasma concentrations and extended pain relief can be reached within 5-6 

hours and maintained with once-daily dosing (Busch, 1998a; Busch, 1989b).  With an 

average elimination half-life of 15-20 hours, meloxicam undergoes extensive hepatic 

biotransformation into several inactive metabolites before being excreted (Schmid, 

1995a).  In the liver, the Cytochrome P450-2C9 enzyme metabolizes 60% of absorbed 

meloxicam by oxidation reaction into the primary metabolite 5’-carboxy meloxicam, 

while both Cytochrome P450-2C9 and Cytochrome P450-3A4 transform the remaining 

40% into three additional inactive metabolites (Chesne, 1998).  All four 

pharmacologically inert compounds are subsequently excreted in urine and feces (Schmid, 

1995a; Schmid, 1995b).   

In both murine and human reproductive systems, COX-2 enzymatic activity has 

been identified in ovarian blood vessels, follicular theca blood vessels, interstitial cells of 

the ovarian stroma, and the endometrium (Quintana, 2008).  In humans, immunostaining 

of ovarian tissue samples identified intense staining of COX-2 enzymatic activity co-

localized with VEGF expression on the outer surface epithelium of ovarian blood vessels, 

and several studies have observed increases in both COX-2 activity and VEGF in luteal 

phase ovary during the menstrual cycle (Ferrara, 1998; Li, 1994; Stavreus-Evers, 2005).   

In a study by Xin et al (2007), one of the products of COX-2 prostanoid 

production, prostaglandin E2 (PGE2), has been shown to stimulate angiogenesis in the 

endometrium and ovarian follicles by stimulating VEGF production.  Prostaglandin E2 

(PGE2) has also been shown to simultaneously inhibit vascular endothelial cell apoptosis 
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via activation of the Bcl-2 oncogene.  Using ovarian tumor inoculated nude mice, 

meloxicam was administered to inhibit endogenous VEGF and COX-2 activity and 

subsequent PGE2 production to evaluate their angiogenic effects in vivo.  Results 

demonstrated the inhibition of both PGE2 and VEGF via inactivation of COX-2 

significantly reduced tumor size, decreased microvessel density, and increased apoptosis 

within the ovarian cancer growth site.  It was hypothesized by these researchers that the 

reduced formation of PGE2 due to the inhibition of COX-2 activity by meloxicam led to a 

decrease in anti-apoptotic proteins such as Bcl-2.  These findings corroborated earlier 

studies by Kendall et al (1996) that demonstrated an overexpression of COX-2 enzyme 

resulted in increased production of pro-angiogenic factors including VEGF.  In addition, 

Howe et al (2005) performed studies with COX-2 null (-/-) mice that demonstrated 

decreases in VEGF, ligand ang-1 and ang-2, and VEGF receptor Flk-1.  In COX-2 (-/-) 

mice, these decreases in multiple pro-angiogenic mitogens produced significantly 

decreased microvessel size and density in genetically induced mammary tumors 

compared to wildtype (wt) mouse tumors.  This study reinforces results by Xin et al 

(2007) that showed exogenous inhibition of COX-2 by manually administered specific 

COX-2 inhibitors also reduces microvessel density and VEGF production in vivo. 

To evaluate a possible pathway for the NSAID induced decrease in angiogenesis, 

a study by Jones et al (1999) inoculated human microvascular endothelial cells 

(HMVECs) and rat aortic endothelial cell Matrigel mesh with non-selective COX-1/2 and 

selective COX-2 inhibitors.  The resulting reduction of formed vascular structures in the 

Matrigel mesh after administration of both the selective and the non-selective COX 
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inhibitor indicated a significant decrease in angiogenesis.  In addition, both types of 

NSAIDs inhibited bFGF and VEGF induced MAP kinase ERK 1/2 activity and ERK2 

translocation into the nucleus, both activities being necessary for in vivo and in vitro 

angiogenesis.  Interestingly, exogenously added PGE2 and prostacyclin only resulted in a 

partial reversal of the angiogenic inhibition caused by co-culturing the cells with NSAIDs.  

This study provided evidence that prostaglandins generated in endothelial cells by COX-

2 are involved in the regulation of angiogenesis but act in conjunction with other factors.  

These findings resemble those found by Schmassmann et al (1998) which demonstrated a 

decreased PGE2 production in areas of gastric ulcerations in rats that were given a 

selective COX-2 inhibitor, resulting in decreased angiogenesis and delayed gastric wound 

healing.  

It is important to take into consideration the possibility of anti-angiogenic side 

effects when considering selective COX-2 inhibitors such as meloxicam for use as post-

operative analgesia since recent studies have demonstrated their direct interference with 

neovascularization by preventing mitogenic signaling.  In a study by Leahy et al (2002) 

time-release pellets containing pro-angiogenic signal bFGF were implanted into the 

corneal pocket of rats, leading to an augmentation of local angiogenesis.  When a COX-2 

specific inhibitor was implanted simultaneously, results indicated a decrease in 

angiogenesis, decreased localized PGE2, enhanced cellular apoptosis, and decreased 

endothelial cell proliferation, suggesting that COX-2 stimulated prostaglandin production 

is necessary even in the presence of elevated vascular mitogen bFGF.  In a related study, 

Leahy et al (2002) applied the same selective COX-2 inhibitor to nude mice that had 
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received colon cancer cell xenografts and found increased tumor cell apoptosis and 

decreased endothelial cell proliferation, indicating an inhibition of angiogenesis leading 

to decreased vascular perfusion of the xenograft tissue.    

 In a study by Efstathiou et al (2005) using murine endometrium allografts, the 

effects of selective COX-2 inhibitors on surgically induced endometriosis were evaluated. 

After autotransplanting 2 mm sections of endometrium into the abdominal cavities of 

mice, post-operative injections of either saline (control) or the NSAID celecoxib, a COX-

2 specific inhibitor, were given.  Results demonstrated well-established large, fluid-filled 

cystic lesions where transplanted tissue was applied indicating endometriosis was 

successfully induced in animals receiving saline, and reduced or eliminated lesions and 

cysts where the transplanted tissue was applied in the mice receiving celecoxib indicating 

a significant decrease in the establishment of the endometrial allografts and subsequent 

endometriosis.  When the NSAID treatment was removed, residual endometrial cells near 

the transplant area proceeded to cause lesions and cysts typical of endometriosis although 

the vessel density of the endometrial tissue below the endometrial allografts was not 

significantly different between the control group and celecoxib group of animals.  In 

addition, when NSAID treatment was initiated in a separate group of animals with 

already established endometriosis lesions via endometrial allograft, no significant 

reduction of cysts or lesions at the transplant site was observed.  This study suggests that 

angiogenic inhibition produced by the COX-2 specific NSAID celecoxib does not affect 

already established vascular pathways but inhibits endometrial blood vessel angiogenesis 

by decreasing COX-2 mediated prostaglandin production. 
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 The decrease in angiogenesis via selective COX-2 inhibitors such as meloxicam 

can be a remarkably potent supplement for the treatment of solid tumors and conditions 

such as endometriosis, but it can be debilitating for conditions that require sufficient 

vascularization necessary for tissue viability such as ulcer healing and transplantation.  

Although meloxicam offers comprehensive pain relief that ameliorates the discomfort of 

post-operative pain and inflammation, the repercussions of decreasing inflammatory 

prostaglandin production such as PGE2 could jeopardize the formation of sufficient 

microvasculature leading to inadequately perfused tissues and an increase in cell death.  

When considering the mode of action of selective COX-2 inhibitors such as meloxicam, 

the general research consensus indicates that meloxicam inhibits angiogenesis via the 

decreased production of important inflammatory prostaglandins.  This suggests that 

meloxicam and other COX-2 specific NSAIDs could decrease vessel formation in murine 

ovary allografts if given as a post-operative analgesic resulting in poor perfusion and cell 

death in the transplanted tissue.  Alternatively, conflicting results suggest that using 

buprenorphine or other µ-opioid agonists could either prevent or enhance sufficient 

neovascularization when given as a post-operative analgesic because morphine 

derivatives have been implicated in both the inhibition and enhancement of angiogenesis.  

Comparative studies analyzing the effects of post-operative analgesics meloxicam and 

buprenorphine on angiogenesis need to be considered to maximize subject comfort and 

still achieve successful vascularization after surgeries such as murine ovary 

allotransplantation.    
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Vessel identification and quantitation 

Research has shown that cellular hypoxia and inflammation will stimulate the 

release of endogenous mitogens VEGF, bFGF, and angiopoietins 1 & 2 from both the 

host bursa and grafted ovarian endothelial cells leading to angiogenesis (Dissen 1994; 

Van Eyck, 2010).  In response to this mitogenic cell signaling, pre-existing vessels will 

begin extracellular matrix degradation, endothelial cell proliferation, and increased 

branching as angiogenesis progresses (Connolly, 1989; Pepper, 1998).  To sufficiently 

quantify this progression, an endothelial cell surface antigen can be used to identify 

proliferating endothelial cells and newly formed microvessel networks.  The most widely 

used endothelial cell epitope is the cell-cell adhesion molecule platelet endothelial cell 

adhesion molecule-1 (PECAM-1) also known as cluster of differentiation 31 (CD31) 

(Vermeulen, 1996).  When compared to other cell surface antigens that only stain 

medium to large vessels such as VEGF receptor Flk-1, von Wildebrand factor or CD34, 

CD31 consistently displays a homogenously strong staining of all vessel sizes including 

microvessels and vessels undergoing active angiogenesis (Pusztaszeri, 2006; Wang, 

2008).  In addition, CD31 is found in large quantities on endothelial cell surfaces with 

concentrations at cell-cell junctions, further associating CD31 with its role in cell 

adhesion and migration during angiogenesis (DeLisser, 1997; Zocchi, 1996).  This cell 

surface antigen is ubiquitous on proliferating endothelial cells and is far less abundant on 

other types of circulating cells such as leukocytes and platelets (Albelda, 1991).  At times, 

tissue macrophages may be accidentally identified using the CD31 cell surface antigen, 

but the evaluation of cell morphology can be used to differentiate between cell types 



	  

	  26	  

(McKenney, 2001).  With minimal disadvantages, CD31 remains the best surface antigen 

to use for the identification of angiogenesis and anti-CD31 immunostaining has been 

published as the international standard for the assessment of microvessel density 

(Giatromanolaki, 1997; Vermeulen, 1996).   

 To visualize the CD31 endothelial cell surface antigen, anti-CD31 

immunohistochemical techniques can be used to attach a colored reporter label to an 

unlabeled anti-CD31 antibody bound to the CD31 epitope (Boenisch, 2001; Renshaw, 

2010).  A common type of clearly identifiable colored reporter label used with light 

microscopy is the red/brown chromogen 3, 3’ diaminobenzidine (DAB) (Boenisch, 2001; 

Renshaw, 2010).  Using this indirect immunohistochemical method to identify 

endothelial cells involved in angiogenesis reduces non-specific cell surface antigen 

staining and results in red/brown DAB reporter labeled layers of interlaced vascular 

endothelial cells outlining new capillary networks that are easily visible with a light 

microscope (Vandesande, 1988).   

The present study elucidates the effects of two types of analgesics on 

angiogenesis in murine ovary allografts by evaluating total number of vessels, individual 

vessel parameters such as branch number and length, percent vessel density, and vessel 

location to determine which class of analgesics would provide adequate pain relief with 

minimal inhibition of the new vessel formation necessary for successful ovarian 

transplantation.  As described above, the analgesics chosen for evaluation in this study 

include meloxicam, a non-steroidal anti-inflammatory selective COX-2 inhibitor and the 

opioid derivative buprenorphine, a potent µ-receptor agonist.  It is hypothesized that the 
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total number of superficial vessels, vessel elements, and percent vessel density indicative 

of angiogenesis will show alterations after post-operative administration of both 

meloxicam and buprenorphine compared to saline controls.  When considering the 

ovarian location that would most likely have the highest vascularized area, the short-

range paracrine activity of mitogens such as VEGF released from hypoxic vascular 

endothelial cells at the ovary surface suggest that tissue analysis at a depth of 

approximately 36 µm will encompass the highest number of vessels across treatment 

groups while still remaining decreased when compared to saline controls.  Although these 

hypotheses are manifested from the results of several previous studies evaluating the 

effects of opioid and NSAID analgesics in various animal models, cell culture types, and 

using assorted administration protocols, it would be beneficial to identify a particular 

analgesic as having no significant difference in angiogenesis from a saline control group 

(Balasubramanian, 2001; Efstathiou, 2005; Gupta, 2002; Jones, 1999; Lam, 2008).  These 

findings show that a specific analgesic could be used to provide ample relief from post-

operative discomfort while not impeding adequate angiogenesis to maintain tissue 

viability and ensure transplantation success.   
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MATERIALS AND METHODS 

 
Animals  

Seven-week old female CBA/J recipient mice were purchased from the Jackson 

Laboratory (Sacramento, CA) and housed five females per 29 x 22 x 14 cm cage in 

accordance with University Animal Care Guidelines with approval by the San José State 

University Institutional Animal Care and Use Committee (approval number 959).  Mice 

were housed under controlled conditions including a 12L:12D fluorescent 60 lm/W light 

cycle and ad libitum access to food (Purina Mouse Chow 5008: 23.5% protein, 6.5% fat; 

Purina Mills, St. Louis, MO) and water (deionized) until animals were approximately 11 

months of age (Cargill, 2003; Mason, 2009).  Two weeks before surgery dates, donor six-

week old CBA/J mice were purchased from Jackson Laboratory and housed in the same 

conditions.  To ensure proper estrus cycling, age matched male CBA/J mice were housed 

in adjacent cages and under similar conditions with two males per cage (Whitten, 1956).   

 

Ovarian transplantation and treatment administration 

 Using the surgical procedures previously reported by Cargill et al (2003), the 11-

month old recipient mice were anesthetized with an intraperitoneal (IP) 0.65 mg/kg body 

weight dose of sodium pentobarbital (Lundbeck Inc., Deerfield, IL).  The anesthetized 

recipient mice were shaved and antiseptically cleaned bilaterally at the dorsolateral 

abdomen and maintained on a heating pad (Conair, Shelton, CT) while ovariectomized 

(the bilateral surgical removal of ovaries).  Ovaries from eight-week old CBA/J donor 

mice were surgically placed into the empty ovarian bursa of the aged recipient female and 
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the bursa was closed with 7-0 Ethilon nylon filament (Ethicon, San Angelo, TX).  The 

abdominal wall was closed using 5-0 Ethicon chromic gut suture (Ethicon, San Angelo, 

TX) and wound clips (Becton Dickinson and Company, Sparks, MD) were applied to 

close the skin.  Wound clips were removed seven days post-operatively.  Animals were 

recovered individually in a monitored, heated environment until fully conscious and 

remained in individual 17 x 29 x 13.5 cm cages until the conclusion of the experiment 

(Cargill, 2003; Mason, 2009).  One recipient mouse died during surgery most likely due 

to a complication from the sodium pentobarbital anesthetic.  This mouse, in addition to a 

second mouse that died prematurely due to a seizure condition associated with the CBA/J 

mouse strain, were excluded from the study reducing the saline treatment group n to 

seven (Fuller, 1967).  

Pre-operatively, recipient mice were randomly assigned to one of three treatment 

groups: meloxicam, buprenorphine, or 0.9% saline control.  In the meloxicam treatment 

group, nine mice received intraperitoneal 5 mg/kg doses of meloxicam (Boehringer 

Ingelheim, St. Joseph, MO).  In the buprenorphine group, nine recipient mice received an 

intraperitoneal 0.05 mg/kg buprenorphine (Reckitt Benckiser, Hull, England) dose, and 

the remaining eight mice received intraperitoneal 0.9% saline (Vedco, Inc., St. Joseph, 

MO) doses in volumes similar to the buprenorphine and meloxicam.  Analgesia doses 

were chosen according to current veterinary recommendations.  Doses of meloxicam, 

buprenorphine, and saline were given every 12 hours for 48 hours post-operatively with 

the first dose given after ovary allotransplantation and before anesthetic recovery.   
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Fixation and preservation of ovaries 

 For non-biased double-blind analysis, all female recipient mice were randomly 

assigned new identification numbers and sacrificed by cervical dislocation between 73-78 

days post-transplantation.  One ovary from each mouse was placed into individual 

labeled 5 ml sterile glass vials (Wheaton Science Products, Millville, NJ) containing 4 ml 

of IHC Zinc fixative (BD Biosciences, San Diego, CA).  The vials were sealed with 

parafilm (Parafilm, Neenah, WI) to prevent leakage and kept at 4° C for 24 hours.  When 

incubation was complete new labeled 5 ml sterile glass vials were filled with 4 ml of 

sterile RNAse-free phosphate buffered saline (PBS) (Boston Bioproducts, Ashland, MA).  

Fine tissue forceps were used to transfer the ovary from the Zinc fixative to the 

corresponding vial of PBS, making sure to clean the forceps between each transfer.  New 

vial lids were secured with parafilm and placed in labeled cardboard shipping containers 

at 4° C.  The labeled ovary vial containers were then packed in ice packs lined styrofoam 

coolers and shipped overnight to IHC World LLC (Ellicott City, MD) for CD31 

immunohistochemistry antibody binding and 3.3’-Diaminobenzidine (DAB) chromogen 

staining.   

 

CD31 Immunohistochemistry procedure 

 Upon receipt of samples the 5 ml labeled vials were removed from 4° C and 

ovaries were transferred to room temperature RNAse-free phosphate buffered saline 

(PBS) in labeled 1.5 ml microcentrifuge tubes (Fisher Scientific, Fair Lawn, NJ).  The 

ovaries were washed in PBS-Tween20 (Fisher Scientific, Fair Lawn, NJ) for 30 minutes 
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followed by incubation in rabbit anti-mouse CD31 primary antibody (Thermo Scientific 

Pierce, Rockford, IL) diluted 1:100 using IHC-Tek Antibody Diluent (IHC World, 

Ellicott City, MD) on a shaker at room temperature for 16 hours.  Following the 

incubation, the ovaries were washed in PBS-Tween20 three times for 30 minutes each 

and incubated on a shaker in 3% Peroxidase Blocking Solution (Vector Laboratories, 

Burlingame, CA) for 20 minutes at room temperature.  After an additional three washes 

in PBS-Tween20 for 30 minutes each, the ovaries were incubated in biotinylated goat 

anti-rabbit secondary antibody (Thermo Scientific Pierce, Rockford, IL) diluted 1:500 

using IHC-Tek Antibody Diluent on a shaker at room temperature for 16 hours.  

Following this incubation, the ovaries were washed in PBS-Tween 20 three times for one 

hour each and incubated on a shaker in a 1:500 dilution of HRP-Streptavidin (Biolegend, 

San Diego, CA) for 16 hours at room temperature.  The ovaries were then washed in 

PBS-Tween 20 three times for one hour each and incubated in a 1:4 dilution of 3.3’-

Diaminobenzidine (DAB) Chromogen (Fisher Scientific, Fair Lawn, NJ) for 10-15 

minutes at room temperature, removing the ovaries when a uniform dark brown color had 

been achieved.  The ovaries were then rinsed with three washes of PBS-Tween 20 at 10 

minutes each and placed in new labeled 1.5 ml microcentrifuge tubes containing 1 ml of 

room temperature 50% glycerol (Hampton Research, Aliso Viejo, CA) in PBS.  The 

ovaries were incubated in the 50% glycerol/PBS solution for 10-20 minutes until the 

ovary sank to the bottom of the tube.  The ovaries were removed and placed in a 70% 

glycerol in PBS solution and the labeled tubes were stored at 4° C.  The ovaries were 
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shipped from IHC World LLC (Ellicott City, MD) overnight to San Jose State University 

at 4° C. 

 

Ovarian tissue embedding and slide processing 

 For the dehydration procedure before paraffin embedding, the ovaries were 

removed from the 4° C 70% glycerol suspension and washed three times with room 

temperature PBS for 10 minutes each.  After washing, ovaries were incubated in labeled 

1.5 ml microcentrifuge tubes containing room temperature 70% ethanol (Histo-chem, 

Jefferson, AR) twice for one hour each.  Ovaries were incubated in 80% ethanol for one 

hour, 95% ethanol (Histo-chem, Jefferson, AR) for one hour and three incubations of 

100% ethanol (Histo-chem, Jefferson, AR) at room temperature for 1.5 hours each.  

Ovaries were placed into labeled 1.5 ml microtubes containing 100% xylene (Sigma-

Aldrich, St. Louis, MO) at room temperature and incubated for three washes at 1.5 hours 

each.  The ovaries were placed into individual labeled 200 ml beakers containing 60° C 

Paraplast Plus (Covidien, Mansfield, MA) paraffin wax and incubated for two hours.  The 

paraffin embedded ovaries were then placed into labeled embedding cassettes (Fisher 

Scientific, Fair Lawn, NJ), covered in Paraplast plus paraffin wax and allowed to dry for 

six hours.  After a minimum of six hours of drying time, the paraffin embedded ovaries 

were placed into the Leica Histoslide 2000 sliding microtome (Leica Microsystems, 

Buffalo Grove, IL).  To collect the surface layers for vascularization analysis, 18 µm 

ovary sections were taken from the “top” of the wax embedded ovary and mounted onto 

labeled TruBond 380 microscope slides (TruBond, Woodstock, MD) with a fine tip 
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paintbrush.  Sectioning continued until the brown DAB staining was limited to the 

periphery of the remaining ovarian tissue indicating that the surface layers had been 

removed and the middle of the ovary had been reached.  The mid-sections of ovary were 

sectioned at 40 µm and placed on separate labeled Trubond microscope slides for use in 

another project.  The remaining 160-180 µm of embedded ovarian tissue was sliced into 

18 µm sections until all ovary tissue had been sectioned.  All 25 ovaries were sectioned, 

mounted onto labeled TruBond 380 microscope slides, air dried for 30 minutes then 

baked in a Precision Scientific 25EM oven (Thermo Electron Corporation, Marietta, 

Ohio) at 45° C for 16 hours. 

 To rehydrate ovary sections, the slides were immersed twice in 100% xylene for 

10 minutes each and then twice in 100% ethanol for 10 minutes each.  Slides were then 

immersed into 95% ethanol for five minutes, 70% ethanol for five minutes and 50% 

ethanol for five minutes.  The slides were rinsed with deionized water and placed in PBS 

for 10 minutes.  After rehydration, excess PBS was wicked from the surface and back of 

slide using Kimwipes (Kimberly-Clark, Irving, TX).  A 0.5” line of DPX Histology 

Mountant (Sigma-Aldrich, St. Louis, MO) was placed along the center of each 50 x 24 

mm rectangular glass coverslip (Fisher Scientific, Fair Lawn, NJ) and the Trubond slide 

was inverted and placed tissue section side down onto the mountant and a light pressure 

was applied to remove trapped air bubbles.  Excess mountant was removed from the sides 

and bottom of the slide.  The slide with attached coverslip was placed upright and 

allowed to dry in a covered tray for 24 hours. 

 



	  

	  34	  

Image capturing and processing 

 Pictures were taken of each tissue section using a Leica EC3 camera (Leica 

Microsystems, Buffalo Grove, IL) mounted on a Leica DMIL LED inverted microscope 

(Leica Microsystems, Buffalo Grove, IL).  Each 18 µm section was photographed at 50-

100x to capture the whole tissue cross-section and at 400x for identification of individual 

vessels, with each picture identified by group number, slide number, section number, and 

picture number.   

After all tissue sections were photographed, only images from the third 

(approximately 54 µm from the ovary surface), fifth (approximately 90 µm from the 

ovary surface), and seventh (approximately 126 µm from the ovary surface) sections 

from the “top” of each ovary and third, fifth, and seventh sections from the opposite 

“bottom” of the ovary were used for subsequent image analysis.  For these images, 

Graphic Converter software version 8.8.2 (Lemke Software, Peine, Germany) was used 

to crop each individual photo to prevent image overlap and remove shadow resulting in a 

section of tissue with dark vascular structures present (Figure 1A).  Each picture was then 

opened in Image J software 1.47v 32-bit (National Institute of Health, Bethesda, MD) and 

the “split channels” command was run.  This split the red, green and blue channels of the 

source image into three separate grayscale images with a white background, leaving the 

cell data in shades of dark grey.  Using the green image, the “invert” command was run, 

which created a new image consisting of a black background and transformed the cell 

data to shades of light grey (Figure 1B).  The image was saved and the auto threshold was 

set to “default dark.”  The upper and lower threshold ratio was then set to 123/255 which 
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best replicated the vascular structures from the original cropped images.  The image was 

converted to binary by setting the black background option to “false” and running the 

“make binary” command with the “thresholded remaining black” command, creating a 

binary image of blacks and whites (Figure 1C).  This binary image represented the 

overall number of vessels present and was used to evaluate vessel density by calculating 

the percentage of black pixels per image before the image was converted into the 

skeletonized representation.  The image was saved and the “skeletonize” command then 

the “invert” command were run, which provided a black background with a white 

vascular skeleton image (Figure 1D).   

Using Analyze Skeleton version 2.0.0 for Image J (Ignacio Arganda-Carreras, 

Madrid, Spain) the “analyze skeleton” command [2D/3D] was run with the “prune” 

setting at “none.”  The results were saved in an Excel version 14.3.9 (Microsoft, 

Redmond, WA) spreadsheet and “total number of vessels,” “total number of branches,” 

“total number of junctions,” “average number of branches per vessel,” “average number 

of junctions per vessel,” “mean branch length (µm),” “mean vessel length (µm),” and 

“percent vessel density” data for each individual image was input into separate Excel 

spreadsheets organized by ovary group number, section number, and image number 

(Doukas, 2006).  
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Statistical Analysis 

After each image had been analyzed, each individual image Excel spreadsheet 

was condensed into 25 spreadsheets organized by group number only.  Numerical data 

from whole ovary analysis categories “total number of vessels,” “total number of 

branches,” “total number of junctions,” and “percent vessel density” were condensed 

onto a single sheet and organized by group number.  On a separate sheet, individual 

A B 

C D 

Figure	  1.	  Section	  from	  saline-‐treated	  murine	  ovary	  90	  µm	  from	  the	  surface.	  
400x	  total	  magnification.	  	  A)	  DAB	  stained	  vascular	  structures	  at	  black	  arrows,	  
B)	  inverted	  black	  and	  white	  image,	  C)	  threshold	  image,	  D)	  final	  black-‐and-‐white	  
skeletonized	  image	  used	  to	  calculate	  total	  vessel	  number,	  total	  branch	  number,	  
and	  number	  of	  junctions.	  
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vessel numerical data from categories “average number of branches per vessel,” “average 

number of junctions per vessel,” “mean branch length (µm),” and “mean vessel length 

(µm)” were condensed and organized by group number.  For both ovary and individual 

vessel data spreadsheets, mean values were calculated by averaging all the values from 

each individual image in each group number in each category and all averages were 

placed into a separate Excel spreadsheet.  After all categories had been averaged and the 

data separated by group number, each group number was condensed further by treatment.  

One-way Analysis of Variance (ANOVA) and post-hoc Tukey’s Honest Significant 

Difference (HSD) statistical tests were used to compare the calculated means of each 

category between the saline treatment group (n= 7), the buprenorphine treatment group 

(n= 9), and the meloxicam treatment group (n= 9), and between the buprenorphine and 

meloxicam treatment groups.  All One-Way ANOVAs and Tukey’s HSD pairwise 

comparisons were performed using SPSS Statistics software (IBM, Armonk, NY). 

   Before each group was identified by treatment, each group number was also 

separated by ovary section number (third, fifth, or seventh) and the whole ovary analysis 

mean for “total number of vessels,” “total number of branches,” “total number of 

junctions,” “average number of branches per vessel,” “average number of junctions per 

vessel,” “mean branch length (µm),” “mean vessel length (µm),” and “percent vessel 

density” were calculated from each image value in each ovary section to compare means 

between the third, fifth, and seventh sections.  For each ovary, polar opposite third 

section “total number of vessels,” “total number of branches,” “total number of junctions,” 

“mean branch length (µm),” “mean vessel length (µm),” “average number of branches 
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per vessel,” “average number of junctions per vessel,” and “percent vessel density” 

means were averaged and One-Way ANOVA with post-hoc Tukey’s HSD statistical tests 

were used to compare means between treatment groups.  In two separate analyses, polar 

opposite fifth section and polar opposite seventh section “total number of vessels,” “total 

number of branches,” “total number of junctions,” “average number of branches per 

vessel,” “average number of junctions per vessel,” and “percent vessel density” means 

were compared between treatment groups using One-way ANOVAs and post-hoc 

Tukey’s HSD statistical tests.  Since fifth and seventh section means for “mean branch 

length (µm)” and “mean vessel length (µm)” did not show homogeneity of variance, 

results were analyzed using Kruskal-Wallis Analysis of Variance (Kruskal-Wallis 

ANOVA) non-parametric tests.  Kruskal-Wallis non-parametric comparisons were 

performed using SPSS Statistics software. 

For cross-sectional ovary area analysis, the area of both “top” and “bottom” third, 

fifth, and seventh ovary sections were calculated in millimeters squared (mm2).  For each 

ovary, polar opposite third section areas were averaged and compared between treatment 

groups using One-way ANOVAs and post-hoc Tukey’s HSD statistical tests.  One-way 

ANOVAs and post-hoc Tukey’s HSD tests were used to compare the mean area of each 

polar ovary fifth section between treatment groups and the mean area of each polar ovary 

seventh section between treatment groups.  
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RESULTS 
 

 
Superficial Vessel Analysis 
 
 Averaged “total number of vessels” in the third sections (approximately 54 µm 

from the ovary surface), fifth sections (approximately 90 µm from the ovary surface), and 

seventh sections (approximately 126 µm from the ovary surface) between the saline 

control group (M= 31029.9 vessels, n= 7, SD= 10495.4), the meloxicam treatment group 

(M= 43336.9 vessels, n= 9, SD= 9390.3), and the buprenorphine treatment group (M= 

25512.1 vessels, n= 9, SD= 6433.2) were compared using One-Way ANOVA.  Results 

show a significant difference between the saline treatment group and the meloxicam 

treatment group and between the meloxicam and buprenorphine treatment groups (F (2, 

22)= 9.642, p= 0.001, Figure 2).  Tukey’s HSD post-hoc pairwise comparisons also 

demonstrated a significant difference between the buprenorphine treatment group and the 

meloxicam treatment group (p= 0.001) and a significant difference between the saline 

treatment group and the meloxicam treatment group (p= 0.028).  Post-hoc comparisons 

determined no significant difference between the saline and buprenorphine treatment 

groups (p= 0.494).  Means and standard deviations (SD) for the total number of vessels 

per ovary for each treatment group are represented in Table 1. 
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Figure 2.  Mean number of vessels per ovary in each treatment group determined by 
averaging the means from all six sections within each treatment group (n= 25).  Saline 
(M= 31029.9 vessels, n= 7, SD= 10495.4), meloxicam (M= 43336.9 vessels, n= 9, SD= 
9390.3), buprenorphine (M= 25512.1 vessels, n= 9, SD= 6433.2).  Single asterisks [*] 
represent significance between saline and meloxicam (One-Way ANOVA F(2,22)= 9.642, 
p= 0.028).  Double asterisks [**] represent significance between meloxicam and 
buprenorphine (One-Way ANOVA p= 0.001).  Error bars represent 95% confidence 
intervals. 
 
 
 
 
 
 
 
 
Table 1.  Mean and Standard Deviations (SD) for total number of vessels per ovary, total 
number of vessel branches per ovary, total number of vessel junctions per ovary, and 
percent vessel density [skeletonized area (µm) /section area (µm) x 100] for each 
treatment.  Each mean represents an average of the ovary (n= 25) section means per 
treatment.  Saline (n= 7), meloxicam (n= 9), buprenorphine (n= 9).  Single asterisks [*] 
represent significance p= 0.02-0.05.  Double asterisks [**] represent significance p< 0.02. 
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The total number of vessel branches per ovary means between the saline treatment 

group (M= 158272.8 branches, n= 7, SD= 64472.9), the meloxicam treatment group (M= 

194854.8 branches, n= 9, SD= 36750.4), and the buprenorphine treatment group (M= 

128819.7 branches, n= 9, SD= 42821.2) were compared using One-Way ANOVA, 

means and standard deviation represented in Table 1.  Results show a significant 

difference between the three treatment groups (F(2,22)= 4.296, p= 0.027, Figure 3) with 

Tukey’s HSD post-hoc comparisons demonstrating the significance was specifically 

between the buprenorphine treatment group and the meloxicam treatment group (p= 

0.021).  No significant difference was observed between the saline treatment group and 

the buprenorphine treatment group (p= 0.454) and saline and meloxicam treatment 

groups (p= 0.303).   

 
 
 
 
 
 
 
 

Analgesic 
Treatment 

Total Number of 
Vessels per ovary 

Total Number of 
Vessel Branches per 

ovary 

Total Number of 
Vessel Junctions per 

ovary 

Percent 
Vessel 
Density  

 Mean  SD Mean SD Mean SD Mean SD 
         

Saline 31029.9* 10495.4 158272.8 64472.9 69504.9 29540.2 19.7 7.2 
         

Meloxicam 43336.9*;** 9390.3 194854.8* 36750.4 82408.4* 15892.5 17.1 4.9 
         
Buprenorphine 25512.1** 6433.2 128819.7* 42821.2 56447.7* 20448.8 18.8 4.7 
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Figure 3.  Mean number of vessel branches per treatment group determined by averaging 
the means from each ovary within each treatment group (n= 25). Saline (M= 158272.8 
branches, n= 7, SD= 64472.9), meloxicam (M= 194854.8 branches, n= 9, SD= 36750.4), 
buprenorphine (M= 128819.7 branches, n= 9, SD= 42821.2). Single asterisks [*] 
represent significance between meloxicam and buprenorphine (One-Way ANOVA 
F(2,22)= 4.296, p= 0.021). Error bars represent 95% confidence intervals. 

 
 
 
 
To compare the total number of junctions where the main vessel structure and 

extending branches connect, the total number of junctions per ovary were averaged and 

the saline treatment group (M= 69504.9 junctions, n= 7, SD= 29540.2), meloxicam 

treatment group (M= 82408.4 junctions, n= 9, SD= 15892.5), and buprenorphine (M= 

56447.7 junctions, n= 9, SD= 20448.8) were compared by One-Way ANOVA.  Results 

indicated no significant difference in the total number of junctions between the main 

vessel structure and extending branches across the three treatment groups (F(2,22)= 

3.147, p= 0.063, Figure 4).  Tukey’s HSD post-hoc comparisons between the 
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buprenorphine treatment group and the meloxicam treatment group showed a significant 

difference (p= 0.05), but pairwise comparisons between the saline treatment group and 

the buprenorphine treatment group (p= 0.477), and saline and meloxicam treatment 

groups (p= 0.485) were not significantly different.  The averaged means and the standard 

deviations of the total number of junctions per treatment group are represented in Table 1.   

 

 

Figure 4.  Mean number of main vessel and branch junctions per treatment group 
determined by averaging the means from each ovary within each treatment group (n= 25). 
Saline (M= 69504.9 junctions, n= 7, SD= 29540.2), meloxicam (M= 82408.4 junctions, 
n= 9, SD= 15892.5), buprenorphine (M= 56447.7 junctions, n= 9, SD= 20448.8). Single 
asterisks [*] represent significance between meloxicam and buprenorphine (One-Way 
ANOVA F(2,22)= 3.147, p= 0.05). Error bars represent 95% confidence intervals. 
 
 
 

There were no significant differences in percent vessel density when measured 

using the skeletonized area (µm) divided by the section area (µm) between the saline 

0	  

20000	  

40000	  

60000	  

80000	  

100000	  

120000	  

140000	  

160000	  

180000	  

Saline	   Meloxicam	   Buprenorphine	  

M
ea

n 
N

um
be

r 
of

 V
es

se
l J

un
ct

io
ns

 (O
va

ry
) 

Analgesic Treatment 

	  	  *	  

	  	  	  	  	  	  *	  



	  

	  44	  

treatment group (M= 19.71%, n= 7, SD= 7.2), the meloxicam treatment group (M= 

17.1%, n= 9, SD= 4.9), and the buprenorphine treatment group (M= 18.8%, n= 9, SD= 

4.7) when compared using a One-Way ANOVA (F(2, 22)= 0.453, p= 0.642, Figure 5). 

The averages of the means from each ovary separated by treatment group are represented 

in Table 1. 

 

 

 

Figure 5.  Mean percent vessel density [skeletonized area (µm)/ section area (µm) x100] 
per ovary determined by averaging the means from each ovary within each treatment 
group (n= 25).  Saline (M= 19.71%, n= 7, SD= 7.2), meloxicam (M= 17.1%, n= 9, SD= 
4.9), buprenorphine (M= 18.8%, n= 9, SD= 4.7). Error bars represent 95% confidence 
intervals. 
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Individual Section Analysis 
 

The means of the total number of vessels from the third, fifth, and seventh 18 µm 

representative sections taken from each ovary pole were averaged and means per 

treatment group were compared using One-Way ANOVA.  The averaged means and the 

standard deviations for the total number of vessels in each third, fifth, and seventh section 

per treatment group are represented in Table 2.  After averaging the total vessel means 

from each polar third section there was no significant difference between the saline 

treatment group (M= 4651.71 vessels, n= 7, SD= 2145.7), the meloxicam treatment 

group (M= 5541.56 vessels, n= 9, SD= 1410.7), and the buprenorphine treatment group 

(M= 4287.94 vessels, n= 9, SD= 2213) (One-Way ANOVA F(2,22)= 0.987, p= 0.389), 

Figure 6). 

 

Table 2.  Mean and Standard Deviations (SD) for the averaged total number of vessels 
per third (approximately 54 µm from the surface), fifth (approximately 90 µm from the 
surface), and seventh (approximately 126 µm from the surface) opposite polar sections 
per ovary.  Each mean represents an average of the means for each appropriate section 
per ovary (n= 25) per treatment. Saline (n= 7), meloxicam (n= 9), buprenorphine (n= 9). 
Single asterisks [*] represent significance p= 0.01-0.05. Double asterisks [**] represent 
significance p< 0.01. 
 

Treatment 
Total Number of 
Vessels per Third 
Section (54 µm) 

Total Number of 
Vessels per Fifth 
Section (90 µm) 

Total Number of 
Vessels per 

Seventh Section 
(126 µm) 

 Mean  SD Mean SD Mean SD 
       

Saline 4651.71 2145.7 5540.5* 2272.5 5400.35 1626.9 
       

Meloxicam 5541.56 1410.7 8357.39*;** 1903.5 7769.5** 2054.9 
       

Buprenorphine 4287.94 2213 4582.83** 1042 4470.5** 1893.9 
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Figure 6.  Mean total number of vessels determined by averaging the means from polar 
third sections (approximately 54 µm from the ovary surface) within each treatment group 
(n= 25). Saline (M= 4651.71 vessels, n= 7, SD= 2145.7), meloxicam (M= 5541.56 
vessels, n= 9, SD= 1410.7), buprenorphine (M= 4287.94 vessels, n= 9, SD= 2213). 
Error bars represent 95% confidence intervals. 
 
 
 
 

One-Way ANOVA was used to compare the averaged total number of vessels 

from each fifth ovary section from opposite poles per ovary between the saline treatment 

group (M= 5540.5 vessels, n= 7, SD= 2272.5), the meloxicam treatment group (M= 

8357.39 vessels, n= 9, SD= 1903.5), and the buprenorphine treatment group (M= 

4582.83 vessels, n= 9, SD= 1042).  Results showed there was a significant difference in 

the total number of vessels across the three treatment groups (F(2, 22)= 10.969, p< 0.001, 

Figure 7).  Post-hoc Tukey’s HSD showed a significant difference between the saline and 

meloxicam treatment groups (p= 0.012) and between the meloxicam and buprenorphine 
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treatment groups (p< 0.001).  No significant difference in the total number of vessels was 

shown between the saline and buprenorphine treatment groups’ fifth sections (p= 0.539).   

 

 

Figure 7.  Mean total number of vessels determined by averaging the means from polar 
fifth sections (approximately 90 µm from the ovary surface) within each treatment group 
(n= 25). Saline (M= 5540.5 vessels, n= 7, SD= 2272.5), meloxicam (M= 8357.39 
vessels, n= 9, SD= 1903.5), buprenorphine (M= 4582.83 vessels, n= 9, SD= 1042). 
Single asterisks [*] represent a significant difference between saline and meloxicam 
(One-Way ANOVA F(2,22)= 10.969, p= 0.012).  Double asterisks [**] represent a 
significant difference between meloxicam and buprenorphine (One-Way ANOVA p< 
0.001). Error bars represent 95% confidence intervals. 
 
 
 

One-Way ANOVA was used to compare the averaged total number of vessels 

from each seventh section per ovary between the saline treatment group (M= 5400.35 

vessels, n= 7, SD= 1626.9), the meloxicam treatment group (M= 7769.5 vessels, n= 9, 

SD= 2054.9), and the buprenorphine treatment group (M= 4470.5 vessels, n= 9, SD= 
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1893.9).  Results showed a significant difference in the total number of vessels between 

seventh sections across the three treatment groups (F(2, 22)= 7.241, p= 0.004, Figure 8).  

Tukey’s HSD post-hoc pairwise comparisons demonstrated a significant difference 

between the meloxicam and buprenorphine treatment groups (p= 0.003).  No significant 

difference in the total number of vessels was shown between the saline and 

buprenorphine treatment groups (p= 0.598) and saline and meloxicam treatment groups’ 

seventh sections (p= 0.052).  

 

 

 
 

Figure 8.  Mean total number of vessels determined by averaging the means from polar 
seventh sections (approximately 126 µm from the ovary surface) within each treatment 
group (n= 25). Saline (M= 5400.35 vessels, n= 7, SD= 1626.9), meloxicam (M= 7769.5 
vessels, n= 9, SD= 2054.9), buprenorphine (M= 4470.5 vessels, n= 9, SD= 1893.9). 
Asterisks [*] represent a significant difference between buprenorphine and meloxicam 
(One-Way ANOVA F(2,22)= 7.241, p= 0.004). Error bars represent 95% confidence 
intervals. 
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The mean total branch number from each polar third section was averaged and 

compared across treatment groups using One-Way ANOVA.  Results demonstrated no 

significant difference between the saline treatment group (M= 23357.7 branches, n= 7, 

SD= 11451), the meloxicam treatment group (M= 26330.1 branches, n= 9, SD= 6137.8), 

and the buprenorphine treatment group (M= 24035.1 branches, n= 9, SD= 13109.1) 

(F(2,22)= 0.267, p= 0.783).  The averaged means and the standard deviations for the total 

number of branches in each third, fifth, and seventh section per treatment group are 

represented in Table 3.  

 

Table 3.  Mean and Standard Deviations (SD) for the averaged total number of branches 
per third (approximately 54 µm from the surface), fifth (approximately 90 µm from the 
surface), and seventh (approximately 126 µm from the surface) opposite polar sections 
per ovary.  Each mean represents an average of the means for each appropriate section 
per ovary (n= 25) per treatment. Saline (n= 7), meloxicam (n= 9), buprenorphine (n= 9).  
Single asterisks [*] represent significance p= 0.001. Double asterisks [**] represent 
significance p< 0.001. 
 

Treatment 
Total Number of 

Branches per Third 
Section (54 µm) 

Total Number of 
Branches per Fifth 
Section (90 µm) 

Total Number of 
Branches per 

Seventh Section 
(126 µm) 

 Mean  SD Mean SD Mean SD 
       

Saline 23357.7 11451.0 29721.4* 2145.7 48790.0 18639.7 
       

Meloxicam 26330.1 6137.8 69727.2*;** 15058.1 51038.6 17543.9 
       

Buprenorphine 24035.1 13109.1 21727.9** 5122.3 44957.6 13346.5 
 

 

The total branch number means from the fifth 18 µm representative sections taken 

from each ovary pole were averaged and means were compared across treatment groups 
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using One-Way ANOVA.  Results indicated a significant difference between the saline 

treatment group (M= 29721.4 branches, n= 7, SD= 2145.7), the meloxicam treatment 

group (M= 69727.2 branches, n= 9, SD= 15058.1), and the buprenorphine treatment 

group (M= 21727.9 branches, n= 9, SD= 5122.3) (F(2,22)= 41.462, p= 0.001, Figure 9).  

Post-hoc Tukey’s HSD test showed a significant difference between the saline and 

meloxicam treatment groups (p= 0.001) and between the meloxicam and buprenorphine 

treatment groups (p< 0.001).  

 

 

Figure 9.  Mean total number of vessel branches determined by averaging the means 
from polar fifth sections (approximately 90 µm from the ovary surface) within each 
treatment group (n= 25). Saline (M= 29721.4 branches, n= 7, SD= 2145.7), meloxicam 
(M= 69727.2 branches, n= 9, SD= 15058.1), buprenorphine (M= 21727.9 branches, n= 9, 
SD= 5122.3). Single asterisks [*] represent a significant difference between saline and 
meloxicam (One-Way ANOVA F(2,22)= 41.462, p= 0.001).  Double asterisks [**] 
represent a significant difference between meloxicam and buprenorphine (One-Way 
ANOVA p< 0.001). Error bars represent 95% confidence intervals. 
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The mean total branch number from each polar seventh section was averaged and 

no significant difference between the saline treatment group (M= 48790.0 branches, n= 7, 

SD= 18639.7), the meloxicam treatment group (M= 51038.6 branches, n= 9, SD= 

17543.9), and the buprenorphine treatment group (M= 44957.6 branches, n= 9, SD= 

13346.5) (One-Way ANOVA F(2,22)= 0.200, p= 0.387) was demonstrated.   

The total number of junctions where the main vessel structure and extending 

branches connect from the third, fifth, and seventh polar opposite sections were averaged 

and means per treatment group were compared using One-Way ANOVA.  The averaged 

means and the standard deviations for the total number of junctions in each third, fifth, 

and seventh section per treatment group are represented in Table 4.  There was no 

significant difference when mean third sections were compared between the saline, 

meloxicam and buprenorphine treatment groups (One-Way ANOVA F(2,22)= 0.291, p= 

0.827).  Results indicated no significant difference when comparing mean fifth ovary 

section total number of junctions means across treatment groups (One-Way ANOVA 

F(2,22)= 9.12, p= 0.371).  Results comparing mean seventh polar ovary sections across 

treatment groups demonstrated no significant results (One-Way ANOVA F(2,22)= 4.623, 

p= 0.771). 
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Table 4.  Mean and Standard Deviations (SD) for the average total number of junctions 
per vessel per treatment group.  Each mean represents an average of the means for each 
ovary (n= 25) per treatment. Saline (n= 7), meloxicam (n= 9), buprenorphine (n= 9). 
 

Treatment 
Total Number of 

Junctions per Third 
Section (54 µm) 

Total Number of 
Junctions per Fifth 
Section (90 µm) 

Total Number of 
Junctions per 

Seventh Section 
(126 µm) 

 Mean  SD Mean SD Mean SD 
       

Saline 10239.3 5153.1 15204.6 5994.1 22924.3 4096.9 
       

Meloxicam 11263.5 2752.9 18996.3 5744.2 29125.4 7560.2 
       

Buprenorphine 9920.8 5948.8 11351.0 3757.8 20104.6 4060.3 
 

 

 

 The percent vessel density means from the third, fifth, and seventh 18 µm 

representative sections taken from each ovary pole were averaged and means per 

treatment group were compared.  One-Way ANOVA was used to analyze the mean 

percent vessel density from each polar third section resulting in no significant difference 

between the saline treatment group (M= 19.86%, n= 7, SD= 9.34), the meloxicam 

treatment group (M= 20.28%, n= 9, SD= 5.12), and the buprenorphine treatment group 

(M= 21.79%, n= 9, SD= 7.59) (One-Way ANOVA F(2,22)= 0.158, p= 0.855).  One-

Way ANOVA was used to compare the percent vessel density mean between each fifth 

ovary section from opposite poles per ovary between the saline treatment group (M= 

21.61%, n= 7, SD= 7.51), the meloxicam treatment group (M= 32.74%, n= 9, SD= 

11.57), and the buprenorphine treatment group (M= 18.41%, n= 9, SD= 5.33).  Results 

showed a significant difference in the mean percent vessel density across the three 



	  

	  53	  

treatment groups (F(2, 22)= 6.738, p= 0.005, Figure 10).  Post-hoc Tukey’s HSD showed 

a significant difference between the saline and meloxicam treatment groups (p= 0.045) 

and between the meloxicam and buprenorphine treatment groups (p= 0.005).  Percent 

vessel density from each polar seventh section was also averaged.  Results demonstrated 

no significant difference between the saline treatment group (M= 28.54%, n= 7, SD= 

7.09), the meloxicam treatment group (M= 30.69%, n= 9, SD= 8.49), and the 

buprenorphine treatment group (M= 31.65%, n= 9, SD= 6.02) (One-Way ANOVA 

F(2,22)= 0.263, p= 0.108).  The averaged means and the standard deviations for the 

mean percent vessel density in each third, fifth, and seventh section per treatment group 

are represented in Table 5. 
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Figure 10.  Mean percent vessel density determined by averaging the means from polar 
fifth sections (approximately 90 µm from the ovary surface) within each treatment group 
(n= 25). Saline (M= 21.61%, n= 7, SD= 7.51), meloxicam (M= 32.74%, n= 9, SD= 
11.57), buprenorphine (M= 18.41%, n= 9, SD= 5.3). Single asterisks [*] represent a 
significant difference between saline and meloxicam (One-Way ANOVA F(2, 22)= 6.738, 
p= 0.005).  Double asterisks [**] represent a significant difference between meloxicam 
and buprenorphine (One-Way ANOVA p= 0.005). Error bars represent 95% confidence 
intervals. 
 
 
 
 
 
Table 5.  Mean and Standard Deviations (SD) for the percent vessel density [skeletonized 
area (µm) /section area (µm) x 100] per third, fifth, and seventh opposite polar sections 
per ovary.  Each mean represents an average of the means for each appropriate section 
per ovary (n= 25) per treatment. Saline (n= 7), meloxicam (n= 9), buprenorphine (n= 9). 
Single asterisks [*] represent significance p= 0.01-0.05. Double asterisks [**] represent 
significance p< 0.01. 
 

Treatment 
Third Section (54 µm) 

Percent Vessel 
Density 

Fifth Section (90 µm) 
Percent Vessel 

Density 

Seventh Section 
(126 µm) Percent 
Vessel Density 

 Mean  SD Mean SD Mean SD 
       

Saline 19.86 9.34 21.61* 7.51 28.54 7.09 
       

Meloxicam 20.28 5.12 32.74*;** 11.57 30.69 8.49 
       
Buprenorphine 21.79 7.59 18.41** 5.3 31.65    6.02 

 
 
 
 
Vessel Branch and Junction Analysis 
 
 The number of branches on each vessel per section were averaged and each 

individual section mean was averaged to obtain an average branches per vessel mean for 

each ovary.  Each ovary mean was averaged per treatment group and compared using a 

One-Way ANOVA.  Results showed there was no significant difference in the average 
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number of branches per vessel means between the saline treatment group (M= 5.541 

branches, n= 7, SD= 0.8842), the meloxicam treatment group (M= 4.913 branches, n= 9, 

SD= 0.6582), and the buprenorphine treatment group (M= 5.537 branches, n= 9, SD= 

0.9783) (One-Way ANOVA F(2, 22)= 1.566, p= 0.231, Figure 11).  Post-hoc Tukey’s 

HSD comparisons also did not show any significant differences between the treatment 

groups (p= 0.325, p= 1.000, p= 0.283).  The average number of branches per vessel 

means and standard deviations (SD) per treatment group are represented in Table 6.   

 

 

 

Figure 11.  Mean average number of branches per vessel determined by averaging the 
mean number of branches per vessel from each ovary within each treatment group (n= 
25). Saline (M= 5.541 branches, n= 7, SD= 0.8842), meloxicam (M= 4.913 branches, n= 
9, SD= 0.6582), buprenorphine (M= 5.537, n= 9, SD= 0.9783). Error bars represent 95% 
confidence intervals. 
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Table 6.  Mean and Standard Deviations (SD) for the average total number of branches 
per vessel per treatment group.  Each mean represents an average of the means for each 
ovary (n= 25) per treatment. Saline (n= 7), meloxicam (n= 9), buprenorphine (n= 9). 
 

Treatment Average Number of 
Branches per vessel 

Average Number of 
Junctions per vessel 

 Mean  SD Mean SD 
     

Saline 5.541 0.8842 2.491 0.4776 
     

Meloxicam 4.913 0.6582 2.134 0.3664 
     

Buprenorphine 5.537 0.9783 2.491 0.538 
 

 
 
 

The number of vessel and branch junction points for each vessel per section was 

averaged and each individual section mean was averaged to obtain an average number of 

junctions per vessel mean for each ovary.  Each ovary mean was averaged per treatment 

group and the means compared using a One-Way ANOVA.  Results showed there was no 

significant difference in the total number of junctions per vessel means between the 

saline treatment group (M= 2.491 junctions, n= 7, SD= 0.4776), the meloxicam 

treatment group (M= 2.134 junctions, n= 9, SD= 0.3664), and the buprenorphine 

treatment group (M= 2.491 junctions, n= 9, SD= 0.538) (One-Way ANOVA F(2, 22)= 

1.691, p= 0.207, Figure 12).  Post-hoc Tukey’s HSD pairwise comparisons also did not 

show any significant differences between the treatment groups (p= 0.301, p= 1.000, p= 

0.256).  The number of junctions per vessel means and standard deviations per treatment 

group are represented in Table 6.   
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Figure 12.  Mean average number of junctions per vessel determined by averaging the 
means from each ovary within each treatment group (n= 25). Saline (M= 2.491 junctions, 
n= 7, SD= 0.4776), meloxicam (M= 2.134 junctions, n= 9, SD= 0.3664), buprenorphine 
(M= 2.491 junctions, n= 9, SD= 0.538). Error bars represent 95% confidence intervals. 
 
 
 
 

All vessel lengths (µm) per ovary section image were counted and a mean vessel 

length per image was calculated.  Each image mean vessel length was averaged to find 

the mean vessel length per ovary per treatment group.  The average vessel length (µm) 

means and standard deviations per treatment group are represented in Table 7.  The 

average vessel length per treatment group resulted in an average vessel length of 1.973 

µm for the saline treatment group (n= 7, SD= 0.3004), 1.752 µm for the meloxicam 

treatment group (n= 9, SD= 0.5165), and 2.095 µm for the buprenorphine treatment 

group (n= 9, SD= 0.5282).  Results of a One-Way ANOVA comparing vessel lengths 
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(µm) across treatment groups showed no significant differences (F(2, 22)= 1.217, p= 

0.315, Figure 13).   

 

Table 7.  Means and Standard Deviations (SD) for the average vessel length (µm) per 
ovary, third, fifth and seventh sections averaged per treatment group.  Each mean 
represents an average of the means for each ovary (n= 25) per treatment. Saline (n= 7), 
meloxicam (n= 9), buprenorphine (n= 9).  Single asterisks [*] represent significance p= 
0.01-0.05.  
 

Treatment 
Average Vessel 
Length (µm) per 

Ovary 

Average Vessel 
Length (µm) per 

Third Section 

Average Vessel 
Length (µm) per 

Fifth Section 

Average Vessel 
Length (µm) per 
Seventh Section 

 Mean SD Mean SD Mean SD Mean  SD 
         

Saline 1.973 0.3004 2.101 1.117 2.1236* 0.1936 1.925 0.4923 
         

Meloxicam 1.752 0.5165 1.833 0.5511 3.4254* 1.1154 1.756 0.6102 
         

Buprenorphine 2.095 0.5282 2.362 0.6328 1.9908* 0.5834 2.063 0.6889 
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Figure 13. Mean vessel length (µm) per ovary per treatment determined by averaging the 
means from each ovary within each treatment group (n= 25). Saline (M= 1.973 µm, n= 7, 
SD= 0.3004), meloxicam (M= 1.752 µm, n= 9, SD= 0.5165), buprenorphine (M= 2.095 
µm, n= 9, SD= 0.5282). Error bars represent 95% confidence intervals. 
 

 

The mean vessel length (µm) per third, fifth, and seventh 18 µm sections were 

averaged and means per treatment group were compared.  The average vessel length 

(µm) means and standard deviations for third, fifth, and seventh ovary sections per 

treatment group are represented in Table 7.  A Kruskal-Wallis ANOVA was used for 

section mean vessel length (µm) comparisons since the data violated the assumptions of 

homogeneity of variance for a One-Way ANOVA.  No significant difference in the mean 

vessel length (µm) was shown when each polar third section mean was compared 

between treatment groups (Kruskal-Wallis ANOVA: F(2,22)= 1.059, p= 0.364).  When 

comparing the mean vessel length (µm) per fifth ovary section from opposite poles per 

ovary, Kruskal-Wallis ANOVA results indicated a significant difference in between the 

saline treatment group (n= 7, SD= 0.1936), the meloxicam treatment group (n= 9, SD= 

1.1156), and the buprenorphine treatment group (n= 9, SD= 1.991) (F(2, 22)= 8.424, p= 

0.015).  Mean vessel length (µm) from each polar seventh section was also compared 

across treatment groups with no significant results (Kruskal-Wallis ANOVA F(2,22)= 

5.143, p= 0.277).   

In addition, all branch lengths (µm) per ovary section image were counted and a 

mean branch length per image was calculated.  Each image mean branch length was 

averaged to find the mean branch length per ovary per treatment group.  The average 
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branch length (µm) means and standard deviations per treatment group are represented in 

Table 8.  The average of branch length (µm) per treatment group resulted in an average 

branch length of 0.431 µm in the saline treatment group (n= 7, SD= 0.0721), 0.4176 µm 

in the meloxicam treatment group (n= 9, SD= 0.1248), and 0.4433 µm in the 

buprenorphine treatment group (n= 9, SD= 0.0914).  One-Way ANOVA analysis 

comparing the average branch lengths between treatment groups did not show any 

significant differences across the three groups (F(2,22)= 0.147, p= 0.864, Figure 14.)  

 

 

Table 8.  Means and Standard Deviations (SD) for the average branch length (µm) per 
ovary, third, fifth, and seventh sections averaged per treatment group.  Each mean 
represents an average of the means for each ovary (n= 25) per treatment. Saline (n= 7), 
meloxicam (n= 9), buprenorphine (n= 9). 
 

Treatment 
Average Branch 
Length (µm) per 

Ovary 

Average Branch 
Length (µm) per 

Third Section 

Average Branch 
Length (µm) per 

Fifth Section 

Average Branch 
Length (µm) per 
Seventh Section 

 Mean SD Mean SD Mean SD Mean  SD 
         

Saline 0.4310 0.0721 0.4922 0.2006 0.4622 0.0653 0.4405 0.1138 
         

Meloxicam 0.4176 0.1248 0.4284 0.1392 0.4198 0.2621 0.4227 0.1456 
         

Buprenorphine 0.4433 0.0914 0.4837 0.0697 0.4732 0.1033 0.4650 0.1069 
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Figure 14. Mean branch length (µm) per ovary per treatment determined by averaging 
the means from each ovary within each treatment group (n= 25). Saline (M= .431 µm, 
n= 7, SD= 0.0721), meloxicam (M= 0.4176 µm, n= 9, SD= 0.1248), buprenorphine (M= 
0.4433 µm, n= 9, SD= 0.0914). Error bars represent 95% confidence intervals. 
 

 

 

Mean branch lengths (µm) per third, fifth, and seventh 18 µm sections were 

averaged and means per treatment group were compared using a Kruskal-Wallis ANOVA.  

The average branch length (µm) means and standard deviations per treatment group are 

represented in Table 8.  No significant difference in the mean vessel length (µm) was 

shown when each polar third section mean was compared between treatment groups 

(Kruskal-Wallis ANOVA: F(2,22)= 0.872, p= 0.183).  Mean branch length (µm) from 

each polar fifth section was compared across treatment groups with no significant results 

(Kruskal-Wallis ANOVA: F(2,22)= 5.143, p= 0.277) and the mean branch length (µm) 
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comparison of seventh section depths across treatment groups were not significant 

(Kruskal-Wallis ANOVA: F(2,22)= 9.33, p= 0.405).   

 

Ovary Area Analysis 

 There was no significant difference when the cross-sectional area of the 

individual third, fifth, and seventh 18 µm sections were averaged and compared across 

treatment groups using One-Way ANOVAs.  The average section area (mm2) means and 

standard deviations for third, fifth, and seventh ovary sections per treatment group are 

represented in Table 9.  The average third section cross-sectional area of the saline 

treatment group was 0.221 mm2 (n= 7, SD= 0.131), the meloxicam treatment group was 

0.219 mm2 (n= 9, SD= 0.113), and the buprenorphine group was 0.235 mm2 (n= 9, SD= 

0.162).  Results demonstrated no significant difference between third section cross-

sectional areas when compared between treatment groups (F(2,22)= 0.036, p= 0.965).  

The average fifth section cross-sectional area of the saline treatment group was 0.449 

mm2 (n= 7, SD= 0.165), the meloxicam treatment group was 0.599 mm2 (n= 9, SD= 

0.269), and the buprenorphine group was 0.471 mm2 (n= 9, SD= 0.206).  Results 

demonstrated no significant difference between fifth section cross-sectional areas across 

treatment groups (F(2,22)= 1.145, p= 0.337).  The average seventh section cross-

sectional area of the saline treatment group was 0.674 mm2 (n= 7, SD= 0.304), the 

meloxicam treatment group was 0.752 mm2 (n= 9, SD= 0.411), and the buprenorphine 

group was 0.645 mm2 (n= 9, SD= 0.253).  Results demonstrated no significant difference 

between seventh section cross-sectional areas across treatment groups (F(2,22)= 1.145, 
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p= 0.337).  In addition, the third, fifth, and seventh cross-sectional area means were 

averaged together to give a mean surface area per ovary.  One-Way ANOVA was used to 

compare ovary area means between the saline treatment group (M= 0.448 mm2, n= 7, 

SD= 0.141), the meloxicam treatment group (M= 0.445 mm2, n= 9, SD= 0.180), and the 

buprenorphine treatment group (M= 0.529 mm2, n= 9, SD= 0.207).  Results 

demonstrated no significant difference in mean ovary surface areas across treatment 

groups (One-Way ANOVA: F(2,22)= 0.608, p= 0.553, Figure 15).  The average ovary 

surface area (mm2) means and standard deviations per treatment group are represented in 

Table 9. 

 

 

Table 9.  Means and Standard Deviations (SD) for the average ovary surface area (mm2), 
average third section area (mm2), average fifth section area (mm2), and average seventh 
section area (mm2) averaged per treatment group.  Each mean represents an average of 
the means for each ovary (n= 25) per treatment. Saline (n= 7), meloxicam (n= 9), 
buprenorphine (n= 9). 
 

Treatment 
Average Ovary 

Surface Area (mm2) 
Average Third 
Section Area 

(mm2) 

Average Fifth 
Section Area 

(mm2) 

Average Seventh 
Section Area 

(mm2) 
 Mean SD Mean SD Mean SD Mean  SD 
         

Saline 0.448 0.141 0.221 0.131 0.449 0.165 0.674 0.304 
         

Meloxicam 0.445 0.180 0.219 0.113 0.599 0.269 0.752 0.411 
         

Buprenorphine 0.529 0.207 0.235 0.162 0.471 0.206 0.645 0.253 
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Figure 15. Mean ovary surface area (mm2) per ovary per treatment determined by 
averaging the means from each ovary within each treatment group (n= 25). Saline (M= 
0.448 mm2, n= 7, SD= 0.141), meloxicam (M= 0.445 mm2, n= 9, SD= 0.180), 
buprenorphine (M= 0.529 mm2, n= 9, SD= 0.207). Error bars represent 95% confidence 
intervals. 
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DISCUSSION 
 
 
 The results of the present study indicate a difference between the mean total 

number of vessels per ovary when comparing the saline treatment group to the 

meloxicam treatment group and between the meloxicam and buprenorphine treatment 

groups.  When comparing the mean total number of vessels, mean total branch number, 

and mean percent vessel density between each of the treatment groups by ovary section, a 

significant difference was found between the fifth (approximately 90 µm from the ovary 

surface) sections of the saline and meloxicam treatment groups and the meloxicam and 

buprenorphine treatment groups.  Between the seventh (approximately 126 µm from the 

ovary surface) sections, there was a significant difference in the mean total number of 

vessels between the meloxicam and buprenorphine treatment groups only.  

In addition, a significant difference was found when comparing the seventh section total 

number of branches and total number of junctions per ovary means between the 

meloxicam treatment group and the buprenorphine treatment group.  

 When using a murine model to evaluate angiogenesis following ovarian 

allotransplantation, the use of an analgesic such as meloxicam or buprenorphine is 

recommended to reduce deleterious post-operative complications caused by pain and 

inflammation.  Our results indicate that meloxicam would be the preferential analgesic 

for post-ovarian transplantation pain management due to the significant increase in total 

number of vessels present per ovary and in the total number of vessels present at a depth 

of 72-90 µm when compared to the saline treatment control group.  The significant 

number of vessels observed with post-operative meloxicam administration suggests that 



	  

	  66	  

an increased amount of angiogenesis occurred after ovary allotransplantation reducing the 

possibility of altered blood flow to the donor ovary and increasing chances of recovering 

normal estrus cyclicity while providing adequate analgesia.   

  This is the first known study to specifically evaluate the effects of analgesics 

such as buprenorphine and meloxicam on post-operative ovary allotransplantation 

angiogenesis in aged female mice; our results can be compared to previous research that 

examined the effects of these drug’s parent groups, morphine and COX-2 inhibitors, on 

angiogenesis in other tissue types.  When comparing the results of the present study with 

the aforementioned type of previous angiogenesis research, the significant findings are 

markedly different.   

 While the present study demonstrates no significant difference in the total number 

of vessels between the buprenorphine treatment group and the saline treatment control 

group, several studies looking at the effects of opioids on angiogenesis demonstrated 

significant contradicting increases and decreases in new vessel formation (Lam, 2008; 

Poonawala, 2005).  When comparing research methodologies, it is possible that 

differences in tissue staining, vessel analysis software, or drug dosage could have caused 

the variations in results.  For example, a study by Lam et al (2008) evaluating the effects 

of high-dose morphine on angiogenesis in mice showed a significant decrease in 

angiogenesis and delayed wound healing with the IP administration of a 20 mg/kg⋅day 

morphine dose given for 14 consecutive days compared to the IP administration of a 

similar dose of saline control for 14 days.  The morphine dosing guidelines chosen by 

Lam et al were based on previous mouse and rat models of morphine dependence and 
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demonstrated continual high morphine and morphine metabolite serum concentrations 

with 20 mg/kg⋅day dosing.  Comparatively, the present study administered the 

veterinarian recommended dose for adequate post-operative pain relief which consisted 

of a 0.05 mg/kg dose of buprenorphine every 12 hours for 48 consecutive hours resulting 

in a significant decrease in the number of vessels in the saline and buprenorphine 

treatment groups compared to the meloxicam treatment group.  In addition, both the 

present study and the study by Lam et al used CD31-antibody stained tissue sections for 

identification of vascularization for subsequent angiogenesis quantification.  Although 

identical CD31-antibody immunohistochemistry (IHC) was used in both studies, Lam et 

al employed a subcutaneous Matrigel (extracellular environment simulation) mesh to 

facilitate new microvessel formations instead of organ transplantation as was done 

presently.   

In a contradictory study by Poonawala et al (2005), high-dose morphine 

administration resulted in a significant increase in angiogenesis and reduction in healing 

time when administered topically to excisional and incisional wounds.  To identify 

angiogenesis, tissue samples used by Poonawala et al were fluorescently 4’-6’-diamino-

2-phenylindole (DAPI) stained and vessel quantitation was done using Adobe Photoshop 

software whereas the present study used a DAB stain and Image J software for 

vascularization analysis.  Differences in the accuracy of the software algorithms used for 

vessel identification could account for the decrease in vessel formation in the saline and 

buprenorphine groups compared to the meloxicam group seen in the present study 
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compared to the increase in angiogenesis after topical morphine treatment seen by 

Poonawala et al. 

The present results show a significant increase in angiogenesis in the meloxicam 

treatment group compared to saline control contradicting previous research that 

overwhelmingly demonstrated a statistically significant decrease in angiogenesis after 

treatment with specific COX-2 inhibitors (Howe, 2005; Jones, 1999; Schmassmann, 

1998; Xin, 2007).  It is possible that differences in drug dosage, type of tissue analyzed, 

and type of selective COX-2 inhibitor could be responsible for the dissimilarities in 

research results between studies.  For example, Leahy et al (2002) observed a significant 

decrease in angiogenesis after performing the same IHC CD31-antibody staining/DAB 

chromogen protocol for vessel identification as was done in the present study.  Although 

the method of vessel identification was similar, Leahy et al used celecoxib in a rat cornea 

model compared to meloxicam in a murine ovarian tissue transplant model as done 

presently.  The main difference between the selective COX- 2 inhibitor celecoxib and the 

selective COX-2 inhibitor meloxicam is the addition of a side-chain sulfonamide group.  

This allows celecoxib’s large molecular structure to inhibit enzymatic activity by strongly 

binding to the central active site on the COX-2 enzyme compared to the top of the active 

site where meloxicam binds causing full potency (Tmax) to be reached within 2 hours.  In 

addition, celecoxib is exceedingly bioavailable through oral routes with minimal 

gastrointestinal effects at high doses (Penning, 1997).  Although celecoxib may 

effectively ameliorate pain in patients with osteoarthritis, rheumatoid arthritis, and spinal 

fusion, the addition of the sulfonamide side-chain is more likely to cause systemic and 
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tissue reactions and increases risk of infarction.  When comparing animal models, the rat 

cornea model is used due to excellent visualization of new vessel formation but 

angiogenic and mitogenic stimulation via VEGF or bFGF are usually exogenously 

administered.  In the murine ovarian allotransplantation model, hypoxia and 

inflammation in the transplanted tissue stimulate an endogenous cascade of angiogenic 

factors such as VEGF, bFGF, COX-2, and PGE2 leading to rapid vessel formation.  With 

many factors acting in response to the ovary transplantation, dissimilarities in observed 

results between the present study and Leahy et al could emanate from the differences 

between endogenous versus exogenous angiogenesis stimulation.  In a completely in vitro 

study, Jones et al (1999) used rat aortic endothelial cells and HUVECs in a Matrigel mesh 

culture with the sulfonamide-containing selective COX-2 inhibitor NS-398 resulting in a 

statistically significant decrease in microvessel formation compared to the present in vivo 

study demonstrating an increase in new vessel formation in transplanted murine ovarian 

tissue.  In Jones et al (1999), the Matrigel mesh was used since it provides an 

environment that mimics a normal in vivo extracellular environment for cultured rat 

aortic endothelial cells or HUVECs which will subsequently form capillary-like web 

structures on the mesh by releasing endogenous angiogenesis stimulating growth factors 

such as VEGF and bFGF.  The secretion of these cellular mitogens on the mesh will 

allow the cultured cells to anastomose, creating a network of endothelial cells that 

represent normal endogenous angiogenic processes.  To observe alterations in 

angiogenesis using this model, 25 to 100 µM of the selective COX- inhibitor NS-398 was 

added to the cell culture Matrigel mesh and the formation of capillary structures was 
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photographed after incubation.  When compared to the present study, contradictions in 

observed results could be from the significantly different tissue model used between 

studies.  Although the Matrigel mesh extracellular environment provides excellent 

observation of capillary structure formation, the use of ovary transplantation in the 

present study exposes the transplanted ovarian tissue to hypoxia induced growth factor 

secretion, inflammatory cytokine cascade, and invading leukocytes which could have 

both acute and long-term angiogenic effects compared to the swift response of the rat 

aortic cells and HUVECs on the Matrigel mesh environment.  The mechanism of action 

differences between selective COX-2 inhibitors as well as differences between chosen 

tissue models could have influenced observed results between the increase in vessel 

formation in the meloxicam-treated mice in the present study and the decrease in 

angiogenesis in the NS-398 treated cell culture in Jones et al. 

In the normal female murine reproductive cycle, maturation of primordial follicles 

into Graafian follicles requires the formation of superficial vascular networks that 

surround the developing follicle in order to deliver necessary nutrients and remove 

metabolic wastes (Boron & Boulpaep, 2008).  Previous studies observed a significant 

decrease in angiogenesis after both morphine and meloxicam administration using aortic, 

intestinal, and umbilical vein cell cultures on Matrigel mesh.  Although these cell cultures 

are fantastic for studying cellular responses to hypoxia and inflammation, their 

representative tissues are not normally subjected to an upregulated prostaglandin 

production via COX-2 inflammation response and MAP kinase (MAPK) signaling that is 

ongoing in normal ovarian folliculogenesis (Kuwano, 2004).  COX-2 has been identified 
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on outer ovarian surface epithelium and studies have shown that increases in both COX-2 

activity and a product of COX-2 prostanoid production, prostaglandin E2 (PGE2), can 

increase angiogenesis in ovarian follicles by stimulating VEGF production in the luteal 

phase ovary during the menstrual cycle by signaling the MAPK pathway for angiogenesis 

at the transcription level (Ferrara, 1998; Li, 1994; Stavreus-Evers, 2005; Xin, 2007).  In 

addition to normal physiological COX-2 enzymatic activity, studies have shown that 

normal folliculogenesis can be considered an inflammatory event with increased 

production of pro-inflammatory cytokines such as interleukin-1β (IL-1β), a macrophage 

derived cytokine, that participates in follicular rupture and stimulates VEGF and 

interleukin-6 (IL-6) from ovarian stromal cells (Brannstrom, 1993; Lebovic, 2000).  The 

synthesis and expression of IL-1β and its receptor have been identified in human ovarian 

granulosa cells and increased IL-1β can induce ovulation in rat and rabbit ovaries in vivo 

(Brannstrom 1993; Peterson, 1993; Takehara, 1994).  In the present study, male mice 

were housed in adjacent cages to ensure proper estrous cycling (Whitten, 1956) while 

females housed together normally tend to have synchronized estrus cycles.  This suggests 

that the pre-operative levels of IL-1β, COX-2, PGE2, VEGF, and MAPK activated 

mitogenesis could have been at normal physiological levels before ovary 

allotransplantation and analgesia administration.  Due to the normal ongoing activity of 

these angiogenic factors, veterinary recommended pain management dosages for 

buprenorphine and meloxicam could fail to inhibit neovascularization and vascular bed 

remodeling in the newly transplanted ovaries. 
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 Post-transplantation, the normal inflammatory response could have increased 

physiological levels of COX-2, PGE2 production, and IL-1β, which in turn stimulated 

increased VEGF and ultimately MAP kinase signaling in multiple areas such as outer 

epidermis, abdominal wall musculature, ovarian bursa, donor ovary, and around the 

foreign suture material.  After the post-operative administration of meloxicam, selective 

COX-2 inhibition should have swiftly decreased the production of PGE2 and subsequent 

production of VEGF, ubiquitously reducing MAP kinase signaling and the production of 

secreted angiogenic factors leading to the inhibition of angiogenesis.  Contradictorily, our 

data demonstrated a significant increase in angiogenesis after post-operative treatment 

with meloxicam, suggesting the pro-angiogenic effects of other inflammatory cytokines 

such as IL-1β could have amplified the production of VEGF in the absence of COX-2 

activity.  In previous studies, IL-1β has been shown to rapidly stimulate angiogenesis in 

mouse corneas in vivo and in cell culture in vitro both independently and by enhancing 

COX-2 expression resulting in increased PGE2 production, stimulating VEGF and 

subsequent MAPK vascular endothelial cell mitogenesis (Kirtikara, 2000; Kuwano, 

2004).  Although some selective COX-2 inhibitors have been shown to inhibit IL-1β 

activation of VEGF, the possibility of elevated levels of COX-2, PGE2, IL-1β, and VEGF 

present in normal estrus cycling in addition to the standard post-operative inflammatory 

response elevation of the same factors may explain the significant increase in the 

meloxicam group vessel formation and no significant decrease in the buprenorphine 

group vessel formation if the veterinarian recommended meloxicam doses were 

insufficient to inhibit a significant amount of angiogenic signaling (Kuwano, 2004).  
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Compared to similar studies looking at selective COX-2 inhibition of angiogenesis, IP 

administered doses ranged from 20 mg/kg⋅day to 5 mg/kg⋅day while a 5 mg/kg dose was 

given twice daily to the animals in the present study.  Differences in administration time 

could also have altered inhibition of angiogenesis since Lam et al (2008) administered 

morphine regularly for 14 days compared with the 48 hours as done in the present study. 

Although the increase in cytokine IL-1β and subsequent VEGF stimulation or short 

duration of standard meloxicam post-operative dosing could explain the difference in 

results between the meloxicam and buprenorphine treatment groups, they fail to 

adequately explain the lack of elevated angiogenesis in the saline treatment group.  This 

result could be explained by evaluating the relationship between meloxicam induced 

COX-2 inhibition and the anterior pituitary secreted gonadotropins follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH).   

In animals with normal, physiologically attached ovaries, sex hormone regulation 

is controlled through secretion of the neurohormone gonadotropin-releasing hormone 

(GnRH) by the hypothalamus.  The secreted GnRH travels through the hypophyseal 

portal system and stimulates the gonadotrophs within the anterior pituitary gland to 

secrete FSH and LH into peripheral circulation.  Anterior pituitary released LH binds to 

thecal cells in the ovary, stimulating the production of androgens.  In granulosa cells, 

FSH binds and stimulates the estrogen synthetase conversion of androgens into estrogens 

during FSH-stimulated folliculogenesis.  Increased estrogens released into circulation 

from the maturing ovarian follicle inhibit additional secretion of GnRH through the long-

loop feedback mechanism of sex hormone regulation until estrogen levels begin to 
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decline.  During the murine ovary allotransplantation, the new ovary is placed into the 

host bursa without reattaching either the blood vessels of the inner mesothelium lining or 

the ovarian artery and ovarian vein at the hilum.  Removal of direct vascular 

communication with the ovary causes a reduction in delivered LH and FSH resulting in a 

decrease in the systemic circulating steroid hormone estrogen supplied by the ovary 

during the murine estrous cycle.  In response to diminishing circulating estrogen, GnRH 

stimulates the secretion of FSH and LH due to the removal of estrogen’s negative 

feedback.  In a previous study by Dissen et al (1994), rat ovaries were removed and 

autotransplanted adjacent to a jugular vein.  Within 48 hours, post-operative increases in 

both FSH and LH could be detected in response to decreasing estrogen levels.  In 

addition, ovarian VEGF and transforming growth factor β (TGF-β) mRNA levels 

increased within 24 hours.  Using FSH and LH antagonists, Dissen et al determined that 

angiogenic factors VEGF and TGF-β are upregulated when gonadotropin secretion is 

elevated.  In a separate study by Davis et al (1999), mice with a COX-2 null (-/-) 

mutation exhibited higher levels of pituitary FSH and LH when compared to wildtype 

(COX-2 +/+) mice.  When comparing Davis et al and Dissen et al with the present study, 

the increased number of vessels seen in the meloxicam treatment group may be due to 

elevated levels of gonadotropins associated with both COX-2 enzymatic activity 

inhibition and a post-operative ovary transplantation gonadotropin surge. 

While this is the first known study to look at the effects of post-operative 

meloxicam administration on vessel formation after ovary allotransplantation, our results 

indicating an increase in angiogenesis could also be a response to the aged state of the 
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recipient mice, restrictive or regulating effects of the murine ovarian bursa, or a possible 

cooperative response due to an unknown relationship between the ovary and meloxicam.  

Other factors that could have affected results include the smaller number of saline 

treatment control animals (n= 7) as compared to the buprenorphine treatment group (n= 

9) and the meloxicam treatment group (n= 9).  This inequality could have accounted for 

the lack of significant decrease in angiogenesis between saline and buprenorphine groups 

and the significant increase in angiogenesis between the meloxicam and the saline control 

group demonstrated in similar research (Balasubramanian, 2001; Lam, 2008; Roy, 2003).  

The large calculated confidence intervals also indicate a relatively small number of 

animals per treatment group which could have influenced the results due to an increase in 

Type 1 error.  Counting older vessels as new vessel formations or counting the same 

vessel twice could also have influenced the total number of vessels when comparing the 

meloxicam and buprenorphine treatment groups.  

 Several limitations could have impacted the results of the present study.  When 

looking at surface vascularization of a semi-transparent, round, three-dimensional tissue 

specimen such as an ovary, it can be difficult to differentiate between true surface vessel 

formations and previously established vessels relatively close to the surface.  For the 

present study, the ovaries were sectioned to evaluate surface vascularization by analyzing 

vessel formations from third, fifth, and seventh polar representative layers, but future 

studies might benefit from in vivo tissue perfusion of fluorescent or colored dye 

immediately before sacrifice to evaluate all superficial vessel formations and to visually 

confirm true surface vascularization from established vessel formations directly below 
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the surface that could falsely increase the number of counted vessels.  In the present study, 

an effort was made to correctly calculate the total number of vessels and all vessel 

components within each third, fifth, and seventh polar opposite ovary sections and 

computer software was employed to remove counting bias and process each image 

swiftly and uniformly as was done in previous studies (Chantrain, 2003; Doukas, 2006; 

Seaman, 2011; Vickerman, 2009).  In studies that did not use computer automated vessel 

analysis but also used CD31 cell surface antigen to identify tissue microvessels, other 

methods of vessel counting were utilized such as the Chalkley count or taking random 

“hotspot” counts (Fox, 1995; Vermeulen, 1996; Vermeulen, 2002).  Future studies could 

benefit from a computer automated count and a simultaneous Chalkley count comparison 

to confirm microvessel density analysis or a separate comparison using a different 

software program such as MetaMorph, VESGEN 2D, or Adobe Photoshop.  Additionally, 

several studies that used CD31 antibody to identify vascular endothelial cells used a 

hematoxylin or methyl green counterstain which could be helpful to confirm 

identification of CD31-antibody identified, DAB-stained vascular endothelial cells and 

should be considered for use in future studies looking at endothelial cell identification 

(Jennings, 2012; Li, 2005).   

 The effects of analgesia on post-operative transplantation angiogenesis can 

benefit from further evaluation and separate corroborative studies.  The results of the 

present study can be verified by performing comparable investigations that employ 

alternate vessel quantification methods and novel superficial vessel identification 

techniques while utilizing larger sample sizes.  Successful transplantation relies on 
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adequate angiogenesis for swift perfusion of new tissues while sufficient post-operative 

pain management can benefit the animal and research results by limiting discomfort.  

While the current study supports the use of meloxicam as a potent analgesic that would 

not negatively affect transplant success, further research and separate independent 

verification is warranted before adding meloxicam to future murine ovarian 

allotransplantation protocols.   
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