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and Their Trellis-Based Decoding Complexity
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Abstract—In this correspondence, constructions of generalized concate-
nated (GC) codes with good rates and distances are presented. Some of
the proposed GC codes have simpler trellis complexity than Euclidean
geometry (EG), Reed–Muller (RM), or Bose–Chaudhuri–Hocquenghem
(BCH) codes of approximately the same rates and minimum distances,
and in addition can be decoded with trellis-based multistage decoding up
to their minimum distances. Several codes of the same length, dimension,
and minimum distance as the best linear codes known are constructed.

Index Terms—Generalized concatenated codes, multistage decoding,
trellis complexity.

I. INTRODUCTION

The trellis structure of linear block codes was first introduced in
[1] and later studied in [2]. In [2] it is shown that every binary
linear (n; k) code has ann-section trellis diagram with at most
2min fk; n�kg states. Later on, the trellis structure of Reed–Muller
(RM) codes was analyzed in [3], where a minimal trellis construction
for linear block codes was presented. Since then, there has been
a considerable amount of research effort devoted to the study and
applications of the trellis structure of linear block codes.

A trellis diagram (or a trellis) for a linear block code with the
minimum number of states is said to be minimal. A minimal trellis is
unique up to graph isomorphism [3]–[5]. It has been shown [3]–[6]
that the state complexity of a minimal trellis for a linear block code
depends on the order of its code symbol positions. However, symbol
ordering does not affect the trellis state complexity of maximum-
distance-separable (MDS) codes. (This result will be particularly
useful in this correspondence, as many of the outer codes used in
the proposed concatenated constructions are MDS codes.)

Generalized concatenated (GC) codes were introduced by Zinoviev
[7] and by Blokh and Zyablov [8] in 1976, and form a powerful
family of error-correcting codes that can correct both random errors
and random bursts of errors. In addition, GC codes are a class of
multilevel codes that are amenable tomultistage decoding, which
provides a good tradeoff between error performance and decoding
complexity.
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In this correspondence, good GC codes are constructed. These
codes are good in the sense that they have lower trellis-based
decoding complexities compared with permuted Bose–Chaudhuri–
Hocquanghem (BCH), RM, and Euclidean geometry (EG) codes of
the same lengths, the same (or approximately the same) rates and
minimum distances, and that they can be decoded with trellis-based
multistage decoding up to their minimum distances. The decoding
complexity of a GC codeC is measured both by the maximum
number of states in ann-section trellis forC and by the number
of addition-equivalent operations required in a Viterbi decoder using
a minimal trellis forC.

II. M INIMAL TRELLISES AND STATE

COMPLEXITIES OF DECOMPOSABLE CODES

In this section, the connection between symbol orderings of linear
codes and reduced upper bounds on the state complexity of their trellis
diagrams is pointed out. A sufficient condition on the minimality of
the product of trellises is also presented. In a later section, it is shown
that if for each component code of a decomposable code there is an
optimal ordering, then the ordering is also optimal for the overall
code.

Throughout the correspondence,(n; k; d) is used to denote the
parameters of a linear block code of lengthn, dimensionk, and
minimum distanced. Let C be an(n; k; d) linear code over GF(q).
Suppose thatC is a decomposable code, defined, in terms of its
linear (n; ki; di) subcodesCi with 1 � i � M , by the following
conditions:

(S) C = C1 +C2 + � � �+CM
�
= fuuu1 +uuu2 + � � �+uuuM : uuui 2 Ci

with 1 � i � Mg.
(D) For uuui 2 Ci with 1 � i �M , uuu1 +uuu2 + � � �+uuuM = 0 (the

zero codeword) if and only ifuuu1 = uuu2 = � � � = uuuM = 0.

Then it follows from (S) and (D) that

k = k1 + k2 + � � �+ kM : (1)

Let T and Ti with 1 � i � M denote the minimal trellis
diagrams forC andCi, respectively. As defined in [10] and [11],
the direct product ofM trellis diagrams,T1; T2; � � � ; TM , denoted
T1 
 T2 
 � � � 
 TM , is a trellis diagram defined as follows: The
states in the product areM -tuples (s1; s2; � � � ; sM), where si is
a state of trellisTi, 1� i �M , and there exists a branch of label
` = `1� `2 � � � � � `M with initial state(s1; s2; � � � ; sM) and final
state(s0

1; s
0

2; � � � ; s
0

M) if, and only if, there is a branch of label`i
from statesi to states0

i in trellis Ti, i = 1; 2; � � � ; M .
Given a code symbol ordering for a codeC, there is a unique trellis

diagram (or trellis) with the minimum number of states forC, called
theminimal trellis diagram(or minimal trellis) forC. For1 � j � n

and1 � i � M , let sj(T ) andsj(Ti) denote the logarithms baseq
of the numbers of states ofT andTi just after thejth code symbol.
These numbers are known as thestate complexitiesof T andTi. Since
the product ofTi with 1 � i � M is a trellis forC, we have that

sj(T ) �

M

i=1

sj(Ti); for 1 � j � n: (2)

For a linear codeC of lengthn, let smax(T ) denote the maximum
number of states at any bit position of a minimaln-section trellisT
for C. The quantitysmax(T ) will be referred to as thestate complexity
of codeC. It follows from (2) and Wolf’s bound [2] that

smax(T )
�
= max

0�j�n
sj(T ) �

M

i=1

min(ki; n� ki): (3)

For several classes of codes such as RM codes or their subcodes
and repetition codes, and their dual codes, there are known code

symbol orderings [6], [9] which result in reduced upper bounds on
the state complexity of their trellis diagrams compared with Wolf’s
bound. If there is such a code amongCi with 1 � i � M , then
we can adopt the corresponding symbol ordering and evaluate the
state complexity of trellis diagram forC by applying upper bounds
which are independent of any symbol ordering of each remaining
component code.

Suppose that

C
j� =C

j�
1 + � � �+ C

j�
M (4)

C
j+ =C

j+
1 + � � �+ C

j+
M (5)

where

C
j�
i

�
= fuuu 2 C: u` = 0; 1 � ` � jg

and

C
j+
i

�
= fuuu 2 C: u` = 0; j < ` � ng

are thepast and future subcodes ofCi, 1 � i � M , respectively.
Then it follows from (4), (5), and property (D) that

k(Cj�) = k(Cj�
1 ) + � � �+ k(Cj�

M ) (6)

k(Cj+) = k(Cj+
1 ) + � � �+ k(Cj+

M ): (7)

Equations (6) and (7) imply that, under the assumptions (4) and (5)

sj(T ) =

M

i=1

sj(Ti) (8)

for any j with 1 � j � n.
A sufficient condition for (4) (or (5)) to hold is given by

(P) Foruuui 2 C
j�
i (or Cj+

i ) with 1 � i � M , uuu1 + uuu2 + � � � +
uuuM = 0, if and only if uuui = 0 for 1 � i � M .

Example 1: Suppose that for1 � M 0 � M , the supports [12]
of C1; C2; � � � ; CM are mutually disjoint (this property is called
“DS structure” in [13]). Letm(Ci) denote theeffective lengthof
Ci, i.e., the size of the support ofCi, 1 � i � M 0. If we use
a symbol ordering such that for1 � i � M 0, any codeword of
Ci has nonzero components only from the( i�1

h=1
m(Ch) + 1)th

to ( i

h=1
m(Ch))th symbol positions, then the logarithm of the

number of states at any symbol position of the minimal trellisT

for C = C1 + C2 + � � � + CM is upper-bounded by

smax(T ) = max
1�h�M

minfkh; m(Ch)� khg:

Note thatC satisfies the definition of direct-sum in [14].

III. CONSTRUCTIONS OFGENERALIZED CONCATENATED CODES

Suppose thatn is the product of two integersnI andnO greater
than one. For1 � i � M , let CIi be an(nI ; kIi) linear code over
GF(q) such that

(DI) for uuui 2 CIi with 1 � i �M , uuu1 + uuu2 + � � �+ uuuM = 0, if
and only if uuui = 0 for 1 � i � M .

Let �i be the minimum Hamming distance ofCIi + CIi+1 + � � � +
CIM . LetCOi be an(nO; kOi; dOi) linear code over GF(qk ) and
let C�

i denote the concatenated code over GF(q) with CIi as the
inner code andCOi as the outer code. Then code symbol positions
in C�

i are divided intonO consecutive sections of lengthnI in such
a way that each section of a codeword inC�

i is a codeword inCIi.
Let the generalized concatenated codeC be defined as

C
�
= C

�
1 + C

�
2 + � � �+ C

�
M : (9)
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Then, the condition (D) onC follows from the condition (DI). The
minimum Hamming distanced of C is lower-bounded [15] as

d � min
1�i�M

�idOi (10)

and a multistage decoding [15] up to the distance given by the
right-hand side of (10) is possible.

Let T (n ) andT (n )
i , with 1 � i � M , denote the minimalnO-

section trellis diagrams forC andC�i , respectively, for which each
section has lengthnI . Then the assumption (DI) guarantees that ifj
is a multiple ofnI then property (P) holds. Therefore, at each end
of a section,

sj(T
(n )) =

M

i=1

sj(T
(n )
i ): (11)

The above result means that, if there is a common optimal ordering
of sections that gives the smallest state complexity of annO-section
trellis diagram for each component codeC�

i , then the ordering of
sections is optimal for the whole codeC. See also [16, Theo-
rem 8.1].

A particular class of binary GC codes over GF(q) can be con-
structed as follows. An(nI ; k1; d1) code C1, over GF(q), is
partitioned into a chain ofM (nI ; ki; di) subcodesCi, i =
2; 3; � � � ; M + 1, such that

C1 � C2 � � � � � CM+1

where, for convenience, we defineCM+1
�
= f0g, anddM+1

�
= 1.

Let CIi = [Ci=Ci+1] denote an(nI ; kIi; �i) subcode ofCi, a set of
coset representatives ofCi+1 in Ci, of dimensionkIi = ki � ki+1,
and minimum Hamming distance�i � di. ThenC1 has the following
coset decomposition[3]:

C1 = CI1 + CI2 + � � �+ CIM : (12)

Let COi denote an(nO; kOi; dOi) codeCOi over GF(qk ), where

kIi = dim (Ci=Ci+1) = ki � ki+1; i = 1; 2; � � � ; M:

A GC codeC is constructed from (9) as a direct sum of concatenated
codes

C = CO1 �CI1 + CO2 �CI2 + � � �+ COM �CIM

whereCOi � CIi denotes a concatenated code withCOi as outer
code andCIi as inner code,1 � i � M . It was shown in [8] that
C is an(nOnI ; k; d) linear block code of dimension and minimum
Hamming distance

k =

M

i=1

kIikOi and d � min
1�i�M

f�idOig (13)

respectively. Note that equality holds in (13) whenCIi, 1 � i �M ,
contains the all-zero codeword, which is the case for all the codes
presented in this correspondence.

Example 2: In this example, the trellis structure of a simple binary
GC code is illustrated. LetnI = nO = 4, and consider the binary
codeCI = RM2; 2. ThenM = 3 andCI = CI1+CI2+CI3, where
CI1 = RM2; 2=RM2; 1 with generator matrixGI1 = (0001); CI2 =
RM2; 1=RM2; 0 with GI2 = 0101

0011 , andCI3 = RM2; 0 with GI3 =
(1111). Let CO1 be a binary(4; 1; 4) repetition code,CO2 be a
nonbinary (4; 3; 2) over GF(22), and CO3 be a binary(4; 4; 1)
universal code. ThenC = CO1 � CI1 + CO2 � CI2 + CO3 � CI3 is
a binary GC(16; 11; 4) code. The four-section trellis diagrams of
codesCOj �CIj; j = 1; 2; 3 are shown in Fig. 1 where GF(22) =
f0; 1; �; �2g, with �2 = 1+ �. In the subtrellis for Fig. 1(b), each
element in the binary vector spacef0; 1g2, isometric to GF(22), is

(a)

(b)

(c)

Fig. 1. Component subtrellises for a binary GC(16; 11;4) code. (a)
CO1 � CI1. (b) CO2 � CI2. (c) CO3 � CI3.

Fig. 2. A four-section trellis for the binary GC(16; 11; 4) code.

mapped onto a codeword inCI2. As a result, the following four-
bit vector representation of GF(22) is obtained:0 = 0000; 1 =

0011; � = 0101; and�2 = 0110.
The corresponding four-section diagram of the binary GC

(16; 11; 4) code is shown in Fig. 2. It consists of two parallel
and identical, up to branch labeling, subtrellises. Each subtrellis is
in turn isometric, up to parallel branches, to the subtrellis of code
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CO2 � CI2. Also, each set of parallel branches has labels

f(b0b1b2b3); (b0b1b2b3) + (1111)g = f(b0b1b2b3); (b0b1b2b3)g:

The two parallel subtrellises have branch labels that differ by(0001),
i.e., if (b0b1b2b3) is the label of a brance in the upper subtrellis, the
(b0b1b2b3) + (0001) = (b0b1b2b3) is the label of a branch in the
lower subtrellis.

Let s(T (n )
i ) denote the logarithm baseq of the maximum number

of states of a minimalnO-section trellis for theith-level concatenated
codeCOi �CIi, 1 � i �M , and lets(T (n )) denote the logarithm
baseq of the maximum number of states of annO-section trellis for
the overall GC code. Then it follows from (11) and Wolf’s bound
[2] that

s(T (n )) =

M

i=1

s(T
(n )
i ) �

M

i=1

kIi minfkOi; nO � kOig: (14)

In the following, several good binary GC codes are constructed that
can be decoded using a multistage decoding up to their minimum
distances. The GC construction is best explained by considering the
following example.

Example 3: A binary (q = 2) GC code of length63 will be
constructed. LetnI = 7 and nO = 9. Consider the partition of a
(7; 7; 1) binary codeC1 into the following subcode chain:

(7; 7; 1) � (7; 6; 2) � (7; 3; 4) � f0g:

ThenM = 3 andC1 can be expressed asC1 = CI1 + CI2 + CI3,
whereCI1 = [(7; 7; 1)=(7; 6; 2)] is a(7; 1; 1) code with codewords
f0000000; 0000001g, CI2 = [(7; 6; 2)=(7; 3; 4)] is a (7; 3; 2)
code and has a generator matrix

GI2 =
0010001
0000101
0000011

andCI3 = [(7; 3; 4)=f0g] is equivalent to the dual of a Hamming
code of length7 with a generator matrix

GI3 =
1010101
0110011
0001111

:

Let CO1 be a binary(9; 2; 6) code, the product of a(3; 1; 3)
binary code and a(3; 2; 2) binary code, and letCO2 andCO3 be
(9; 7; 3) and (9; 8; 2) maximum-distance-separable (MDS) codes
over GF(23), respectively. Then it follows from (9) and (13) thatC
is a binary(63; 47; 6) GC code.

Table I lists good GC codes constructed using this technique. The
parameters of the code in Example 3 are listed in the first entry of
Table I. The binary(63; 43; 8) GC code, the second entry of Table
I, was constructed using the same inner codeC1, and its subcode
chain, as in Example 3 above. The third entry of Table I is a binary
(63; 24; 16) GC code that was constructed based on the(7; 6; 2)
parity-check code and its(7; 3; 4) subcode. For all the other binary
GC codes presented in Table I,C1 is the(8; 8; 1) code and its chain
of RM subcodes

RM3; 3 � RM3; 2 � RM3; 1 � RM3; 0 � f0g

where RMm; r denotes the binary RM code of length2m and mini-
mum Hamming distance2m�r. ThenCIi = [RM3; 3�i+1=RM3; 3�i],

1 � i � 4, RM3;�1
�
= f0g. It follows from (12) that

RM3; 3 = [RM3; 3=RM3; 2] + [RM3; 2=RM3; 1]

+ [RM3; 1=RM3; 0] + RM3; 0:

TABLE I
CONSTRUCTIONS OFGENERALIZED CONCATENATED CODES

The last three codes in Table I of this correspondence were also
presented (up to a possible permutation of positions) in [18]. All
codes listed in Table I, except the last row, have the same parameters
n, k, andd, as thebest linear codesknown [17]. The(64; 45; 8) GC
code has the same rate, minimum distance and decoding complexity
(see next section) as a(64; 45; 8) extended and permuted BCH code.
Apparently, these codes are equivalent, as are the(64; 37; 10) GC
code and a(64; 37; 10) extended and permuted EG code, according
to [18]. Some of the GC codes in Table I have either smaller decoding
complexities than BCH or EG codes of comparable rate, as it is shown
in the next section, or more information bits for the same minimum
distance.

Table II lists the parameters of other binary GC codes of longer
lengths constructed based on other choices of the inner codeC1. The
first three codes listed in Table II are constructed based on a(5; 5; 1)
code and its(5; 4; 2) subcode, while the remaining codes are based
on RM4; r, r = 4; 3; 2, and its RM subcodes. It is important to
note that, for binary GC codes in general, equality in (10) does not
always hold. This is to say that the right-hand side (RHS) of (10) is
in most cases significantly lower than the actual minimum distance
d. For all the codes listed in Tables I and II, however, equality holds
in (10) and a trellis-basedmultistage decoding up to their minimum
distancescan be employed.

IV. DECODING COMPLEXITY

In this section, the decoding complexity of some of the proposed
GC codes is analyzed and compared with that of RM, BCH, or EG
codes of the same lengths and the same, or approximately the same,
rates and minimum distances.
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Fig. 3. Simulation results for a binary GC(64; 45; 8) code.

TABLE II
ADDITIONAL CONSTRUCTIONS OFGENERALIZED CONCATENATED CODES

Consider abinary linear block code and its trellis-based soft-
decision decoding using the Viterbi algorithm. To update the branch
metrics, one addition operation is performed per branch, except for
the first code symbol. On the other hand, the number of comparisons
at each state, to determine the survivor branch sequence, equals the
number of arriving branches minus one. It follows that thetotal

number of addition-equivalent decoding operationsis

 (T )
�
=

n

j=1

2� 2b (T )
� 2s (T )

� 2b (T ) (15)

wherebj(T ) denotes logarithm base2 of the number of branches in
T for the jth code symbol position.

The number of addition-equivalent decoding operations can be
reduced dramatically by using the recursive MLD algorithm proposed
in [19]. In this correspondence, the number of addition-equivalent
decoding operations by the recursive MLD algorithm, denoted 

(0)
min

in [19], is also used as a complexity measure. In comparing the
constructed GC codes with BCH and EG codes, the permutations
presented in [19] are considered.

Table III lists the state complexity,smax(T ), (3), and the total
number of addition-equivalent decoding operations for both Viterbi
decoding, (T ), and recursive MLD using optimally sectionalized
trellis diagrams, (0)min, of some of the GC codes constructed in the
previous section, compared with those of permuted RM, EG, or BCH
codes of approximately the same rates and minimum distances. The
(63; 47; 6) and (64; 48; 6) GC codes have aconsiderably reduced
decoding complexitycompared to either EG or BCH codes of about
the same rate and minimum distance. The last two codes listed in the
table,(64; 34; 12) and (64; 28; 14) GC codes, although of slightly
smaller rate, both have reduced decoding complexity in comparison
with BCH codes of the same minimum distance.

V. TWO-STAGE SOFT–DECISION DECODING

The multilevel structure of the GC codes constructed in this
correspondence allows for the use of a suboptimal trellis-based
multistage decoding. Consider the following trellis-based two-stage
soft-decision decoding of a GC codeC. Let C be expressed as a
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TABLE III
THE DECODING COMPLEXITY OF SELECTED GC CODES

direct sumC = Cs1 + Cs2, where

Cs1
�
= CO1 �CI1 + CO2 �CO1 + � � �+ COL �CIL;

Cs2
�
= CO(L+1) �CI(L+1) + CO(L+2) �CI(L+2) + � � �

+ COM �CIM

with 1 � L < M .

Example 4: LetC be the(64; 45; 8) GC code in Table III and let

Cs1 =(8; 1; 8) � RM3; 3=RM3; 2 + (8; 5; 4) � RM3; 2=RM3; 1

Cs2 =(8; 7; 2) � RM3; 1=RM3; 0 + (8; 8; 1) � RM3; 0:

ThenM = 4 andL = 2.

As a general design rule of anM -level GC code, the component
codesCOi �CIi at the firstL partition levels(i = 1; 2; � � � ; L; L �

M) should be selected so as to have a large minimum Hamming
distance, and yet a simple trellis structure. This is in order to
guarantee that decisions are correct in the first decoding stage with
high probability, resulting in good error performance.

The first decoding stage is MLD for the super codeCs1 + C0

s2,
whereCs2 � C 0

s2. CodeC 0

s2 is chosen such that it has smaller
decoding complexity thanCs2. For all the codes presented in Table
III, code C 0

s2 has the same inner codes asCs2, and a single
(nO; nO; 1) or (nO; nO � 1; 2) code as outer code. After the
most likely codeword is determined in this stage, the firstk1 =

L

i=1 kIikOi information bits are decoded.
Note that the minimum distance of codeCs1+C 0

s2 is smaller than
or equal to the minimum distanced of C. However, for all the GC
codes in Table III, the codewords ofCs1 + C 0

s2, in correspondence
to different values of the firstk1 information bits, are at a distance
at leastd. In other words, in this first stage, the information bits are
decoded up to the minimum distance of the code.

Example 4 (Cont.):For the(64; 45; 8) GC code

C 0

s2 =(8; 8; 1) � RM3; 1=RM3; 0 + (8; 8; 1) � RM3; 0

=(8; 8; 1) � RM3; 1:

The minimum distance ofC 0

s2 is 4. However, the codewords of
Cs1 + C 0

s2 in correspondence to different values of the first 16
information bits, are at a minimum distance8.

In the second decoding stage, a codeword inCs1, in correspon-
dence to thek1 information bits decoded in the first stage,u =
(u1; u2; � � � ; un), is used to obtain a modified received sequence
r0 = (r0

1; r
0

2; � � � ; r
0

n), wherer0

i = (�1)u ri (assuming binary-phase
shift keying (BPSK) modulation over an additive white Gaussian
noise (AWGN) channel). An MLD for codeCs2 is used. At the end
of this final decoding stage, thek2 = M

i=L+1 kIikOi remaining
information bits are decoded.

For i = 1; 2, let  (0)i denote the number of addition-equivalent
decoding operations in theith decoding stage for the recursive MLD
using optimally sectionalized trellis diagrams. Let (0)TSD denote the
total number of addition-equivalent decoding operations in the above
two-stage soft-decision decoding procedure. Then it follows that

 
(0)
TSD =  

(0)
1 +  

(0)
2 :

It should be noted that this reduced decoding complexity comes at
the expense of a moderate loss due to an increased number of nearest
neighbors (NN).

The values of (0)TSD for selected GC codes are shown in the
last column of Table III. Note the dramatic reduction in decoding
complexity using two-stage soft-decision decoding. As an example,
note that for the(64; 45; 8) GC code, two-stage decoding( (0)TSD =
34; 842) is about one order of magnitude less computationally
intensive than optimal trellis-based recursive maximum-likelihood
decoding of the(64; 42; 8) RM code( (0)min = 326;017). It is also
worthwhile to note that, although suboptimal, the above two-stage
decoding of the GC codes in Table III isup to the minimum distance
of the code. To illustrate the loss due to the increased NN, Fig. 3
shows simulation results on the error performance of the(64; 45; 8)
GC code, with both MLD and TSD. The loss is only about 0.3 dB
compared to optimum MLD.

VI. CONCLUSIONS

In this correspondence, binary generalized concatenated (GC)
codes with very low decoding complexity have been constructed. The
decoding complexity was measured both by the maximum number of
states of a minimal trellis diagram and by the number of addition-
equivalent operations of a Viterbi decoder. Many of the GC codes
presented have the same parameters as the best linear codes known.
In addition, some of the GC codes have significantly smaller trellis-
based decoding complexity than that of BCH and EG codes of
the same length and approximately the same rate and minimum
distance. Moreover, a trellis-based two-stage soft-decision decoding
up the minimum distance was presented. The procedure was shown
to drastically reduce the decoding effort, compared to maximum-
likelihood decoding. The GC codes presented in this correspondence
offer an excellent tradeoff between decoding complexity and error
performance.
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A Low-Weight Trellis-Based Iterative Soft-Decision
Decoding Algorithm for Binary Linear Block Codes

Takuya Koumoto, Toyoo Takata, Tadao Kasami,Life Fellow, IEEE,

and Shu Lin,Fellow, IEEE

Abstract—This paper presents a new low-weight trellis-based soft-
decision iterative decoding algorithm for binary linear block codes. The
algorithm is devised based on a set of optimality conditions and the
generation of a sequence of candidate codewords for an optimality test.
The initial candidate codeword is generated by a simple decoding method.
The subsequent candidate codewords, if needed, are generated by a chain
of low-weight trellis searches, one at a time. Each search is conducted
through a low-weight trellis diagram centered around the latest candidate
codeword and results in an improvement over the previous candidate
codewords that have been already tested. This improvement is then used
as the next candidate codeword for a test of optimality. The decoding
iteration stops whenever a candidate codeword is found to satisfy a
sufficient condition on optimality or the latest low-weight trellis search
results in a repetition of a previously generated candidate codeword. A
divide-and-conquer technique is also presented for codes that are not
spanned by their minimum-weight codewords. The proposed decoding
algorithm has been applied to some well-known codes of lengths 48, 64,
and 128. Simulation results show that the proposed algorithm achieves
either practically optimal error performance for the example codes of
length 48 and 64 or near optimal error performance for the (128, 29,
32) RM code with a significant reduction in computational decoding
complexity.

Index Terms—Iterative decoding, low-weight subtrellis, optimality.

I. INTRODUCTION

The application of trellis-based maximum likelihood decoding
(MLD) algorithms is limited due to the prohibitively large trellises for
codes of long block lengths. To overcome the state and branch com-
plexity problems of large trellises for long block codes, several new
approaches have been proposed [1]–[8]. Most recently, Moorthyet al.
have shown that the minimum-weight subtrellis of a code is sparsely
connected and has much simpler state and branch complexities than
the full-code trellis [9]. Based on this fact, they proposed a minimum-
weight subtrellis-based iterative decoding algorithm for linear block
codes to achieve suboptimum error performance with a drastic
reduction in decoding complexity compared with a trellis-based
MLD algorithm, using a full-code trellis. The Moorthy–Lin–Kasami
(MLK) algorithm is devised based on the following: 1) generation
of a sequence of candidate codewords based on a set of test error
patterns using the Chase Algorithm II [10] and an algebraic decoder;
2) two test conditions: one to test the optimality of a candidate
codeword and the other to test whether the most likely (ML)
codeword is at a distance no greater than the minimum distance
from the tested candidate codeword; and 3) a minimum-weight
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