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Abstract 

POK~MONCARDSANDTHE 
SHORTEST COMMON SUPERSTRING 

Mark Stamp and Austin E Stamp 
5827 Tompkins Drive 
San Jose, California 95129, U.S.A. 
<stamp @cs.sjsu.edu> 

Evidence is presented that certain sequences of Pokemon cards are determined by se lecting consecu-
tive clements from a longer sequence. We then consider the problem of recovering the shortest com-
mon superstring (SCS), that is , the shortest string that contains each of the Pokemon card sequences 
as a consecutive substring. The SCS problem ari ses in many appli cations, most notably in DNA 
sequencing. 

1. Introduction 
Pokemon are mythical bug-like creatures invented by Satoshi Tajiri fl] _ They were originally known as 
poketto monstaa, Japanese for pocket monster, a name that was eventually shortened to Pokemon. 

Pokemon first appeared as characters in a Game Boy game in 1996, a game that was available only in Japan. 
This, was followed by a Japanese cartoon, or anime, series (sec [2] for an unusual story concerning the orig-
inal Pokemon anime series). The game and television series, became world-wide successes. 

In 1999 a highly successful Pokemon trading card game was introduced. This game is sometimes described 
as a sophisticated form of the rock, paper, and scissors game. In the Pokemon version, each trainer (that is, 
player) has a set of trading cards that are used to battle the cards of an opposing trainer. So-called booster 
packs of cards are available so that a trainer can create decks of cards with various characteristics. 

2. Booster Packs 
We consider I I-card Pokemon booster packs from the hase one, unlimited edition series. In this series there 
are I 02 distinct cards, consisting of 32 common cards, 6 energy cards, 32 uncommon cards, 16 rare cards, and 
I 6 rare holofoil cards. The 32 common cards are numbered 43 through 69 (Pokemon cards) and 91 through 
95 (trainer cards), the energy cards are numbered 97 through 102, the uncommon cards are 23 through 42 
(Pokemon) and 80 through 90 (trainer) and 96 (uncommon energy), the rare holofol\il cards are numbered I 
through l 6, and the rare non-holofoil cards are 17 through 22 (Pokemon) and 70 through 79 (trainer). 

Each 11-card booster pack contains five common cards, two energy cards, one rare card, and three uncommon 
cards. Each type of card occurs consecuti vely as a block, but the order in which thcse blocks appear can vary 
from one printing to another. See [3] for more details about Pokemon and the trading cards considered in this 
paper. 

3. Shortest Common Superstring 
Consider the following four sequences, or strings, of common Pokemon cards: 

A = (95, 64, 44, 53, 57) 
B = (64, 44, 53, 57, 59) 
C= (44, 53, 57, 59, 91) 
D = (91, 56, 46, 45, 52). 

Observe that strings A and B overlap and the superstring (95, 64, 44, 53, 57, 59) is the shortest string that con-
tains both A and B. 

For common Pokemon cards, we consider the problem of finding the shortest common superstring, that is, the 
superstring of shortest length that contains all of the common card sequences as consecutive substrings. The 
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shortest common superstring problem arises in many applications, including DNA sequencing and data com· 
pression [4]. 
Let o(X, Y) be the maximum overlap when string Xis followed by 
string Y. To solve the shortest common superstring problem for the four 
common Pokemon card strings listed above we first construct, the com-
plete directed graph G, shown in Figure I, in which the arc from node X 
to node Y is given the edge weight o(X, Y) . Then a solution to the short· 
est common superstring problem is a directed Hamilton path (not nee. 
essarily a circuit) in G of maximum total arc weight. 
For the graph shown in Figure I the optimal solution is 

A~B~C~D . 

which has total arc weight 9 and consequently yields an shortest com-
mon superstring of length 11 . The shortest common superstring is given Figure 1: Directed graph q. 
as follows, with the initial point of each of the four strings as indicated: 

(1) 95, 64,44,53,57,59,91,56,46,45,52 
A B C D 

As an aside, it is interesting to note that the traveling salesman problem can be formulated in a manner very 
similar to the shortest common superstring problem. The significant differences between the two problems 
are that for the traveling salesman problem the underlying graph is undirected and the goal is to find the 
Hamilton path of minimum total edge weight [5]. 

4. Common Card Strings 

We examined 153 booster packs, carefully recording the common card string that appears in each pack. The 
resulting 153 common card strings contain a large number of duplicates, leaving only 88 distinct strings. 
Three of these 88 appear to have a pair of elements transposed. We believe this to be the case since the offend-
ing pairs do not appear within any other strings. However, if swapped, each appears as a substring multiple 
times within other strings. Thus, we consider a set of 85 distinct strings, each of length five. 
Recall that there are 32 distinct common Pokemon cards. In the 85 strings under consideration each of the 32 
distinct cards is succeeded by at most four different cards. This observation led us to conjecture that the com-
mon cards are drawn from a superstring of length 128, with each of the 32 distinct cards appearing four times 
within the superstring. Here we provide evidence that this is (approximately) the case. 
Let N denote the number of strings under consideration, L be the length of the underlying superstring, n be the 
number of distinct symbols, and let m be the length of each string. We assume that all strings are of the same 
length. In the Pokemon problem we have N = 85 , n = 32 , m = 5 , and Lis to be determined. We assume 
that the strings are noc allowed to "wrap", and hence, there are L - m + l positions at which the initial point 
of a string can occur. 
Since N < L - m + I , we can interpret 

(2) p = N 
l-m- 1 

as the probability of a sequence starting at a given point within the superstring and 1 - p as the probability 
that no string begins at a specified position. It follows that the expected number of strings that overlap in k 
positions is about 

(3) 
L-m-1 

and this holds for any k e { 1, 2, .. . , m - l }. Since we do not allow duplicate sequences k = m cannot occur. 
Lets; be the ith Pokemon card string. Define '9 to be the 85 x 85 overlap matrix given by ();. = o(s ;, s} . For 
the 85 sequences under consideration, the values in (9 are summarized in the following Table, where we have 
ignored the diagonal elements. 
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Table: Summary of overlap matrix V 

Overlap Number 

0 6744 
225 

2 54 

3 56 

4 61 

Suppose that the Pokemon common card strings arc selected at random (with replacement, for simplicity) and 
each symbol is equiprobable. Then the expected number of strings with overlap of length two is approxi-
mately 

N(N - I) 
n2 

which, for N = 85 and n = 32, is about 7. A similar calculation shows that the expected number of strings 
with overlap of length three or four are both less than one. 

We therefore expect, at random, to find about 7 pairs with an overlap of length two and no such random 
matches for any length greater than two. In the Table we see that the number of pairs with overlap of length 
two is actually less than the number with overlap three or four. One explanation for this is that every overlap 
of length 3 or 4 is causal (i.e., drawn from the superstring) and is not a random match. This could occur if the 
superstring was chosen so that no consecutive pair of elements is repeated within the supcrstring. We briefly 
return to this point in the next section. 

Ignoring any random overlap of length two, we average the number of overlaps, of length 2, 3, and 4 from the 
Table and obtain the value 57. We then set, Expression (3) equal to 57 and solve forthe unknown value l, to 
find L = 130. 75 . This result is close to our conjectured value, l = 128 . These calculat.ions indicate that the 
Pokemon card strings are not randomly selected. Furthermore, the numbers are consistent with our conjecture 
that the strings are selected from a supcrstring of about 128 elements. 

As mentioned already, any overlap of length three or four is, ,vith high probability. casual. However, an over-
lap of length three, for example, might not contribute any new information. In particular, if an overlap of 
length three coincides with two pairs of strings that have overlap of length four, then this only serves to rein-
force information that is already known to be almost certainly correct. Por ex.ample, consider the three strings 
A, B, and C from Figure 1. We have o(A, B) = o(B, C) = 4 and o(A, C) = 3, However, the overlap of 
length three does not contribute any useful information. Of course, a similar situation can arise with strings 
that overlap in fewer than three elements. This motivates the following definition. 

Definition 1: We refer to pairs of strings that have the maximum overlap within a block 
as relevant; those that do not are irrelevant. • 

In Figure 1, the pairs (A, B) and (IJ, C) are relevant, whereas (A, C) is irrelevant. 

The expected number of relevant pairs of strings can be estimated. For example, a pair of strings with overlap 
of length three is relevant provided that no string begins at the one superstring position that lies between the 
starting points of the pair of strings. The probability of this is I - p, where pis given in (2). 

ln the Pokemon problem all pairs of strings with overlap of length three are almost certainly causal, but only 
about 56( 1 - 85/124) or about 18 of these will be relevant. Similarly, about six of the overlaps of length two 
and about two of the overlaps of length one are relevant. In addition, we expect less than one of the overlaps 
of length zero to be relevant. To have any hope of recovering the true shortest common superstring we must 
have no relevant overlap of length zero, otherwise we would need to select matching pairs of strings where no 
score is available. 
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In general, about 

(4) N2 (1 N )m-k -1 
L-m+l -L-m+l 

of the causal k-overlapping pairs will be relevant. To simplify the recovery of the Pokemon shortest common 
superstring it would be useful to have no relevant overlaps of length one. In light of (4), and assuming 
L = 128 , we could attempt to increase N to the point where 

N2 ( N )3 - 1-- <l. 
124 124 

We find that any N 95 will suffice. Similarly, we would need N 112 before the expected number ofrel-
evant overlaps of length two would fall below one. With the 85 available Pokemon strings we expect to be 
able to construct a shortest common superstring for the Pokemon problem using only overlaps of length one 
and greater. In the next section we make use of this observation to devise a simple greedy algorithm to solve 
the Pokemon shmtest common superstring problem. 

5. A Greedy Solution 
Suppose we have N strings, s0 through sN-l · Then one approach to finding the exact shortest common super-
string solution would be to compute the overlap score associated with each of the N! permutations of l so, s1, 
s2, . .. , sN-l }. A permutation with maximum score would yield a solution to the shortest common superstring 
problem. Of course, the work factor for this approach is prohibitive, even for relatively small values of N. 
As a decision problem, the shortest common superstring, is known to be NP-complete [6]. Hence, in general, 
we cannot expect to find the exact shortest common superstring solution efficiently. However, there are effi-
cient techniques that are known to give good approximate solutions. For example, dynamic programming or 
a greedy algorithm will produce a solution whose length is within a small multiple of the shortest common 
superstring [ 4] [7] [8]. 
For the Pokemon shortest common superstring problem the 85x85 overlap matrix O is sparse, containing 
only about 400 nonzero entries. Furthermore, as the Table indicates, all pairs with overlap two or greater are 
likely causal. As discussed in the previous section, we also expect all but about two of the relevant overlaps 
to be of length two or greater. 
Given these observations, we implemented a simple greedy approach that includes branching in the case of all 
tie scores meeting or exceeding a given threshold. The algorithm begins by initiating a permutation for each 
of the N strings, 

perm[i}[0J = i, for i = 0, 1, ... , N - 1. 

Then we proceed to greedily construct a complete permutation out of each partial permurution by appending 
the eligible string with maximum overlap at each step. However, if there is more than one candidate string that 
attains the maximum overlap at a given step and that overlap meets or exceeds, a bound k, we create a new 
partial permutation (or branch) for each such string. 
From the definition of relevant strings it is clear that this greedy algorithm will yield all possible shortest com-
mon superstrings provided k is chosen so that all relevant overlaps are of length k or greater. We state this 
result as a theorem. 

Theorem 1: A greedy algorithm with branching on all ties of overlap k or greater will yield 
a shortest common superstring for the given data set provided there is no relevant overlap 
of length less thank. • 

The work factor for this greedy branching algorithm depends on the number of ties that meet or exceed the 
bound k. Generating and scoring any one permutation of length N requires, on the order of N2 work. The total 
work is therefore bounded by M N 2 , where M is the final number of permutations (i.e., superstrings). If we 
have chosen k correctly, then the highest scoring of these M superstrings will necessarily yield a shortest com-
mon superstring. We can obtain an estimate fork by using the methods of the previous section. 
Initially there are N partial permutations. With pas given in (2), the probability that any (partial) permutation 
has a relevant overlap of length k is 
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pk = p( I - p )m -k- I fork E { 1, 2, ... , m - 1} 

and 

m-1 

Po = 1- I, P1 · 
i = l 

23 

Furthennore, for any given partial permutation of length i, the expected number of random length one over-
laps is (N - i)ln. Combining these observations, we see that the expected value of M can be approximated by 
the product 

N- l 

M= NIT(l+xN,~i), 
i = 1 

where xis the probability of an overlap (causal or random) of length k. 
For the Pokemon problem we set x = p 0 + p 1 , since 
we expect random overlaps of length one whenever the 
causal overlap is of length zero or one. For N = 85, 
m = 5 , n = 32 , k = 1 , and a range of values for L, 
the computed expected values of Mare shown plotted in 
Figure 2. This plot indicates that if we are correct in our 
estimates for the length of the shortest common super-
string for the Pokemon sequences, then the amount of 
branching required to solve the problem will be easily 
manageable. 
For the Pokemon problem we begin with N = 85 

r 
I 

J 
---/ 

branches (i.e., partial pemmtations) and set k ;;;; 1 . The 
greedy-branching algorithm finishes with 403 super-
strings (i.e., complete permutations). The best scoring 

Figure 2: E(M) for N = 85, m = 5, and n = 32. 

permutation has an overlap of 303 and, hence, yields a common superstring of length 122. If our assumption 
that all relevant overlaps are of length k = I or greater is correct, then we have found a shortest common 
superstri ng. 

The superstring found by the algorithm is listed below, with the initial position of each the 85 strings (reor-
dered so that they are in sequence) listed beneath the corresponding superstring element. 

93 68 51 46 
0 2 

49 92 66 65 
to 11 

58 47 61 60 
22 23 

49 93 43 56 
(5) 32 33 34 

47 51 64 59 
44 45 46 47 

47 53 45 93 
57 58 59 

66 64 50 45 
70 71 72 73 

48 53 91 61 
82 

62 

63 
12 

64 
24 

60 
35 

68 
48 

44 
60 

58 
74 

63 
83 

95 64 44 53 57 
3 4 5 

94 50 55 68 48 
13 14 15 16 

65 67 68 57 44 
25 26 

53 63 55 45 95 
36 37 38 

62 57 91 67 51 
49 50 51 

63 49 43 50 56 
61 62 63 64 

59 92 43 52 57 
75 76 77 

54 47 60 93 66 
84 

59 91 56 46 45 52 
6 7 8 9 

43 67 69 62 51 54 
17 18 19 20 21 

62 59 69 52 66 58 
27 28 29 30 31 

61 92 48 54 50 46 
39 40 41 42 43 

60 52 65 54 55 95 
52 53 54 55 56 

61 58 94 48 69 46 
65 66 67 68 69 

55 49 94 44 56 65 
78 79 80 81 



24 Graph Theory Notes of New York XLVII (2004) 

Each Pokemon common card number occurs four times in the superstring (5), except for 67, 69, 91, 92, 94, 
and 95, each of which appears three times. Consequently, the length of the superstring is slightly less than 
conjectured. It is possible that this is simply due to a lack of data at either or both ends of the superstring. It 
is also the case that every overlap of length two or greater is causal. Apparently, the superstring was carefully 
chosen so as to avoid any repeated two-element patterns. In ad_dition, any five-element string selected from 
the superstring (5) does not contain duplicate card numbers. This feature insures distinct common cards 
within a Pokemon card booster pack. 

6. Data 
The complete set of data for the Pokemon cards analyzed in this paper is available at 

<http:/ /home.carthlink.net/-mstamp I /pokcmon/pokemondata.htm 1>. 
More data will be added as time and budget permits. 
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