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In this correspondence, good GC codes are constructed. Thegmbol orderings [6], [9] which result in reduced upper bounds on
codes are good in the sense that they have lower trellis-bashd state complexity of their trellis diagrams compared with Wolf's
decoding complexities compared with permuted Bose—Chaudhubieund. If there is such a code amofg with 1 < i < M, then
Hocquanghem (BCH), RM, and Euclidean geometry (EG) codes wk can adopt the corresponding symbol ordering and evaluate the
the same lengths, the same (or approximately the same) rates statie complexity of trellis diagram fat' by applying upper bounds
minimum distances, and that they can be decoded with trellis-basekich are independent of any symbol ordering of each remaining
multistage decoding up to their minimum distances. The decodiegmponent code.
complexity of a GC codeC' is measured both by the maximum Suppose that
number of states in amn-section trellis forC' and by the number
of addition-equivalent operations required in a Viterbi decoder using
a minimal trellis forC'.

T =0T 440
c’t :Cij'*' 4. +Cﬁ‘

(4)
®)

Il. MINIMAL TRELLISES AND STATE where

COMPLEXITIES OF DECOMPOSABLE CODES CIm 2 ueCiu=01<¢<j}
In this section, the connection between symbol orderings of lineghq
codes and reduced upper bounds on the state complexity of their trellis »
PP pexry C’f+é{u€C:U¢:(),j<€§n}

diagrams is pointed out. A sufficient condition on the minimality of
the product of trellises is also presented. In a later section, it is shoyp, thepast and future subcodes of i, 1 < i < M, respectively.
that if for each component code of a decomposable code there isf @ it follows from (4), (5), and propert_y (DS that
optimal ordering, then the ordering is also optimal for the overall
code.

Throughout the correspondendes, &, d) is used to denote the @)
parameters of a linear block code of length dimensionk, and
minimum distancel. Let C' be an(n, k, d) linear code over GFy).  Equations (6) and (7) imply that, under the assumptions (4) and (5)
Suppose that is a decomposable code, defined, in terms of its
linear (n, k;, d;) subcode<”; with 1 < ¢ < M, by the following

KC7T) =kC{T) + -+ KT
R(CTT) =R(CTT) 4+ 4 KL,

(6)

M

conditions: 55 (T) = Z SJ'(Ti) (8)
. =1
(S) C=Ci+Cot+Cur = {us+us+-+ur:u; €Ci L .
with 1 < i < M}, for any j Wlth 1 <j<on o
(D) Foru; € C; with1 <i < M, u; +us+---+uy =0 (the A sufficient condition for (4) (or (5)) to hold is given by
zero codeword) if and only it = uy =--- =uy = 0. (P) Foru; € C/ (orC/P)ywith1 < i < M, uy +us + - +
Then it follows from (S) and (D) that uy =0, ifand only ifu;, =0for1 <i < M.
k=ki+ke+-+ku. (1) Example 1: Suppose that fol < M’ < M, the supports [12]

of Ci., Cy, ---, Cp are mutually disjoint (this property is called
“DS structure” in [13]). Letm(C;) denote theeffective lengthof
C;, i.e., the size of the support af;, 1 < i < M'. If we use
a symbol ordering such that far < i < M’, any codeword of
Ci has nonzero components only from thg;,_| m(Cy) + 1)th
o (35—, m(Cx))th symbol positions, then the logarithm of the

number of states at any symbol position of the minimal tréellis

Let 7 and 7; with 1 < ¢ < M denote the minimal trellis
diagrams forC' and C;, respectively. As defined in [10] and [11],
the direct product of\/ trellis diagrams/Ii, T, -- -, Tw, denoted
Ty @Tr @--- 2 Twu, is a trellis diagram defined as follows: The
states in the product ar&/-tuples (s, sz, - -+, sar), wheres; is
a state of trellisT;, 1< i < M, and there exists a branch of labe

(=10 &l D - DLy with initial state(s, s2, - -+, sar) and final ~ )
state(s, s5, - -+, s4) if, and only if, there is a branch of labé| for &= Cy + C2 + -+~ + Cir is upper-bounded by
from states; to states; in trellis T}, i = 1, 2, ---, M.

! ! ) ) ) smax(T) = max min{k,, m(Ch) — ks }.
Given a code symbol ordering for a co@ethere is a unique trellis 1<h<M!
diagram (or trellis) with the minimum number of states €y called

the minimal trellis diagram(or minimal trellis) forC. Forl < j <=

Note thatC' satisfies the definition of direct-sum in [14].

andl <i < M, let s;(T) ands;(T;) denote the logarithms bage

of the numbers of states @f andT; just after thejth code symbol.

These numbers are known as gtate complexitiesf 7" andT;. Since

the product ofT; with 1 < i < M is a trellis forC, we have that
M

5;(T) < Z 5;(T;),

for1 <j <n. 2)
For a linear cod€” of lengthn, let s;max(7") denote the maximum
number of states at any bit position of a minimakection trellisT’
for C'. The quantitysmax (") will be referred to as thetate complexity
of codeC. It follows from (2) and Wolf's bound [2] that
M
Orél;xéxn s;(T) < Z min(k;, n — ki).

=1

a

Smax (T) (3)

I1l. CONSTRUCTIONS OFGENERALIZED CONCATENATED CODES

Suppose that is the product of two integers; andno greater
than one. Fold < ¢ < M, let C'y; be an(n,, k;;) linear code over
GF(q) such that

(Dl) for u;, € Cy; with 1 <z < M, +us+---+uy =0, if
and only ifu; =0 forl < i < M.

Let §; be the minimum Hamming distance 6f;; + Criy1 + -+ - +
Cru. LetCo; be an(no, koi, do:) linear code over GF*¢) and
let C denote the concatenated code over(@Fwith C;; as the
inner code and’o; as the outer code. The code symbol positions
in C7 are divided intono consecutive sections of length in such
a way that each section of a codeworddti is a codeword inC'y;.
Let the generalized concatenated ca@dde defined as

For several classes of codes such as RM codes or their subcodes

and repetition codes, and their dual codes, there are known code

CR2CI+Cl+--+Cip )
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Then, the condition (D) o follows from the condition (). The 0000 0000
minimum Hamming distancé of C' is lower-bounded [15] as D%: :ﬁq
2.0, e (o 0001 0001 0001 0001
and a multistage decoding [15] up to the distance given by the @)
right-hand side of (10) is possible.
Let T("0) andT("°’, with 1 < i < M, denote the minimah - Otee? —

section trellis diagrams fof' and C", respectively, for which each
section has length ;. Then the assumption ([Dguarantees that if
is a multiple ofn; then property (P) holds. Therefore, at each end
of a section, £0,1,0,02} —0
M
s;(T9N) =37 s, (1), (11) {a.a20.13

=1

The above result means that, if there is a common optimal ordering {02,0,1,0
of sections that gives the smallest state complexity of.arsection )
trellis diagram for each component cod€, then the ordering of
sections is optimal for the whole cod€. See also [16, Theo- 0000 0000 0000 0000
rem 8.1].
A particular class of binary GC codes over Gff can be con- 1 1 1 1111
structed as follows. An(n;, ki, di) code C;, over GHyq), is (c)
partitioned into a chain ofM (ny, ki, di) subcodesCi, i = Fjg 1 Component subtreliises for a binary G@6,11,4) code. (a)
2,3,---. M +1, such that Co1 * Cr1. (b) Coz * Cy2. (€) Cos * Cy3.

CiDCy DD Cytr

where, for convenience, we defiié 4+ 2 {0}, anddps 41 2 .
Let Cr; = [C:/Ciy1] denote aning, k1;:, 6;) subcode of”;, a set of
coset representatives 6f, ¢ in C;, of dimensionk;; = k; — kit1,
and minimum Hamming distanée > d;. ThenC' has the following
coset decompositiof8B]:

A\

SCK S

XX

@,
AN A“\\?Iik

X
E W X 720X X730

AT N Y
N X
Ci=Cn+Cr+-+Cu. (12) KRR CIBALL

~ 8 WS N
Let Co; denote ar(no. koi, do:) codeCo; over GF(¢*1+), where PR EPAA

NS LT
ki = dim (C;/Cipr) = ki — kig1,  i=1,2, -, M. /’0.“.‘{\ /\.“o‘{\
A GC codeC' is constructed from (9) as a direct sum of concatenated /\\ //\\
codes / O S —— O ——— O \

ki

C=Co1*Cn+Co2xCia+-4+Com *Cium

where Co; * C'1; denotes a concatenated code with; as outer
code andC';; as inner code] < i < M. It was shown in [8] that
C'is an(nony, k, d) linear block code of dimension and minimum
Hamming distance

\ v v, v - v
XX N)OE )
$- 7 N
_ g LS X8 LY
k= kiiko: and d > . g}lgnM {6:doi} (13) 2'311 :1:‘ O‘/ \‘s’:':«(:‘o’/

i=1

A
LN ST

Fig. 2. A four-section trellis for the binary GC16, 11, 4) code.

respectively. Note that equality holds in (13) whép;, 1 < i < M,
contains the all-zero codeword, which is the case for all the codes
presented in this correspondence.

IR PO,
Z ’A' A&\ /A’A’ AN
—\-.A..-— O A

Example 2: In this example, the trellis structure of a simple binary
GC code is illustrated. Let; = npo = 4, and consider the binary
codeCr = RMs ». ThenM = 3 andC; = C;1 + Cr2+Ci3, where
C'11 = RMz 2 /RM 1 with generator matrixG;; = (0001), C'j2 =
RMQy]/RMQyO with G[2 = (8(1)(1]1), andC;g = Rszo with Gi3 =
(1111). Let Co, be a binary(4, 1, 4) repetition codeCo. be a Mapped onto a codeword i@;>. As a result, the following four-
nonbinary (4, 3, 2) over GF(2?), and Cos be a binary(4, 4, 1)  bit vector representation of GE?) is obtained:0 = 0000, 1 =
universal code. Thefi = Co1 * Cry 4+ Coo % Cra + Cos * Crs is 0011, a = 0101, and o® = 0110.

a binary GC(16, 11, 4) code. The four-section trellis diagrams of The corresponding four-section diagram of the binary GC
codesCo; * Cyj, j = 1, 2, 3 are shown in Fig. 1 where GB?) = (16, 11, 4) code is shown in Fig. 2. It consists of two parallel

{0, 1, @, o}, with a® = 1 + . In the subtrellis for Fig. 1(b), each and identical, up to branch labeling, subtrellises. Each subtrellis is
element in the binary vector spa¢®, 1}?, isometric to GR2%), is in turn isometric, up to parallel branches, to the subtrellis of code
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Co2 * Cr2. Also, each set of parallel branches has labels TABLE |

o CONSTRUCTIONS OFGENERALIZED CONCATENATED CODES
{(bolnbgbg), (bob1babs) + (1111)} = {(bolnbgbg), (bob]bgbg)}.

c M| i Coi *Cri & Gidos  s(T{Y) [s(Tt))
The two parallel subtrellises have branch labels that diffefOiy1), 1 (9,2,6)% (7, 1) 1 6 2
i.e., if (bob1b2bs3) is the label of a brance in the upper subtrellis, the (63,47,6) | 3| 2 (9,7,3)(7,3) 2 6 6 1
(bob1babz) + (0001) = (bob1b2b3) is the label of a branch in the ‘;’ ng;g:g’fg ‘i g ?
lower subtrellis. U [ (63,43,8) (3] 2 (9, 6,4) % (7, 3) 2 8 9 13
Let s(T{"©)) denote the logarithm bageof the maximum number f Eg’ g ;g:g ?,3 g 1% g
of states of a minimako-section trellis for theth-level concatenated |(63:24,16)1 2 , (9.6,4) % (7.3) 4 16 9 15
codeCo; * Cri, 1 < i < M, and lets(T")) denote the logarithm 1 (9,1,9)+RMy;/RMag 1 O 1
baseg of the maximum number of states of am-section trellis for (72,52,8) | 4 2 (9,6,4) *xRMs,/RM3; 2 8 9 13
the overall GC code. Then it follows from (11) and Wolf's bound| 3 (9,8,2)xRMy1/RMgo 4 8 3
2] that 4 (9,9,1)*xRMsp 8 8 0
1 (9,2,8)«RMs,/RM;; 2 16 6
/ M / M (72,32,16)| 3| 2 (9,6,4)RMs,/RM;, 4 16 9 16
S(T("o)) — Z S(T}“O)) < Z Eri min{koi, no — koi}. (14) 3 (9,8,2) x RMa, 8 16 1
= = 1 (8,1,8)«RMss/RMag 1 8 1
In the following, several good binary GC codes are constructed thaff445.8) | 4 § EZ: iggiﬁﬁjfﬁﬁj; i 2 § 13
can be decoded using a multistage decoding up to their minimum 4 (8,8,1) x RM30 8 8 0
distances. The GC construction is best explained by considering the 1 (8,1,8)xRMsp/RMs; 2 16 3
following example. Buosioa) 2 Gsd BG4+ 26 9 | 19
Example 3: A binary (¢ = 2) GC code of length63 will be 1 (8,1,8) xRMs5/RM;, 1 8 1
constructed. Let:; = 7 andno = 9. Consider the partition of a | (64,48,6) | 4 g Eg’g’g§:§ﬁ3vzfgﬁ3vl i g g 10
(7,7, 1) binary codeC; into the following subcode chain: 4 (3.8.1)xBMse 8 8 0
o . - - 1 (8,4,5)~RM;,/RMs; 2 10 12
(7,7,1) 5(7,6,2) 5 (7, 3, 4) D {0}. (64,37,10)[ 3| 2 Es,s,sg*miffmij; 4 12 6 19
ThenM = 3 andC; can be exp.ressed & =Cny + Cr+ Crs, i’ (8,35?6)7;212»;43:;1&3\43,1 g ig ;
whereCr = [(7, 7, 1)/(7, 6, 2)]isa(7, 1, 1) code with codewords (64,34,12)| 3| 2 (8,6,3)%RMs,/RMso 4 12 6 16
{0000000, 0000001}, C2 = [(7,6,2)/(7,3,4)] is a (7, 3, 2) 3 (8,7,2) x RMsg 8 16 1
code and has a generator matrix 1 (8,2,7)xRMs2/RMs; 2 14 6
(64,28,14)| 3| 2 (8,5,4)«RMs,/RMso 4 16 9 16
0010001 3 (8,7,2) % RM;, 8 16 1
G2 = [ 0000101
0000011

o ) _ The last three codes in Table | of this correspondence were also
andCs = [(7, 3, 4)/{0}] is equivalent to the dual of a Hammingpresented (up to a possible permutation of positions) in [18]. All

code of length7 with a generator matrix codes listed in Table I, except the last row, have the same parameters
1010101 n, k, andd, as thebest linear code&nown [17]. The(64, 45, 8) GC
Gs = | 0110011 . code has the same rate, minimum distance and decoding complexity
0001111 (see next section) as(é4, 45, 8) extended and permuted BCH code.

Apparently, these codes are equivalent, as arg@e37, 10) GC
Let Co1 be a binary(9, 2, 6) code, the product of &3, 1,3) code and 464, 37, 10) extended and permuted EG code, according
binary code and 43, 2. 2) binary code, and leCo, and Cos be o [18]. Some of the GC codes in Table | have either smaller decoding
(9.7,3) and (9, 8, 2) maximum-distance-separable (MDS) codegomplexities than BCH or EG codes of comparable rate, as it is shown
over GF(2%), respectively. Then it follows from (9) and (13) th@t in the next section, or more information bits for the same minimum
is a binary(63, 47, 6) GC code. O distance.

Table | lists good GC codes constructed using this technique. Thel@Ple Il lists the parameters of other binary GC codes of longer

parameters of the code in Example 3 are listed in the first entry l§9ths constructed based on other choices of the innerCodehe
Table 1. The binary(63, 43, 8) GC code, the second entry of Tablelirst three codes listed in Table Il are constructed based(Gn & 1)

I, was constructed using the same inner c@de and its subcode €0de and its5, 4, 2) subcode, while the remaining codes are based
chain, as in Example 3 above. The third entry of Table I is a binaRf! RM. -, 7 = 4.3.2, and its RM subcodes. It is important to
(63, 24, 16) GC code that was constructed based on (thes, 2) "ote that, for blr_lary GC codes in ge_neral, equa_llty in (10) does not
parity-check code and it 3, 4) subcode. For all the other binaryalways hold. This is to say that the right-hand side (RHS) of (10) is

GC codes presented in Table, is the(s, 8. 1) code and its chain in most cases significantly lower than the actual minimum distance
> bl

of RM subcodes d For all the code_s listed in 'I_'ables I and I_I, however, e_qua_lit_y holds
B in (10) and a trellis-basethultistage decoding up to their minimum

RMs 3 D RM3, 2 D RMs 1+ D RM3 0 D {0} distancescan be employed.

where RM,,, . denotes the binary RM code of leng2fi' and mini-

mum Hamming distanc®™~". ThenC; = [RM3, 3—i4+1/RMs, 5_], IV. DECODING COMPLEXITY

1<i<4, RMs 4 2 {0}. It follows from (12) that In this section, the decoding complexity of some of the proposed

GC codes is analyzed and compared with that of RM, BCH, or EG

RMz,5 = [RMs,3/RM;, 2] + [RM3, 5 /RMs, 1] codes of the same lengths and the same, or approximately the same,

+ [RMs, 1 /RM3 o] + RMs, 0. rates and minimum distances.
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Error performance of MLD and TSD for (64,45,8) GC code
1.0e+00 r T T T Y T T T T T
"MLD (64,45)" -o—
"TSD (64,45)" ~+-
1.0e-01 |- .
£ 1.0e-02 -
i
S
5
X
8
o 1.0e-03 | b
1.0e-04 |- -
1-09‘05 1 3 1 i 1 1 1 1 1
1 1.5 2 25 3 35 4 4.5 5 5.5 6
Eb/No
Fig. 3. Simulation results for a binary G4, 45, 8) code.
TABLE I number of addition-equivalent decoding operatiasis
ADDITIONAL CONSTRUCTIONS OFGENERALIZED CONCATENATED CODES
c M| i CoixCr &  bidoi s(T10)) [s(1™0)) A — .
@ss10) 2| L OBLIDx(D 11T . O(T) 2 D72 x 2% — 20 gh(D (15)
" 0% 2 (17,13,5) x (5,4) 2 10 16 j=1
1 (17,1,17) % (5,1) 117 1
(85,49,12) 1 2| (17,12,7) % (5,4) 2 12 20 2
1 (17,1,17) % (5,1) Lo 1 whereb; (T') denotes logarithm baseof the number of branches in
(85,45,14) 121 5 (71 7)x(54) 2 14 24 % S o
R RN FS VYT i 5 = T for the jth code symbol position.
2 (85 4)*RM:§/RMjZ s g 19 The number of addition-equivalent decoding operations can be
(128,103,8)| 5| 3 (8,7,2) xRM4z/RMs; 4 8 6 19 reduced dramatically by using the recursive MLD algorithm proposed
4 (8,8,1)*RM;1/RMs, 8 8 0 in [19]. In this correspondence, the number of addition-equivalent
f i 1(85;;3*1}){;[?:;1;& - 146 ;g g decoding operations by the recursive MLD algorithm, den(ﬁé?f;],
(128,33,32)| 3| 2 (8.5.4)xRMy1/RMso 8 32 12 19 in [19], is also used as a complexity measure. In comparing the
3 (8,7,2) » RMy 16 32 1 constructed GC codes with BCH and EG codes, the permutations
1 (9,1,9)xBM,4/RM,5 1 9 1 presented in [19] are considered.
2 (9,6,4)xRM;3/RMs> 2 8 12 Table Il lists the state complexitysmax(7), (3), and the total
(144,118,8)) 5 Z 8 g fg:gﬁ“ﬁm“ ; : g 19 number of addition-equivalent decoding operations for both Viterbi
5 (0,01)«RMy 16 16 0 decoding, v (T), a(nd recursive MLD using optimally sectionalized
1 (16,13,4) x RMss/RM,, 2 S 12 trellis dlagrams,z/v,m)“, of some of the GC codes constructed in the
2 (16,15,2) x RM,;/RM,,; 4 8 6 previous section, compared with those of permuted RM, EG, or BCH
(256,222,8) | 4 18 ' - .
3 (16,16,1) *xRM4;/RMyo 8 8 0 codes of approximately the same rates and minimum distances. The
‘; 17(115’[16’11)1;4111\4;;4 126 1: 102 (63, 47, 6) and (64, 48, 6) GC codes have aonsiderably reduced
5 217’16’231RM:*Z§RM:T PR 6 decoding complexitgompared to either EG or BCH codes of about
(272,237.8) 4| 3 (1717.1) xRMy1/RMyp 8 8 0 18 the same rate and minimum distance. The last two codes listed in the
4 (17,17,1)*RM,g 16 16 0 table, (64, 34, 12) and (64, 28, 14) GC codes, although of slightly

smaller rate, both have reduced decoding complexity in comparison
with BCH codes of the same minimum distance.

Consider abinary linear block code and its trellis-based soft-

decision decoding using the Viterbi algorithm. To update the branch

V. Two-STAGE SOFT-DECISION DECODING

metrics, one addition operation is performed per branch, except forrhe multilevel structure of the GC codes constructed in this
the first code symbol. On the other hand, the number of comparis@iirespondence allows for the use of a suboptimal trellis-based
at each state, to determine the survivor branch sequence, equalsibhistage decoding. Consider the following trellis-based two-stage

number of arriving branches minus one. It follows that total

soft-decision decoding of a GC codg. Let C' be expressed as a
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TABLE Il The minimum distance of”., is 4. However, the codewords of
THE DECODING COoMPLEXITY OF SELECTED GC CODES Cs1 + C., in correspondence to different values of the first 16
Code, C Basis | 5o (D) moy o information bits, are at a minimum distange O
gg gg g 5% ; ﬁ Zgg’gig zgg’gii lsi% In the second decoding stage, a codeword’in, in correspon-
GC (63,43,8) — | 14 | 1,186,800 | 954,761 | 49,942 dence to thek; |nformat|0n bits d_ecoded in the flrs_t stage, =
RM (63,42,7) — | 14 | 763,961 320,801 — (w1, w2, -+, uy), is used to obtain a modified received sequence
BCH (63,45,7) C 14 | 1,072,185 | 762,409 — 7 = (7“/17 ré, el 7{1)’ wherer§ — (_1)%” (assuming binary-phase
Sﬁ Egz ;‘; 12; - ﬁ 45122?6;619 1’758241*;13 25,510 shift keying (BPSK) modulation over an additive white Gaussian
BCH (63,24,15) B 16 | 1,327,225 | 271,733 _ noise (AWGN) channel). An MLD for codéﬁg is used. At th_e _end
GC (72,52,8) — | 14 | 1,417,977 | 1,196,601 | 50,554 of this final decoding stage, thle, = 27 141 krikoi remaining
GC (72,32,16) — | 10 | 12,534,009 | 5,817,521 | 249,746 information bits are decoded.
ng Egi ig :; - ij i’g:g’igg ggg’igg 34,842 Fori = 1, 2, let ¢ denote the number of addition-equivalent
RM (64.42,8) — | 14 | 773,881 326017 B de.codlng.operatlons. in theh decoc.ilng. stage for thg) recursive MLD
GC (64,25, 16)  — | 16 | 1,126,640 | 507,000 | 85,042 using optimally sectionalized trellis diagrams. Letd,, denote the
RM (64,22,16) — | 14 | 425209 78,209 — total number of addition-equivalent decoding operations in the above
BCH (64,24,16) B | 16 | 1,327,358 | 271,745 — two-stage soft-decision decoding procedure. Then it follows that
GC (64,48,6) — | 11 | 214,777 | 185,057 | 10,650
EC (64,48,6) B | 13 | 456441 | 282,353 — O = 0 4y U((J)
Yisp = Y1
BCH (64,51,6) A | 12 | 340,217 | 312,721 —
GC §64 37, 10; — | 20 | 26,296,569 | 19,448,641 | 25,410 It should be noted that this reduced decoding complexity comes at
64,37,10) C | 20 | 26,296,569 | 19,448,641 | — :
BCH (6439.10) © 20 | 38436857 | 24741161 | thg ixpense of a moderate loss due to an increased number of nearest
GC (4,34,12) — | 19 | 10,240,249 | 5,751,649 | 17,704 neighbors (NN).

BCH (64,36,12) C | 20 | 18,710,521 | 9,995,617 — The values ofu{" 4, for selected GC codes are shown in the
GC (64,28,14) — | 19 | 8,929,529 | 4,048,001 | 194,370 last column of Table Ill. Note the dramatic reduction in decoding
BCH (64,30,14) C | 21 |35028,985|16001,009| — complexity using two-stage soft-decision decoding. As an example,

note that for the64, 45, 8) GC code, two-stage decodimg»ﬁ?D =
direct sumC = C,1 + C,2, Where 34, 842) is about one order of magnitude less computationally
A intensive than optimal trellis-based recursive maximum-likelihood
Ca=Cor*xCi1+Co2xCor+---+Cop*C ; (0 ~ :
sl o1 = i1 0201 OL =1Ly decoding of theg64, 42, 8) RM code(v, ., = 326,017). It is also

2 Cowin * Croiny + Copray * Croiz) + - worthvyhile to note that, aIFhough sub_optlmal, th_e _above two-stage
decoding of the GC codes in Table Il igo to the minimum distance
+ Con * Cru of the code. To illustrate the loss due to the increased NN, Fig. 3
with 1 < L < M. shows simulation results on the error performance of{the 45, 8)
B GC code, with both MLD and TSD. The loss is only about 0.3 dB

compared to optimum MLD.

052

Example 4: Let C' be the(64, 45, 8) GC code in Table Il and let
Cs1 =(8, 1, 8) «x RMy, 3 /RMs 2 + (8, 5, 4) * RM3, 2 /RMs 1

7—(8 2) * RM3, 1/RM30—|—( , 8, 1)*RM370.
.y . In this correspondence, binary generalized concatenated (GC)
ThenM =4 andL = 2. codes with very low decoding complexity have been constructed. The

As a general design rule of alf-level GC code, the componentdecoding complexity was measured both by the maximum number of
codesCo; * C'r; at the firstL partition levels(i = 1, 2, ---, L, L < states of a minimal trellis diagram and by the number of addition-

M) should be selected so as to have a large minimum Hammigguivalent operations of a Viterbi decoder. Many of the GC codes
distance, and yet a simple trellis structure. This is in order @yesented have the same parameters as the best linear codes known.

guarantee that decisions are correct in the first decoding stage witrddition, some of the GC codes have significantly smaller trellis-

high probability, resulting in good error performance. based decoding complexity than that of BCH and EG codes of
The first decoding stage is MLD for the super cade + C”,, the same length and approximately the same rate and minimum

where C,s C C’,. Code (., is chosen such that it has smalledistance. Moreover, a trellis-based two-stage soft-decision decoding

decoding complexity thad’.». For all the codes presented in TablelP the minimum distance was presented. The procedure was shown
lll, code C’, has the same inner codes &%., and a single to drastically reduce the decoding effort, compared to maximum-

(no, no, 1) or (no, no — 1, 2) code as outer code. After thelikelihood decoding. The GC codes presented in this correspondence

VI. CONCLUSIONS

most likely codeword is determined in this stage, the fi,st=  Offer an excellent tradeoff between decoding complexity and error
S°% | kriko: information bits are decoded. performance.
Note that the minimum distance of codg; + C%, is smaller than
or equal to the minimum distaneceof C'. However, for all the GC REFERENCES
. P
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