Document Type

Article

Publication Date

1-1-2013

Abstract

Interactive database exploration is a key task in information mining. However, users who lack SQL expertise or familiarity with the database schema face great difficulties in performing this task. To aid these users, we developed the QueRIE system for personalized query recommendations. QueRIE continuously monitors the user’s querying behavior and finds matching patterns in the system’s query log, in an attempt to identify previous users with similar information needs. Subsequently, QueRIE uses these “similar” users and their queries to recommend queries that the current user may find interesting. In this work we describe an instantiation of the QueRIE framework, where the active user’s session is represented by a set of query fragments. The recorded fragments are used to identify similar query fragments in the previously recorded sessions, which are in turn assembled in potentially interesting queries for the active user. We show through experimentation that the proposed method generates meaningful recommendations on real-life traces from the SkyServer database and propose a scalable design that enables the incremental update of similarities, making real-time computations on large amounts of data feasible. Finally, we compare this fragment-based instantiation with our previously proposed tuple-based instantiation discussing the advantages and disadvantages of each approach.

Comments

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The definitive version of this article may be found at IEEE Explore Digital Library. DOI: 10.1109/TKDE.2013.79

Share

COinS