Document Type

Article

Publication Date

2017

Publication Title

The Astrophysical Journal

Volume

844

Issue Number

1

DOI

10.3847/1538-4357/aa7897

Keywords

galaxies: ISM, ISM: individual objects (NGC 4649, NGC 5846), X-rays: ISM

Disciplines

Astrophysics and Astronomy | External Galaxies

Abstract

We present results of a joint Chandra/XMM-Newton analysis of the early-type galaxies NGC 4649 and NGC 5846 aimed at investigating differences between mass profiles derived from X-ray data and those from optical data, to probe the state of the hot interstellar medium (ISM) in these galaxies. If the hot ISM is at a given radius in hydrostatic equilibrium (HE), the X-ray data can be used to measure the total enclosed mass of the galaxy. Differences from optically derived mass distributions therefore yield information about departures from HE in the hot halos. The X-ray mass profiles in different angular sectors of NGC 4649 are generally smooth with no significant azimuthal asymmetries within 12 kpc. Extrapolation of these profiles beyond this scale yields results consistent with the optical estimate. However, in the central region ( kpc) the X-ray data underpredict the enclosed mass, when compared with the optical mass profiles. Consistent with previous results, we estimate a nonthermal pressure component accounting for 30% of the gas pressure, likely linked to nuclear activity. In NGC 5846 the X-ray mass profiles show significant azimuthal asymmetries, especially in the NE direction. Comparison with optical mass profiles in this direction suggests significant departures from HE, consistent with bulk gas compression and decompression due to sloshing on ~15 kpc scales; this effect disappears in the NW direction, where the emission is smooth and extended. In this sector we find consistent X-ray and optical mass profiles, suggesting that the hot halo is not responding to strong nongravitational forces.

Comments

This article was originally published in The Astrophysical Journal, volume 844, issue 1. © 2017. The American Astronomical Society. All rights reserved. This article is also available online at the following link: https://doi.org/10.3847/1538-4357/aa7897

COinS