San Jose State University

SJSU ScholarWorks

Faculty Publications, Computer Science Computer Science

10-30-2016

Virtual values for taint and information flow analysis

Prakasam Kannan
San Jose State University

Thomas Austin
San Jose State University, thomas.austin@sjsu.edu

Mark Stamp
San Jose State University, mark.stamp@sjsu.edu

Tim Disney
Shape Security

Cormac Flanagan
University of California, Santa Cruz

Follow this and additional works at: https://scholarworks.sjsu.edu/computer_sci_pub

6‘ Part of the Information Security Commons

Recommended Citation

Prakasam Kannan, Thomas Austin, Mark Stamp, Tim Disney, and Cormac Flanagan. "Virtual values for
taint and information flow analysis" Workshop on Meta-Programming Techniques and Reflection (META
20176) (2016).

This Presentation is brought to you for free and open access by the Computer Science at SUSU ScholarWorks. It
has been accepted for inclusion in Faculty Publications, Computer Science by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/computer_sci_pub
https://scholarworks.sjsu.edu/computer_sci
https://scholarworks.sjsu.edu/computer_sci_pub?utm_source=scholarworks.sjsu.edu%2Fcomputer_sci_pub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fcomputer_sci_pub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Virtual Values for Taint and Information Flow Analysis

Prakasam Kannan
Thomas H. Austin
Mark Stamp

San José State University

kprakasam@gmail.com /
thomas.austin@sjsu.edu /
stamp@cs.sjsu.edu

Abstract

Security controls such as taint analysis and information flow
analysis can be powerful tools to protect against many com-
mon attacks. However, incorporating these controls into a
language such as JavaScript is challenging. Native imple-
mentations require the support of all JavaScript VMs. Code
rewriting requires developers to reason about the entire ab-
stract syntax of JavaScript.

In this paper, we demonstrate how virtual values may be
used to more easily integrate these security controls. Virtual
values provide hooks to alter the behavior of primitive oper-
ations, allowing programmers to create the desired security
controls in a more declarative fashion, facilitating more rapid
prototyping.

We demonstrate how virtual values may be encoded in
JavaScript using a combination of JavaScript object proxies
and the Sweet.js macro library, and use that implementation
to build taint and information flow controls into JavaScript.
Finally, we show some benchmark results to demonstrate the
overhead of this approach.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Security and Protection—Information
Flow Controls

Keywords virtual values, macros, proxies, taint analysis,
information flow analysis

1. Introduction

Taint analysis is a powerful mechanism for preventing code
injection attacks. By tracking the flow of untrusted informa-
tion, we can prevent its use in sensitive operations. For in-
stance, we might require that data entered into a web form
must be sanitized before it is used with eval or as part of a
SQL query. Information flow analysis is a stronger extension

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Meta’16 October 30, 2016, Amsterdam, Netherlands
Copyright © 2016 held by owner/author(s).

Tim Disney

Shape Security
tim.disney@gmail.com

Cormac Flanagan

University of California, Santa Cruz
cormac@ucsc.edu

of taint analysis that protects against data exfiltration, when
secret data is leaked to an unauthorized viewer.

Despite the power of these mechanisms, adoption has
been slow, in part because language designers must integrate
these controls into their runtime or their compilation process.

In this paper, we show how virtual values [4] can be
used by application developers to include taint or informa-
tion flow controls without requiring support from the under-
lying JavaScript VM. Virtual values allow the application
developer to change the behavior of primitive operations; us-
ing this mechanism, developers can instrument their code to
track the flow of either tainted or confidential data.

We integrate virtual values into JavaScript using the
Sweet.js macro library [14, 15] and JavaScript proxies [10].
JavaScript’s proxies allow for behavioral intercession for
objects, but do not offer the same support for primitive val-
ues. Sweet.js macros allow us to convert primitive values
into JavaScript proxies with the additional behavioral hooks
needed for virtual values. (Virtual values retain the hooks
needed for object proxies, since primitive values can behave
like objects).

While our results show a high overhead for virtual val-
ues used in this manner, our approach allows developers to
include useful additions to the language without relying on
support in the underlying VM. Techniques to optimize the
performance of metaprogramming such as the use of dis-
patch chains [26] could reduce this overhead. Additionally,
if virtual values are shown to be useful, they could be imple-
mented natively in the JavaScript VMs, which might further
improve their performance.

2. Virtual Values Using Sweet.js

JavaScript, as of the ES2015 standard [16], provides a pow-
erful metaprogramming feature called object proxies [10]
that allow intercession on all of the standard operations for
JavaScript objects. In typical use, a proxy wraps an object,
mediating access to that object and changing its behavior.
Traps are functions on a handler object that dictate the be-

http://creativecommons.org/licenses/by/4.0/

var

HO

vvalues = (function () {

var unproxyMap = new WeakMap ();

function ValueShell (value) {this.value = value;}

ValueShell .prototype .value0f = function () {
return this.value;

¥
var oldProxy = this.Proxy;
this.Proxy = function VProxy(value, handler, key) {
var valueShell = new ValueShell (value);
var val = (value == null || typeof value !== 'object') 7 valueShell : value;
var p = new oldProxy (val, handler)
unproxyMap .set (p, {
handler: handler,
key: key,
target: val
s
return p;
¥
function isVProxy (value) {
return value && typeof value === 'object' && unproxyMap .has (value);
¥

function unary(operator, operand) {
if (isVProxy (operand)) {
var target = unproxyMap.get (operand).target;
return unproxyMap .get (operand).handler .unary(target, operator, operand);
} else if (operator === "-") {
return -operand;
} /***x ADDITIONAL UNARY OPERATORS REDACTED FOR SPACE *x*x/
¥
function binary (operator, left, right) {
if (isVProxy (left)) {
var target = unproxyMap.get(left).target;
return unproxyMap .get(left).handler.left(target, operator, right);
} else if (isVProxy (right)) {
var target = unproxyMap.get(right).target;
return unproxyMap .get(right).handler.right (target, operator, left);
} else if (operator === "*x") {
return left * right;
} /***x ADDITIONAL BINARY OPERATORS REDACTED FOR SPACE *x*x*/

}
function assign(left, right, assignThunk) {
if (isVProxy (left) || isVProxy (right)) {
return unproxyMap .get(left).handler.assign(left, right, assignThunk);
} else {
return assignThunk ();
}
}

function test(cond, branchExit) {
if (isVProxy (cond)) {
return unproxyMap .get (cond).handler.test(cond, branchExit);

}
return cond;
}
this.unproxy = function(value, key) {
if (isVProxy (value) && unproxyMap.get(value).key === key)
return unproxyMap .get (value).handler;
return null;
1
return {
unary: unary,
binary: binary,
assign: assign,
test: test
3

Figure 1. Virtual Values Harness

havior of the proxy. A wide variety of traps exist [27], such
as for getting, setting, or deleting properties from an object.

While JavaScript Proxies are a powerful tool for introduc-
ing new behavior to JavaScript objects, they unfortunately
cannot extend the behavior of primitive values (e.g. num-
bers, strings, and booleans).

Virtual values [4] are a proposed extension to object
proxies that add support for primitive values to proxies by
adding additional traps. This extension includes five addi-
tional hooks:

* unary - for unary operations.

* left - for binary operations, where the left operand is a
virtual value.

* right - for binary operations, where the right operand is
a virtual value.

* test - for cases where a virtual value is used as part of a
condition.

* assign - for assignment operations involving virtual val-
ues.

Virtual values have not been added to JavaScript but they
can be added via code rewriting, which we do in this pa-
per by using Sweet.js [14, 15], a hygienic macro system for
JavaScript. Sweet.js allows us to rewrite the primitive opera-
tors in JavaScript (e.g. +, *, etc.) into the appropriate unary,
left, and right function calls. A harness invokes a trap if
an operand is a virtual value proxy, or performs the standard
JavaScript operation when the value is a primitive.

Figure 1 shows the harness code for creating virtual val-
ues. It decorates the Proxy object with support for primi-
tive values. The primitive value is wrapped in an instance of
the ValueShell object, which is then treated as a standard
proxy. A mapping of the proxies to their handlers is main-
tained, allowing the handler for an object to be retrieved via
the unproxy function. A key object is used to allow proxies
to recognize themselves.

Operators specify the behavior for the virtual values. If an
operand for a unary operator is a virtual value (determined
by the isVProxy function), then the original value and the
handler for the value are retrieved from unproxyMap. The
unary function from the handler is then applied to the target,
the operator, and the operand. Binary operators are handled
in a similar manner by the binary function, though the code
is a little more complex. If the left operand is a virtual value,
the left handler for that value is used. If the left operand is
a normal value and the right operand is a virtual value, then
the right trap of the right operand is invoked. Otherwise,
the normal binary operation is applied.

Sweet.js macros allow the default behavior for operators
to be overridden. Using Sweet.js macros, all operators are
rewritten to use virtual values instead. (If an operator is not
specified for a virtual value, using that operator would cause
program execution to crash. A possible improvement for this
API would be for the standard behavior to be used instead,

in a manner similar to the design of JavaScript proxies.) The
following code shows the macros for handling the unary
operators ! and -, and the binary operators * and /. In
the example below, “13” and “14” specify the precedence
of the operator and left indicates that an operator is left
associative. The template for the generated code is specified

by the #{ ... } syntax.

operator ! 14 { $op } => #{
vvalues.unary("!", $op)

}

operator - 14 { $op } => #{
vvalues .unary ("-", $op)

}

operator x 13 left { $left, $right } => #{
vvalues .binary ("*", $left, $right)

}

operator / 13 left { $left, $right } => #{

vvalues .binary ("/", $left, $right)

}

We include support for tracking program influences
through the test and assign hooks. While these hooks
are not needed for many use cases, we use it in Section 4
to track leaks from the control flow of a program, generally
known as implicit flows. We speculate that the same exten-
sion could be useful for encoding symbolic execution and
other more elaborate tools.

2.1 Performance overhead

In order to better understand the baseline for our system,
we modified the popular SunSpider JavaScript performance
benchmark [35] to include virtual values. We chose the
SunSpider benchmark, as it is focuses on a wide range of
JavaScript features from Date, String, and Regexp manipu-
lation to a wide variety of numerical, array-oriented, object-
oriented, and functional idioms. No other changes were done
to the benchmark, and the virtual values in these tests pass
through all operations without otherwise changing behav-
ior, allowing us to establish the baseline overhead of virtual
values alone.

These tests were run on a Mac Book Pro with one 2.6
GHz Intel Core i7 processor containing 4 cores, 16 GB of
RAM, and an Intel Iris Pro graphics processor with 1536
MB of memory. We used the Sweet.js compiler version
0.7.8 to translate version 1.02 of the SunSpider benchmark.
Three tests cases (3d/raytrace, crypto/aes, date/format-tofte)
were excluded from the testing since they contain minified
JavaScript that made modification difficult. The resulting
code was tested on Safari, Chrome, and Firefox.

Table 1 shows the results of our testing. In all cases,
virtual values introduce significant overhead. Interestingly,
though Safari performed best without Sweet.js, Chrome’s
results were best on the Sweet.js-compiled code.

Rewriting JavaScript operations into function calls comes
with a certain performance penalty. Despite the significant
overhead, it is not atypical for code-rewriting approaches [8,
9]. We are hopeful that future version of JavaScript might

one day support virtual values natively, eliminating the cost
of introducing virtual values.

For future work, we plan to augment the Sweet.js virtual
value compiler to identify expressions that do not involve
proxies during the parse phase and avoid the rewriting oper-
ations into function calls.

3. Taint Analysis

Taint analysis is a language feature that tracks and restricts
the flow of data through a program. Taint analysis is accom-
plished by programmers indicating which inputs should be
tracked and which outputs should not accept tainted values.
This prevents common programming mistakes such as fail-
ing to sanitize user input. Previous research has used taint
tracking to detect application vulnerabilities [29, 37], and it
is a built-in feature of languages such as Perl and Ruby.
While taint analysis is not currently available in JavaScript,

the browser is a rich setting for all number of potentially un-
safe inputs that could benefit from taint analysis. As one
example, we might wish to prevent a string taken from a
form element from being passed to eval. By tracking this
information, we can allow it to be used freely up until the
point where it might be used in an unsafe manner.

3.1 Taint Analysis API

Our JavaScript API for taint analysis consists of three func-
tions provided to the programmer: taint, isTainted, and
endorse. The taint function takes a value and taints it, the
isTainted function takes a value and returns true if the
value is tainted, and the endorse function removes the taint
from a value. The following code shows the use of this API:

var username =

taint ("Robert '); DROP TABLE Students;--");
var query = "select * from Students " +
"where username = '" + username + "'");

if (isTainted (query))
throw new Error ("Tainted query");

Note that a tainted value must be propagated through
primitive operations that create new values. In the above
example the concatenation of username with other strings
must result in query being tainted as well.

Leveraging object proxies and virtual values, the code
required to implement taint and isTainted is pleasingly
minimal. Figure 2 shows the required functions to introduce
taint analysis controls.

The taint function wraps a value inside a virtual value
where the unary, left, and right hooks propagate the
taint onto the result of the computation, performed by apply-
ing functions in the unaryOps and binaryOps arrays. The
unaryOps and binary0Ops objects map symbols to func-
tions performing the default behavior for the given operator.

The taintingKey used in the taint function allows the
isTainted function to detect when a value is tainted. It also
is used to retrieve the original, untainted value of a virtual
value using the endorse function.

// this object is used to identify proxies
// crated by the ~taint ~ function
var taintingKey = {};

function taint (originalValue) {
if (isTainted (originalValue)) {
return originalValue;
}
var p = new Proxy(originalValue, {
// Store the original untainted
// value for later.
originalValue: originalValue,
unary: function (target, op, operand) {
return taint (unaryOps [op](target));
},
left: function (target, op, right) {
return taint (binaryOps [op] (target,
right));
},
right: function (target, op, left) {
return taint (binaryOps [op] (left,
target));
¥
}, taintingKey);
return p;

}

function isTainted (x) {
// a value is tainted if it is a proxy
// created with the 'taintingKey'
if (unproxy(x, taintingKey)) {
return true;
}
return false;

}

function endorse (value) {
if (isTainted (value)) {
// pulls the value out of
// its tainting proxy
return unproxy (value,
taintingKey).originalValue;
}
return value;

}

Figure 2. Taint Analysis Functions

3.2 Performance Tests for Taint Tracking

While Table 1 shows the baseline overhead of virtual values,
we also wish to evaluate the overhead of leveraging virtual
values to implement security controls.

We use the validate-input test case in Sun Spider to
determine the additional overhead introduced by taint track-
ing. 4000 email addresses and zip codes are generated and
validated using regular expressions. We tainted a portion of
these email addresses and zip codes. Table 2 shows the re-
sults; while virtual values add significant performance over-
head, using them for taint analysis adds comparatively lit-
tle additional load. Despite an exponential increase in the
amount of tainted variables, the performance overhead in-
creases only slightly.

Test Safari Chrome Firefox
Base | Virtual Values Base | Virtual Values Base | Virtual Values
3d 10.0ms 73.3ms 18.0ms 75.5ms 17.0ms 80.9ms
cube 5.0ms 31.8ms 8.8ms 33.3ms 12.6ms 44 .2ms
morph 5.0ms 41.5ms 9.2ms 42.2ms 4.5ms 36.7ms
access 13.0ms 122.0ms 11.5ms 101.7ms 13.9ms 139.3ms
binary-trees 2.2ms 8.7ms 1.5ms 7.9ms 3.0ms 10.9ms
fannkuch 5.2ms 72.6ms 5.6ms 55.4ms 5.5ms 83.7ms
nbody 2.6ms 23.0ms 2.1ms 23.0ms 2.8ms 21.8ms
nsieve 3.0ms 17.7ms 2.3ms 15.4ms 2.6ms 22.9ms
bitops 9.1ms 159.1ms 18.9ms 126.5ms 7.7Tms 222.4ms
3bit-bits-in-byte 1.0ms 30.0ms 1.0ms 25.7ms 0.8ms 46.3ms
bits-in-byte 3.0ms 35.0ms 3.8ms 30.9ms 1.6ms 53.2ms
bitwise-and 2.0ms 28.5ms 11.1ms 25.5ms 2.2ms 43.7ms
nsieve-bits 3.1ms 65.6ms 3.0ms 44 4ms 3.1ms 79.2ms
controlflow 2.1ms 14.4ms 1.3ms 10.6ms 2.0ms 16.0ms
recursive 2.1ms 14.4ms 1.3ms 10.6ms 2.0ms 16.0ms
crypto 5.0ms 42.0ms 7.3ms 41.7ms 6.7ms 62.0ms
md5 2.4ms 21.0ms 3.6ms 20.3ms 3.7ms 30.6ms
shal 2.6ms 21.0ms 3.7ms 21.4ms 3.0ms 31.4ms
date 5.2ms 9.3ms 11.2ms 15.7ms 11.1ms 33.2ms
format-xparb 5.2ms 9.3ms 11.2ms 15.7ms 11.1ms 33.2ms
math 9.3ms 81.2ms 12.9ms 77.9ms 10.4ms 88.0ms
cordic 3.0ms 40.7ms 3.0ms 36.6ms 2.2ms 46.6ms
partial-sums 4.3ms 15.0ms 7.9ms 21.9ms 6.6ms 18.6ms
spectral-norm 2.0ms 25.5ms 2.0ms 19.4ms 1.6ms 22.8ms
regexp 5.7ms 5.3ms 5.5ms 6.2ms 6.6ms 7.9ms
dna 5.7ms 5.3ms 5.5ms 6.2ms 6.6ms 7.9ms
string 23.7ms 81.5ms 43.8ms 88.5ms 30.9ms 101.9ms
base64 4.3ms 22.2ms 4.2ms 19.2ms 5.7ms 28.8ms
fasta 6.1ms 25.1ms 11.4ms 22.7ms 6.0ms 25.1ms
tagcloud 8.9ms 19.5ms 22.3ms 30.2ms 13.2ms 30.6ms
validate-input 4.4ms 14.7ms 5.9ms 16.4ms 6.0ms 17.4ms
Total 83.1ms | 588.1ms || 130.4ms | 544.3ms || 142.3ms | 751.6ms

(7.1x slowdown) (4.2x slowdown) (5.3x slowdown)

Table 1. SunSpider Performance with Virtual Values

| Num. of Variables | Tainted Variables | Time |
4000 40 | 18.6ms
4000 80 | 19.1ms
4000 160 | 19.1ms
4000 320 | 19.2ms
4000 640 | 19.3ms
4000 1280 | 19.5ms

Table 2. Taint Performance Test Results

4. Information Flow Analysis

Information flow analysis extends taint analysis to handle
confidentiality concerns; that is, it is focused on protecting
secret information from being leaked, rather than preventing

code injection attacks. Early work on information flow anal-
ysis focused on static approaches, such as Denning’s strat-
egy of including an information flow certification compo-
nent in a compiler [11, 12], or information flow type sys-
tems [20, 38]. While these techniques have been studied
widely for statically typed languages, such as the Java-like
Jif language [22, 28] and FlowCaml [30], they seem less fit-
ting for dynamic languages. Dynamic information flow anal-
ysis for JavaScript in particular has been the source of sig-
nificant attention [7, 9, 13, 19, 23, 24, 32, 34].

In addition to the explicit flows of information handled in
taint analysis, with information flow analysis we must also
consider implicit flows, where an attacker learns information
through the control flow of the program. For a simple exam-

X = falsel? true”

Function £ (x) || Both strategies Naive NSU
y = true; y = true y = true y = true
z = true; z = true z = true z = true
if (x) - pc=H pc=H

y = false; — y = falsell stuck
if (y) pc=1L —

z = false; z = false —
return z; — —
Return Value: false true

Figure 3. A JavaScript function with implicit flows

ple, consider the following code with an implicit flow from
the secret variable sec to the public output:

var sec = secret (true);
var pub = false;
if (sec) {
pub = true;
¥

console.log (pub)

Although an attacker cannot observe sec, the public
value of pub reveals the value of sec, even though there
has been no direct assignment from sec to pub. Unlike taint
tracking, information flow analysis assumes that attackers
can control some portion of the code, and therefore can build
sophisticated implicit flows if they are not tracked correctly.

Implicit flows are surprisingly complex to handle cor-
rectly. Figure 4 shows an example to illustrate these chal-
lenges, adapted from a code example first discovered by
Fenton [17]. We review two strategies: the “naive” strategy
marks data as confidential, denoted by the superscript H for
“high”, whenever it is updated in a sensitive context; the no-
sensitive-upgrade strategy [1, 39], given in the N.SU col-
umn, instead terminates execution when confidential infor-
mation might be leaked.

If this function is called with a secret false value, de-
noted false, then both approaches handle execution in
the same manner. Since x is falseX, y remains true and
public. Therefore, z is updated to false in the second con-
ditional, and remains public.

If the function is instead called with true’?, the naive
approach tracks the sensitive influence in the first conditional
statement by setting the program counter to confidential
(pc = H), and tracks its influence by setting y to false’.
Therefore, no update to z is performed, and its value remains
false and public, thereby leaking one bit of data.

To prevent against this implicit leak, the NSU strategy
disallows updates to public references in a confidential con-
text. When y is updated, execution “gets stuck™ and termi-
nates the application. More permissive approaches exist for
dynamically handling these cases, such as the permissive-
upgrade strategy [2, 6], secure multi-execution [13, 21, 31],

let key = {};
let pcStack = [];
function secret(originalValue) {
if (isSecret (originalValue)) {
return originalValue;
}
var p = new Proxy(originalValue, {
originalValue: originalValue,
unary: function (target, op, operand) {
return secret (unaryOps [op] (target));
} b
left: function (target, op, right) {

return secret (binaryOps [op] (target, right));

} b
right: function (target, op, left) {
return secret (binaryOps [op](left, target));
¥
test: function (cond, branchExit) {
if (cond) {
pcStack.push(cond);
branchExit (() => {
pcStack .pop () ;
13
¥
return cond;
},
assign: function (left, right, assignThunk) {
if (pcStack.length > 0) {
throw new Error ("Implicit leak");
¥
assignThunk ();
¥
}, key);
return p;

}

function isSecret (x) {
return unproxy (x, key);

}

Figure 4. Information Flow Functions

and faceted values [5, 33]. We select the NSU approach for
illustrative purposes since it is easier to understand.

Using virtual values and Sweet.js macros, we can imple-
ment the NSU strategy within JavaScript. To detect implicit
flows, we need to maintain a program counter (pc) of influ-
ences on the current execution.

Our implementation in Figure 1 provides the appropriate
hooks to track the program counter. Tracking the pc is ac-
complished by extending the test handler (which traps an
if statement) with a branchExit registration parameter. The
branchExit parameter is a function that takes a callback to be
invoked once the if statement’s then branch has completed.

The extended test handler allows our implementation of
NSU (see Figure 4) to push and pop “influence” (represented
by a virtual value) onto a program counter stack.

To prevent implicit flows, the assign handler looks on the
program counter stack to see if it is inside of a high security
context; if so, it throws an error. To implement the test
handler, we use a Sweet.js macro to expand if statements
into the appropriate virtual values calls. Macros in Sweet.js

use the following form, where <pattern> gives the pattern
to match in the input program and <template> gives the
pattern of the generated code.

macro {
rule {
<pattern>
}=>A{
<template>
}
}

The macro for if statements shows how we can change
the behavior of control structures to track information flow.

macro if {
rule { ($cond ...) { $body ...} } => {
function exit() { } // by default no-op
if (vvalues.test($cond...,
cb => exit = cb)) {
$body
exit ();
}
}
}

We also need to modify how assignment behaves, which
we can do by using Sweet.js infix macros. Infix macros allow
us to match syntax before the distinguishing identifier.

macro = {
rule infix { $left | $right:expr }
vvalues .assign($left, $right, ()
$left = $right
B
¥

=>
=>

{
{

}

5. Related Work

The original paper on virtual values [4] gives the hooks nec-
essary to support primitive values in JavaScript. While it
only has a proof-of-concept implementation, many interest-
ing use cases are demonstrated. We extend that work with
additional features to support more advanced use cases, like
information flow analysis. Additionally, we show how vir-
tual values can be encoded into JavaScript through a combi-
nation of JavaScript proxies and Sweet.js macros.

JavaScript proxies [10] are closely related to virtual val-
ues. Proxies only support operations for objects, making
them ineffective for certain types of analysis.

Christophe et al. [8] develop Linvail for JavaScript, pro-
viding a general purpose framework for dynamic analysis in
JavaScript. This work also demonstrates how taint analysis
could be supported, and discusses the challenges of tracking
primitive values in JavaScript.

Rewriting code to ensure security guarantees has been
used in several domains. Maffeis and Taly [25] explore
the guarantees for these tools for JavaScript specifically.
Caja [18] uses a “cajoler” that rewrites code to follow the
object capabilities model, thereby preventing untrusted code
from accessing powerful libraries. Taly et al. [36] formalize
a subset of JavaScript and use it to analyze these code rewrit-
ing APIs. Chudnov and Naumann [9] rewrite JavaScript

code to provide information flow guarantees using the no-
sensitive-upgrade approach. The main benefit of our ap-
proach is that, once the correct virtual values hooks are
available, the security controls can be rewritten in a more
declarative approach, without needing to consider the com-
plete abstract syntax of JavaScript.

6. Conclusion and Future Work

In this paper, we have demonstrated how virtual values may
be implemented in JavaScript using proxies and Sweet.js
macros. We have further shown how taint tracking and infor-
mation flow analysis can be implemented using virtual val-
ues. By showing how these security controls can be imple-
mented within a language using various metaprogramming
techniques, we hope to accelerate adoption of security tools.

Sweet.js has recently gone through a major redesign. For
future work, we intend to extend our design to work with
the latest version of the library, and also to explore how
additional security mechanisms such as faceted values [3]
can be encoded through virtual values.

References

[1] T. H. Austin and C. Flanagan. Efficient purely-dynamic infor-
mation flow analysis. In Programming Languages and Anal-
ysis for Security, pages 113-124. ACM, 2009. ISBN 978-1-
60558-645-8.

[2] T. H. Austin and C. Flanagan. Permissive dynamic informa-
tion flow analysis. In Programming Languages and Analysis
for Security, pages 1-12. ACM, 2010.

[3] T. H. Austin and C. Flanagan. Multiple facets for dynamic
information flow. In Symposium on Principles of Program-
ming Languages (POPL), pages 165-178. ACM, 2012. ISBN
978-1-4503-1083-3.

[4] T. H. Austin, T. Disney, and C. Flanagan. Virtual values for
language extension. In Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
pages 921-938. ACM, 2011.

[5] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama.
Faceted execution of policy-agnostic programs. In Program-
ming Languages and Analysis for Security. ACM, 2013.

[6] A.Bichhawat, V. Rajani, D. Garg, and C. Hammer. Generaliz-
ing permissive-upgrade in dynamic information flow analysis.

In Programming Languages and Analysis for Security. ACM,
2014.

[7] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Informa-
tion flow control in webkit’s javascript bytecode. In Principles
of Security and Trust (POST), pages 159—-178. Springer, 2014.

[8] L. Christophe, E. G. Boix, W. D. Meuter, and C. D. Roover.
Linvail: A general-purpose platform for shadow execution of
javascript. In International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER), pages 260-270.
IEEE Computer Society, 2016.

[9] A. Chudnov and D. A. Naumann. Inlined information flow
monitoring for javascript. In Conference on Computer and
Communications Security (SIGSAC), pages 629-643. ACM,

2015. URL http://doi.acm.org/10.1145/2810103.
2813684.

[10] T. V. Cutsem and M. S. Miller. Proxies: Design principles
for robust object-oriented intercession APIs. In Dynamic
Languages Symposium (DLS). ACM, 2010.

[11] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236-243, 1976.

[12] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM, 20
(7):504-513, 1977.

[13] D. Devriese and F. Piessens. Noninterference through secure
multi-execution. In Symposium on Security and Privacy,
pages 109-124, Los Alamitos, CA, USA, 2010. IEEE.

[14] T. Disney. Sweet.js — sweeten your javascript. http://
sweetjs.org/. Accessed: August 2016.

[15] T. Disney, N. Faubion, D. Herman, and C. Flanagan. Sweeten
your javascript: hygienic macros for ES5. In Dynamic Lan-
guages Symposium (DLS), pages 35-44. ACM, 2014.

[16] ECMA International. Standard ECMA-262 - ECMAScript
2015 Language Specification. 6.0 edition, June 2015. URL
http://wuw.ecma-international.org/ecma-262/6.
0/ECMA-262. pdf.

[17] J. S. Fenton. Memoryless subsystems. The Computer Journal,
17(2):143-147, 1974.

[18] Google. Google’s Caja project. Accessed May 2016 from
https://developers. google.com/caja/.

[19] D. Hedin and A. Sabelfeld. Web application security using
jsflow. In 17th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2015,
Timisoara, Romania, September 21-24, 2015, pages 16-19.
IEEE, 2015.

[20] N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. In Symposium on Principles
of Programming Languages (POPL), pages 365-377. ACM,
1998.

[21] M. Jaskelioff and A. Russo. Secure multi-execution in haskell.
In Ershov Memorial Conference, pages 170-178. Springer,
2011.

[22] Jif. Jif homepage. http://www.cs.cornell.edu/jif/.

[23] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and
M. Franz. Information flow tracking meets just-in-time com-
pilation. Transactions on Architecture and Code Optimization

(TACO), 10(4):38, 2013.

[24] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and
M. Franz. Towards precise and efficient information flow
control in web browsers. In Trust and Trustworthy Computing
Conference. Springer, 2013.

[25] S. Maffeis and A. Taly. Language-based isolation of un-
trusted javascript. In Computer Security Foundations Work-
shop (CSFW), pages 77-91. IEEE, 2009.

[26] S. Marr, C. Seaton, and S. Ducasse. Zero-overhead metapro-
gramming: reflection and metaobject protocols fast and with-
out compromises. In Conference on Programming Language
Design and Implementation (PLDI), pages 545-554. ACM,
2015.

[27] Mozilla Developer Network. Proxy. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Proxy. Accessed: Au-
gust 2016.

[28] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Symposium on Principles of Programming Lan-
guages (POPL), pages 228-241. ACM, 1999.

[29] J. Newsome and D. X. Song. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits
on commodity software. In Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2005.

[30] E. Pottier and V. Simonet. Information flow inference for
ML. In Symposium on Principles of Programming Languages
(POPL), pages 319-330. ACM, 2002.

[31] W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-
grained, declassification-aware, and transparent. In Computer
Security Foundations Symposium (CSF). IEEE, 2013.

[32] J. F. Santos, T. Jensen, T. Rezk, and A. Schmitt. Hybrid
Typing of Secure Information Flow in a JavaScript-Like Lan-
guage. In Trustworthy Global Computing Symposium (TGC),
pages 63-78, 2015.

[33] T. Schmitz, D. Rhodes, T. H. Austin, K. Knowles, and
C. Flanagan. Faceted information flow in Haskell via control
and data monads. In Principles of Security and Trust (POST).
Springer, 2016.

[34] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman,
B. Karp, and D. Mazieres. Protecting users by confining
javascript with COWL. In Symposium on Operating Systems
Design and Implementation, OSDI ’ 14, Broomfield, CO, USA,
October 6-8, 2014., pages 131-146. USENIX Association,
2014.

[35] Sun Spider. 1.0.2 JavaScript benchmark. https://webkit.
org/perf/sunspider/sunspider.html. Accessed: April
2016.

[36] A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Na-
gra. Automated analysis of security-critical javascript apis. In
Symposium on Security and Privacy (S&P), pages 363-378.
IEEE Computer Society, 2011.

[37] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. TAJ: effective taint analysis of web applications. In Con-
ference on Programming Language Design and Implementa-
tion (PLDI), pages 87-97. ACM, 2009.

[38] D. Volpano, C. Irvine, and G. Smith. A sound type system for
secure flow analysis. Journal of Computer Security, 4(2-3):
167-187, 1996.

[39] S. A. Zdancewic. Programming languages for information
security. PhD thesis, Cornell University, 2002.

http://doi.acm.org/10.1145/2810103.2813684
http://doi.acm.org/10.1145/2810103.2813684
http://sweetjs.org/
http://sweetjs.org/
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
https://developers.google.com/caja/
http://www.cs.cornell.edu/jif/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html

	Virtual values for taint and information flow analysis
	Recommended Citation

	1 Introduction
	2 Virtual Values Using Sweet.js
	2.1 Performance overhead

	3 Taint Analysis
	3.1 Taint Analysis API
	3.2 Performance Tests for Taint Tracking

	4 Information Flow Analysis
	5 Related Work
	6 Conclusion and Future Work

