Document Type

Article

Publication Date

April 2015

Abstract

The biology of modern Conidae (cone snails)—which includes the hyperdiverse genus Conus—has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework. Here, ultraviolet light is used to reveal and characterize the original shell coloration patterns of 28 species of cone snails from three Neogene coral reef-associated deposits from the Cibao Valley, northern Dominican Republic. These fossils come from the upper Miocene Cercado Fm. and lower Pliocene Gurabo Fm., and range in age from about 6.6-4.8 Ma. Comparison of the revealed coloration patterns with those of extant species allow the taxa to be assigned to three genera of cone snails (Profundiconus, Conasprella, and Conus) and at least nine subgenera. Thirteen members of these phylogenetically diverse reef faunas are described as new species. These include: Profundiconus? hennigi, Conasprella (Ximeniconus) ageri, Conus anningae, Conus lyelli, Conus (Atlanticonus?) franklinae, Conus (Stephanoconus) gouldi, Conus (Stephanoconus) bellacoensis, Conus (Ductoconus) cashi, Conus (Dauciconus) garrisoni, Conus (Dauciconus?) zambaensis, Conus (Spuriconus?) kaesleri, Conus (Spuriconus?) lombardii, and Conus (Lautoconus?) carlottae. Each of the three reef deposits contain a minimum of 14–16 cone snail species, levels of diversity that are similar to modern Indo-Pacific reef systems. Finally, most of the 28 species can be assigned to modern clades and thus have important implications for understanding the biogeographic and temporal histories of these clades in tropical America.

Comments

This article originally appeared in PLoS ONE in Volume 10, Issue 4 and can be found online at this link.

Included in

Geology Commons

Share

COinS