Document Type

Article

Publication Date

September 2016

Publication Title

Monthly Notices of the Royal Astronomical Society

Volume

461

Issue Number

3

First Page

2367

Last Page

2373

DOI

10.1093/mnras/stw1472

Keywords

gravitation, galaxies: elliptical and lenticular, cD, dark matter

Disciplines

Astrophysics and Astronomy | External Galaxies

Abstract

The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the baryonic and dynamical mass, which is usually interpreted as the presence of DM, follows a very tight mass discrepancy acceleration (MDA) relation. Its universality, and its tightness in spiral galaxies, poses a challenge for the DM interpretation and was used to argue in favour of MOdified Newtonian Dynamics (MOND). Here, we test whether or not this applies to early-type galaxies. We use the dynamical models of fast-rotator early-type galaxies by Cappellari et al. based on ATLAS3D and SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) data, which was the first homogenous study of this kind, reaching ∼4 Re, where DM begins to dominate the total mass budget. We find the early-type galaxies to follow an MDA relation similar to spiral galaxies, but systematically offset. Also, while the slopes of the mass density profiles inferred from galaxy dynamics show consistency with those expected from their stellar content assuming MOND, some profiles of individual galaxies show discrepancies.

Comments

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.This article is also available online at the following link: http://dx.doi.org/10.1093/mnras/stw1472

COinS