Document Type

Article

Publication Date

1-1994

Abstract

Several authors have addressed the problem of designing good linear unequal error protection (LUEP) codes. However, very little is known about good nonbinary LUEP codes. We present a class of optimal nonbinary LUEP codes for two different sets of messages. By combining t-error-correcting ReedSolomon (RS) codes and shortened nonbinary Hamming codes, we obtain nonbinary LUEP codes that protect one set of messages against any t or fewer symbol errors and the remaining set of messages against any single symbol error. For t ≥ 2, we show that these codes are optimal in the sense of achieving the Hamming lower bound on the number of redundant symbols of a nonbinary LUEP code with the same parameters.

Comments

Published in IEEE Transactions on Information Theory.January 1994: 40 (1).

© 1994 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version is available at http://dx.doi.org/10.1109/18.272481.

At the time of publication Robert H. Morelos-Zaragoza was not yet affiliated with San Jose State University.

Share

COinS