Publication Date

Spring 2018

Degree Type

Master's Project

Degree Name

Master of Science (MS)

Department

Computer Science

Comments

The online apparel retail market size in the United States is worth about seventy-two billion US dollars. Recommendation systems on retail websites generate a lot of this revenue. Thus, improving recommendation systems can increase their revenue. Traditional recommendations for clothes consisted of lexical methods. However, visual-based recommendations have gained popularity over the past few years. This involves processing a multitude of images using different image processing techniques. In order to handle such a vast quantity of images, deep neural networks have been used extensively. With the help of fast Graphics Processing Units, these networks provide results which are extremely accurate, within a small amount of time. However, there are still ways in which recommendations for clothes can be improved. We propose an event-based clothing recommendation system which uses object detection. We train a model to identify nine events/scenarios that a user might attend: White Wedding, Indian Wedding, Conference, Funeral, Red Carpet, Pool Party, Birthday, Graduation and Workout. We train another model to detect clothes out of fifty-three categories of clothes worn at the event. Object detection gives a mAP of 84.01. Nearest neighbors of the clothes detected are recommended to the user.

Available for download on Saturday, June 01, 2019

Share

COinS