
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Publications School of Music and Dance 

January 1996 

Applying lmprovisationBuilder to Interactive Composition with Applying lmprovisationBuilder to Interactive Composition with 

MIDI Piano MIDI Piano 

William Walker 

Brian Belet 
San Jose State University, brian.belet@sjsu.edu 

Follow this and additional works at: https://scholarworks.sjsu.edu/music_dance_pub 

 Part of the Music Commons 

Recommended Citation Recommended Citation 
William Walker and Brian Belet. "Applying lmprovisationBuilder to Interactive Composition with MIDI 
Piano" Proceedings of the 1996 International Computer Music Conference (1996): 386-389. 

This Article is brought to you for free and open access by the School of Music and Dance at SJSU ScholarWorks. It 
has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For 
more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/music_dance_pub
https://scholarworks.sjsu.edu/music_dance
https://scholarworks.sjsu.edu/music_dance_pub?utm_source=scholarworks.sjsu.edu%2Fmusic_dance_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/518?utm_source=scholarworks.sjsu.edu%2Fmusic_dance_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Applying lmprovisationBuilder to 
Interactive Composition with MIDI Piano 

William Walker 

Research Scientist 
Advanced Technology Group 

Apple Computer, Inc. 
walker@apple.com 

Brian Belet 

Assistant Professor 
School of Music 

San Jose State University 
bbelet@sjsuvm 1.sjsu.edu 

Abstract 

In this presentation we will show how the ImprovisationBuilder framework was adapted to our 
compositions for pianists and computers. Software design issues include: capturing, transforming, and 
realizing MIDI piano data, and an easy-to-use graphical interface for altering parameters during performance. 
Compositional issues include: the causal responsorial aspect of the ImprovisationBuilder output, and 
varying the small-scale event and gestural levels while preserving the large-scale structure among multiple 
performances. The presentation will discuss the compositional and performance importance of these issues 
and show how each of these issues was handled within the ImprovisationBuilder framework. 

Work on this project suggests the advantages of addressing compositional and software design issues 
simultaneously and cooperatively. Both composer and software designer can benefit from this collaboration. 

1. Introduction 

We first collaborated on ImprovisationBuilder (IB) 
during a computer music workshop in 1993, a 
collaboration we resumed in 1994. Our initial efforts 
were concentrated into an intense full-time two week 
period. Belet had composed some material for a 
pianist and wanted to design an IB configuration that 
transform the material in interesting and appropriate 
ways. This material formed the basis of Belet's 
(Disturbed) Radiance [Belet, 1994]. 

We worked together to create some new software 
components, such as one for creating trills from 
sustained single notes and another for adding short 
ornamentation notes to the attack of single notes. As 
we wrote and debugged these algorithms together, 
Belet gained a greater understanding of ill's musical 
representation, while Walker came to understand how 
Belet intended these musical transformations to relate 
to the music he had composed for the pianist. 

This foundation helped us to communicate when we 
resumed work in 1994, culminating in our premiere 
of Cross-Town Traffic, a piece for two improvising 
pianists and IB in November of 1995. Each pianist's 
improvisation is transformed by a copy of lB. The 
transformed material is realized on the other pianists' 
piano while he is playing. While each of us used a 
distinct IB configuration, our mutual understanding of 
the implementation and musical consequences of each 

Walker &. Belet 386 

other's IB configuration greatly aided our 
improvisation. 

2. ImprovisationBuilder 

ImprovisationBuilder[Walker, 1994; Walker, Hebel, 
Martirano, & Scaletti, 1992] is a framework for 
building computer improvisors. It is written in 
ParcPlace ObjectWorks/Smalltalk-80 on the Apple 
Macintosh. Smalltalk-80 primitives written in C 
connect ill to the Yamaha Disklavier and other MIDI 
devices. MIDI connections are handled by the Apple 
MIDI Manager, which sends data through the 
Macintosh serial port to a MIDI interface. 

The IB framework provides Smalltalk-80 classes 
corresponding to the tasks performed by improvising 
systems. Listeners process the incoming music, 
parsing it into phrases and focusing the system's 
attention. Transformers and Composers create new 
phrases, either by transforming phrases captured by 
the listener or by some compositional algorithm. 
Realizers express musical ideas appropriately, both 
through real-time presentation and by controlling 
Timbres that represent sound generating hardware. 
Improvisors monitor the information gathered by 
Listeners and use it to track progress through a map 
of the shared musical structure. 

ICMC Proceedings 1996 



By providing a class hierarchy of components for 
improvising systems, IB facilitates rapid testing and 
prototyping through the combination of existing 
components [Johnson & Foote, 1988]. Users can 
extend the framework by adding their own 
components to it. These new components reuse code 
provided by their superclasses and only implement the 
unique aspects of their behavior. IB also provides a 
standard representation of musical events for use by 
all components. 

JmprovisorComponents are combined in a linear 
chain, with a Listener at one end and a Timbre at the 
other. This chain of components is contained within 
an Improvisor, along with all the information the 
computer uses to improvise. The following sections 
describe the components of the framework. 

2.1. Listener 

IB's input components parse a stream of low-level 
MusicMessages into a stream of musically useful 
Phrases. This process involves two steps. First, a 
ChordStream processes the MusicMessages from the 
M/DllnputChannel into Chords. The ChordStream 
creates a new Chord for each new MusicMessage. 
Since the ChordStream performs a straightforward 
conversion between representations, it is reused in all 
IB configurations. Second, a Listener groups the 
Chords from the ChordStream into Phrases based on 
the Chords' pitches and durations. 

Two particular Listeners have seen the most use in 

i!Di! lmproulslllionBuildet iiE!I~ 

lnt<Mis(l235} lnt<Mi>(-2--1 -6) 

lnteMI>(6 8 10 13} lnteMI>(-6-10-11} 

lnl<Mi>( 13 t8 23 2 lnve~on Toggle 

Retrogr>.de Toggle Trill Toggle 

our work with the Yamaha Disklavier. A 
PauseListener detects silences longer than two 
seconds and begins a new Phrase after each pause, 
placing each incoming Chord into exactly one Phrase. 
In contrast, a FixedBufferListener stores the incoming 
Chords in a fixed size buffer and converts the buffer's 
contents into a Phrase when the system demands a 
Phrase to operate on. If a FixedBufferListener receives 
too many Chords before producing a Phrase, it 
discards the oldest Chords. 

2.2. Transformers and Composers 

Having parsed input from the other performers, the 
system's next task is to generate its own musical 
contribution. IB generates music with Composers, 
Transformers, or a combination of the two. 
Composers contain a musical algorithm that will 
create new Phrases. Transformers transform the 
output of a Listener, Composer, or another 
Transformer. Varying the parameters of Composers 
and Transformers can tailor them to specific musical 
situations. The human performer sets these 
parameters during performance by means of computer 
keyboard commands or through a control panel on the 
computer screen (see Figure 1). Composers and 
Transformers can also derive their parameters from the 
Improvisor's PolicyDictionary, a repository for shared 
information about the improvisation. 

Sal Martirano's Sound and Logic was the inspiration 
for the first Transformers in IB, including both 

iiDiil lmproulsallonBullder •01 

T,..,.posol I T,..,.poso 2 

T1'8113pOU 3 I T11111>poso4 

Tr&n>pooo5 llnvODion T ogglo 

YohmotoPilchTogglel Sl<ipO 

Slclp 10 1 Slclp 16 

Skip 26 1 Slclp48 

Voicing I I Voicing 2 

Voicing3 1Voicing1 

Figure 1. Belet's on-screen buttons (left) tum several processes on and off and control the pitches used for 
trills and attack harmonization, while Walker's buttons (right) govern the intervals of transposition, cyclic 
permutations for voicing, and percentage of note omission. 

ICMC Proceedings 1996 387 Walker & Belet 



standard techniques, such as Retrograde and 
Transpose, and special-purpose techniques, such as 
Excerpt, a scheme for generating short excepts from 
an input buffer, and Voicing, his cyclical permutation 
scheme for revoicing chords [Martirano, 1971; 
Martirano, 1988; Martirano, 1995]. The second set of 
Transformers, inspired by Belet's compositional 
ideas, include Attack.Harmonize, which adds transient 
notes to the attack of single notes, and Trill, which 
turns sustained notes into trills of various intervals. 

Composers create new Phrases by means of 
compositional algorithms. The existing Composer 
classes implement a variety of algorithms. 
HarmonyGenerator uses a library of chord voicings 
and rhythmic templates to create accompaniment or 
solo parts for a given set of chord changes. It serves 
as the basis for participating in jazz improvisation. 
RandomPhraseSource generates completely random 
Phrases, which are used for testing purposes. 
DrumPatternBuilder uses the same rhythmic 
templates as HarmonyGenerator to produce drum 
patterns with random variations. TransitionTable uses 
Markov chains to create material. 

3. Compositional Issues 

The output data generated by IB is responsorial by 
design (as described above). At any given moment, 
the IB output is based on material the pianist has 
performed earlier. This delay creates a composition 
(and performance improvisation) parameter that is 
simultaneously a physical restriction and an aesthetic 
focus. This restriction is neither positive nor 
negative; rather, it is part of the overall context in 
which this music exists, and it contributes directly to 
the composition process and the performing attitude. 

"Interactive" electro-acoustic music has been the hot 
buzzword in our field for several years, and it therefore 
requires qualification for each specific use. For 
compositions generated using IB in this context 
"performance interaction" is defined as a commentary 
by the computer on the input piano music data. It is a 
compositional restriction created for the specific 
aesthetic needs of our work, and is not offered as the 
only approach for all compositional needs. The 
performance model of small ensemble jazz 
improvisation is relevant to this paradigm. As one 
layer of music is performed by one player, the 
remaining ensemble members listen to and then 
respond to this music in their subsequent responsorial 
improvisations. Here the IB buffer is the analog to 
listening to the first music, and the IB algorithmic 
processing and output is the analog to the improvised 
response. This process can continue as the performer 
in tum listens to the IB output and then responds to it 
with additional improvisation, and the process can 
continue from performer to machine to performer, 

Walker & Belet 388 

closing the cycle of improvisational feedback. The 
process can be significantly expanded when two 
pianos are used with two computers each running lB. 
In our composition Cross-town Traffic the output of 
one performer's IB was used as the input to the other 
performer's piano, and vice versa. This creates a 
complex set of responsorial relationships as one 
performer is able to respond to the music generated 
directly by the other performer as well as to the music 
being generated on both pianos by cross-related IB 
outputs. 

A MIDI grand piano is used as the live performing 
instrument so that MIDI information may be used as 
input data for processing while the regular acoustic 
piano sound is heard directly. Our work has addressed 
composing and performing using either one or two 
Yamaha Disklaviers. The Disklavier has been fertile 
ground for other composers interested in extending 
traditional piano performance practice and 
compositional models through computer interaction 
[Bolzinger, 1992; Risset & Duyne, 1996]. 

As this interactive, responsorial layer is governed by 
probabilities and the random element within the 
Excerpt operation, the resulting music is different for 
each performance on the event and phrase levels. The 
structural level remains constant and deterministically 
in agreement with the source acoustic piano music 
(this assumes that the performers are working with a 
set structure for successive performances of a given 
composition so that the input to IB essentially steers 
the output towards the intended structure). As a 
result, a great deal of event and phrase level diversity 
is achieved from performance to performance, while 
unity of structure and design is preserved. 

4. Conclusions 

Much of software development for interactive 
computer music follows one of two patterns. In the 
first pattern the programmer is also the composer. 
Software development is guided by the composer's 
own aesthetics, and software design feedback is 
largely introspective. Such systems are likely to fit 
very closely to the composer's conceptual model and 
working style, offering high productivity and 
usability. However, such systems rarely become 
sufficiently general to serve a larger audience. 

In the second pattern, the composer builds a system 
from off-the-shelf software packages. These systems 
face a difficult trade-off: they either offer low-level, 
"aesthetically neutral" constructs and services 
(requiring considerable effort on the composer's part), 
or they contain musical assumptions (some of which 
may not coincide with the composer's vision). 

ICMC Proceedings 1996 



IB succeeds largely because of an iterative, 
collaborative design process. Believing that contrived, 
sterile laboratory conditions offer no real context for 
testing the usability or utility of an artifact, our goal 
is to get working prototypes into the hands of real 
users as early and as frequently as possible. By 
observing how these prototypes succeed or fail, we 
learn valuable lessons that inform the next prototype. 

Our intention as composers and performers is to 
explore and augment the ensemble improvisation 
process. Using IB has proved to be an aesthetically 
successful means of pursuing this goal. 

References 

[Belet, B., 1994] Integrating Real-time Interactive 
Software Synthesis, Pre-processed Resynthesis, 
MIDI data, and Acoustic Piano in Composition 
and Live Performance. In S. D. Beck (Ed.), 
Proceedings of the Society for Electro-Acoustic 
Music in the United States, (pp. 16-17). 
Middlebury, Vermont: SEAMUS. 

[Bolzinger, S., 1992] DKompose: A Package for 
Interactive Composition in the Max 
Environment, Adapted to the Acoustic MIDI 
Disklavier Piano. In Proceedings of the 
International Computer Music Conference, (pp. 
162-165). San Jose: International Computer 
Music Association. 

[Johnson, R., & Foote, B., 1988] Designing 
Reusable Classes. Journal of Object-Oriented 
Programming, 1(2), 22-35. 

[Martirano, S., 1971] An Electronic Music 
Instrument which combines the Composing 
Process with Performance in Real-Time. 
University of Illinois at Urbana-Champaign: 
unpublished. 

[Martirano, S., 1988] Everything Goes When the 
Whistle Blows. Baton Rouge: Centaur Records. 

[Martirano, S., 1995] A Sal vat ore Martirano 
Retrospective: 1962-1992. Baton Rouge: 
Centaur Records. 

[Risser, J.-C., & Duyne, S. V., 1996] Real-Time 
Performance Interaction with a Computer­
Controlled Acoustic Piano. Computer Music 
Journal, 20(1), 62-75. 

[Walker, W., 1994] A Conversation-based Framework 
for Musical Improvisation. Doctoral 
Dissertation, University of Illinois at Urbana­
Champaign. 

[Walker, W., Hebel, K., Martirano, S., & Scaletti, 
C., 1992] ImprovisationB uilder: Improvisation 
as Conversation. In Proceedings of the 
International Computer Music Conference, . San 
Jose: International Computer Music Association. 

ICMC Proceedings 1996 389 Walker & Belet 


	Applying lmprovisationBuilder to Interactive Composition with MIDI Piano
	Recommended Citation

	tmp.1684454044.pdf.Lr4XF

