Publication Date


Degree Type

Master's Project

Degree Name

Master of Science (MS)


Computer Science


We present extensive simulation and analysis on a traditional, simple, efficient dynamic hot potato routing algorithm on a multi-dimensional torus network. These simulations are performed under a more recent network model than previous, more limited studies, with dynamic (rather than batch) models, no flow-control, and extended high dimensional scenarios. We collect more comprehensive statistics on system performance, and empirically show that the system can recover from worst-case scenarios to quickly re-achieve its standard steady-state delivery rates, with expected delivery time for a packet of O(n), where n is the initial packet distance from its destination. Experiments also show that for our model, the constant multiplier hidden in the O() notation decreases with higher dimensions.