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Dissolved Fe and Al in the upper 1000m of the
eastern Indian Ocean: A high-resolution transect
along 95°E from the Antarctic margin
to the Bay of Bengal
MaximeM. Grand1, Christopher I. Measures1, Mariko Hatta1, William T. Hiscock2, WilliamM. Landing3,
Peter L. Morton3, Clifton S. Buck4, Pamela M. Barrett5, and Joseph A. Resing5

1Department of Oceanography, University of Hawaii, Honolulu, Hawaii, USA, 2Thermo Fisher Scientific, North Ryde, New
SouthWales, Australia, 3Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida,
USA, 4Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia, USA, 5Joint Institute for the Study of
the Atmosphere and Ocean, University of Washington and PMEL/NOAA, Seattle, Washington, USA

Abstract A high-resolution section of dissolved iron (dFe) and aluminum (dAl) was obtained along ~95°E
in the upper 1000m of the eastern Indian Ocean from the Antarctic margin (66°S) to the Bay of Bengal (18°N)
during the U.S. Climate Variability and Predictability (CLIVAR) CO2 Repeat Hydrography I08S and I09N sections
(February–April 2007). In the Southern Ocean, low concentrations of dAl (<1nM) reflect the negligible dust
inputs impacting the water masses subducted in the circumpolar domain. The low dAl concentrations
characterizing the Southern Ocean terminate near 45°S, probably because of the advection of subtropical
water masses that received dust and sedimentary inputs in their formation region. Our subsurface dFe
data near the southern Kerguelen Plateau were significantly higher than historical observations in other Indian
sectors of the Southern Ocean. We surmise that the offshore advection of dFe-rich waters along the western
flank of the southern Kerguelen plateau and enhanced vertical mixing could contribute to this elevated
subsurface dFe inventory. Elevated subsurface particulate and dFe levels downstream of the northern
Kerguelen Plateau may reflect long-range lateral transport from the plateau’s sediments and/or remineralization
inputs. At the northern edge of the south Indian subtropical gyre, the deposition of Australian dust, possibly
combined with the advection of dAl-enriched waters from the Indonesian Throughflow, creates a region of
elevated dAl in the upper 400m but without a corresponding enrichment in dFe. In the northern Indian Ocean,
the South Equatorial Current constitutes a remarkable biogeochemical front separating the oxygen-rich and
dFe-poor subtropical gyre waters from the dFe-rich and oxygen-depleted waters of the northern Indian Ocean.
By tracing the accumulation of macronutrients and dFe along the advective pathway of Indian Central Water,
we show that the central waters of the northern Indian Ocean receive excess dFe in addition to that produced
by remineralization inputs. The resuspension of shelf sediments and release of pore waters probably contribute
to the elevated dFe and dAl levels observed below the highly stratified upper layers of the Bay of Bengal.

1. Introduction

The availability of iron (Fe) relative to the supply of macronutrients in vast regions of the oceans influences
marine productivity and may contribute to the regulation of atmospheric CO2 levels over glacial-interglacial
timescales [Martin, 1990; Martínez-Garcia et al., 2009, 2014]. For this reason, there has been a strong
motivation to incorporate parameterizations of the Fe cycle into global ocean biogeochemical models
of varying complexity [Archer and Johnson, 2000; Aumont et al., 2003; Parekh et al., 2004, 2005; Moore
and Braucher, 2008; Misumi et al., 2013; Tagliabue et al., 2014a]. Although ocean general circulation and
biogeochemistry models will ultimately provide the best means to assess the relative contribution of
various Fe sources to the contemporary oceanic Fe cycle and to test its sensitivity to anthropogenic forcing, the
development of a global database of Fe observations is first required to constrain simulations and, if needed,
improve model parameterizations [SCOR Working Group, 2007]. Over the last three decades, the database of
Fe observations has been greatly expanded during localized sampling campaigns and, more recently, through
basin-scale transects as part of the Climate Variability and Predictability (CLIVAR) [Grand et al., 2014] and
GEOTRACES [Anderson et al., 2014] programs [Measures et al., 2008a;Middag et al., 2009, 2011; Klunder et al., 2011,
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2012; Hatta et al., 2014; Rijkenberg et al., 2014]. However, vast areas of the oceans still remain where the density
of observations is inadequate or completely absent.

Sampling for trace elements along selected sections of the U.S. CLIVAR CO2 Repeat Hydrography Program
has provided an unprecedented opportunity to produce high-resolution sections of dissolved Fe and
aluminum (Al) in the upper 1000m of the Atlantic, Pacific, and Indian Oceans [Measures et al., 2008a;
Grand et al., 2014]. The principal motivations for measuring dissolved Fe and Al simultaneously on these
sections relate to the importance of dust deposition in delivering Fe to the remote ocean [Jickells et al., 2005]
and the utility of dissolved Al as a tracer of dust deposition inputs to the remote surface ocean, because
Al has no known biological requirement and has a longer residence time than Fe in the upper ocean
[Measures and Brown, 1996; Measures and Vink, 2000]. Below the surface, the distribution of dissolved
Al can be impacted by long-range transport of water masses that have been labeled with Al by dust
deposition in their ventilation region [Measures et al., 2008a], or from the resuspension of sediments and
release of pore waters near continental margins [Hatta et al., 2013; Middag et al., 2012, 2013].

The Indian Ocean is one of the most undersampled and least understood basin of the world oceans in terms
of its physical and biogeochemical dynamics [Hood et al., 2009]. The dearth of observations in the Indian
Ocean is particularly striking for Fe and Al, which have been sampled at only a handful of locations west
of Ninety East Ridge [Nishioka et al., 2013; Vu and Sohrin, 2013] and in the Arabian Sea [Saager et al., 1989;
Measures and Vink, 1999; Moffett et al., 2007; Kondo and Moffett, 2013]. Our current knowledge of the
distributions of dissolved Fe and Al is even more limited in the eastern Indian Ocean, where previous
observations consist of six soluble (<0.04 μm) Al profiles from 40°S to 10°N along 90°E–110°E [Obata et al.,
2004] and one full-depth vertical profile of dissolved Al and Fe in the Bay of Bengal [Vu and Sohrin, 2013].
In contrast, the Southern Ocean sector of the Indian Ocean has received more attention, with repeated
observations in the naturally Fe-fertilized waters of the Kerguelen and Crozet plateaus [Sarthou et al., 1997;
van Beusekom et al., 1997; Bucciarelli et al., 2001; Planquette et al., 2007; Blain et al., 2008] and south of
Australia and Tasmania [Sohrin et al., 2000; Sedwick et al., 2008; Bowie et al., 2009].

This work is concerned with a high-resolution meridional section of dissolved (<0.4μm) Fe and Al in the upper
1000m of the eastern Indian Ocean obtained during the U.S. CLIVAR CO2 I08S and I09N Repeat Hydrography
sections (Figure 1). This paper identifies the dominant source terms for each element from the Antarctic
margin to the Bay of Bengal in the context of the known physical and biogeochemical dynamics of the eastern
Indian Ocean. A companion paper describes the surface distribution of Al and Fe of this section in more detail,
with a particular focus on the biogeochemical impacts of dust deposition in the surface layer [Grand et al., 2015].
The data presented here allow the investigation of Fe and Al cycling across a wide range of biogeochemical
regimes and atmospheric deposition gradients. In particular, the Southern Ocean sector considered in this work
is located in the vicinity of the Kerguelen Plateau, which is characterized by negligible dust inputs and
anomalously elevated productivity. The south Indian subtropical gyre is impacted by dust emanating from
Australia and, at its northern edge, by the outflow of waters of Indonesian origin carried by the South
Equatorial Current (SEC). The northern end of the section allows investigation of the biogeochemistry of Fe
and Al across a remarkable biogeochemical gradient from the SEC to the Bay of Bengal. The latter is
characterized by oxygen-deficient waters beneath a highly stratified surface layer, the largest dust fluxes of
the transect and enormous riverine inputs of freshwater and suspended sediments from the Ganges-
Brahmaputra and peninsular rivers discharging into the Bay of Bengal. The present data set is the first of its
kind for the eastern Indian Ocean and will provide valuable constraints on numerical model simulations of Fe
and Al in the Indian Ocean.

2. Materials and Methods
2.1. Sample Collection and Shipboard Analysis

Seawater samples were collected aboard the R/V Roger Revelle during the U.S. CLIVAR CO2 Repeat Hydrography
I08S and I09N cruises following the trace metal clean protocols of Measures et al. [2008b]. The I08S transect
was started in the Indian sector of the SouthernOcean at the edge of the Antarcticmargin (65.8°S) in late austral
summer (15 February 2007) and was completed in the central south Indian subtropical gyre (28.3°S) on 13
March 2007. Sampling resumed on the I09N transect on 27 March starting from the last station of I08S and
ending a month later (27 April 2007) at 18°N in the Bay of Bengal (hereinafter referred to as BoB). The data set
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encompasses a total of eighty-five 12-depth vertical profiles spaced at approximately 1° intervals in the upper
1000m of the eastern Indian Ocean along 82°E–95°E (Figure 1). There are gaps in the coverage near 55°S
and 50°S in the Southern Ocean, because rough seas prevented deployment of the tracemetal rosette from the
stern of the ship.

Upon recovery of the rosette, seawater samples were filtered in a clean van through 0.4μm acid washed
47mm polycarbonate (GE-Poretics K04CP04700) track-etched membrane filters [Measures et al., 2008b]. The
filtrates were stored in the dark in an airconditioned laboratory container at ~25°C in 125mL acid-cleaned
polymethylpentene (PMP) bottles until shipboard analysis, which was usually performed within 48 h of
collection. Prior to analysis, the filtered samples were acidified with 125μL of 6M HCl, which was purified by

Figure 1. Cruise track, fronts, and principal currents along the CLIVAR I08S & I09N sections. Blue dots show the 85 trace metal
stations sampled. The color bar legend refers to the bathymetry. ACC: Antarctic Circumpolar Current; SKP: Southern Kerguelen
Plateau; FT: Fawn Trough; NKP: Northern Kerguelen Plateau; SACCF: South ACC Front; PF: Polar Front; SAF: Sub-Antarctic
Front; STF: Subtropical Front; SZ: Southern Zone; AZ: Antarctic Zone; PFZ: Polar Frontal Zone; SAZ: Subantarctic
Zone; SIOC: South Indian Ocean Current; SEC: South Equatorial Current; ITF: Indonesian Throughflow; SECC: South
Equatorial Counter Current; SMC: Southwest Monsoon Current; BoB: Bay of Bengal; SLD: Sri Lanka dome. Double headed
arrows denote seasonally reversing (monsoonal) currents. The red dashed rectangle shows the seasonally productive
region of the Sri Lanka dome (SLD).

Global Biogeochemical Cycles 10.1002/2014GB004920

GRAND ET AL. ©2015. American Geophysical Union. All Rights Reserved. 377



sub-boiling point distillation in a quartz glass still. The PMP bottles containing the acidified samples (pH= 2.2)
were then heated to 60 ± 10°C in a 900W microwave oven and allowed to cool to ambient temperature
for about 1 h. Analysis of dissolved Fe and Al (hereinafter referred to as dFe and dAl, respectively) was
performed in groups of 24–36 samples using the flow injection analysis (FIA) protocols of Measures et al.
[1995] and Resing andMeasures [1994], respectively. The FIAmanifold was calibrated at regular intervals using
filtered seawater of low dFe and dAl content prepared in the same way as the samples and spiked with
commercial Fe and Al standards. The PMP bottles containing the stock standards were stored in a refrigerator
at 4°C within a double plastic bag to prevent evaporation. The detection limits, defined as 3 times the
standard deviation of replicate 2.5mL loads (n= 16) of a Southern Ocean surface sample, were 0.07 nM for
dFe and 0.30 nM for dAl.

The FIA system dFe blank was estimated by spiking an acidified seawater sample (pH= 2.2) with 80μM
ethylenediaminetetraacetic acid (EDTA) and analyzing it along with unspiked samples during an analytical
run day. The resulting signal was then subtracted from all raw dFe values produced on that day. No
detectable acid or sample buffer blank was identified with the Al system. When necessary, the dFe and dAl
data were drift corrected using the slopes of the calibration curves to compensate for variations in
instrumental sensitivity during the course of a day.

2.2. Data Quality Control and Data Repository

Data quality flags were assigned to dFe and dAl data following the World Ocean Circulation Experiment
(WOCE) flag convention. A linear regression between the conductivity-temperature-depth (CTD) salinity and
that measured on discrete water samples was used to identify GO-FLO sampling bottles that did not close at
the specified depth. These samples were excluded from further analyses. Outliers observed on individual dFe
and dAl vertical profiles were carefully examined before assigning a quality flag. If the magnitude of the
observed anomaly was inconsistent with data from adjacent stations and/or other hydrographic parameters
(salinity, θ, N, P, and Si), then the sample was excluded due to suspected contamination. The EDTA blank
correction for dFe was exceptionally high for 13 consecutive stations between 41.5°S and 28.3°S and applying
the correction yielded slightly negative surface dFe values at some stations in this latitudinal band. Typically,
the magnitude of the FIA system blank for dFe is verified postcruise by comparing a subset of each day’s
shipboard run against data obtained by inductively coupled plasma–mass spectrometry (ICP-MS) analysis on
replicate stored samples [Measures et al., 2008b]. Unfortunately, it was only possible to compare our dFe data
with those of ICP-MS at four stations in the Bay of Bengal, because the remaining stored sample bottles
appeared to be contaminated with dFe. Since we are unsure of the validity of this part of the data set, we
conservatively excluded the dFe data from 41.5°S to 28.3°S. Overall, 4% and 18% of the analyzed dAl and dFe
samples were eliminated, respectively.

The SAFe reference standards were not analyzed during this cruise because the pH of that standard is
incompatible with our shipboard methodology, which was originally designed to handle samples acidified
with 1mL 6M HCl/L, not the 4mL 6M HCL/L of the SAFe standards. Nevertheless, we were able to compare our
shipboard dFe values with those run via ICP-MS at four stations in the Bay of Bengal, where the stored replicate
samples did not appear to be compromised. At the four stations in the Bay of Bengal, an ordinary least
squares fit between the shipboard and ICP-MS dFe data sets suggests that there is no apparent offset between
the two methods (slope± SE=1.01± 0.06; intercept± SE: �0.05± 0.06; R2 = 0.90, n=33). The accuracy of the
ICP-MS determinations at these four stations was assessed by analyzing the SAFe reference samples. The dFe
values measured by ICP-MS in the SAFe-S and SAFe-D2 samples were 0.099±0.054 nM (n=3) and 0.890
±0.09 nM (n=3), respectively, and compare well with the consensus values (SAFe-S: 0.093± 0.008 nM; SAFe-D2:
0.933±0.023 nM).

All dFe and dAl data and ancillary parameters (e.g., Lowered Acoustic Doppler Current Profiler (LADCP)
velocities and dissolved inorganic carbon (DIC)) used in this paper are publicly available on the CLIVAR &
Carbon Hydrographic Data Office website (CCHDO) using ExpoCodes 33RR20070204 and 33RR20070322
for I08S and I09N, respectively (http://cchdo.ucsd.edu). Note that particulate metal concentrations in total
suspended matter collected on the 0.4 μm acid washed 47mm polycarbonate filters were analyzed by
energy-dispersive X-ray fluorescence as described in Barrett et al. [2012]. Although these data will be
published elsewhere, we refer to a subset of this data set in the interpretation of our dFe and dAl data in the
Southern Ocean and Bay of Bengal.
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3. Results and Discussion

We subdivide the cruise track into three hydrographic regimes: the Southern Ocean domain (65.8°S–38°S),
the south Indian subtropical gyre and Indonesian Throughflow plume (38°S–15°S), and the northern Indian
Ocean and Bay of Bengal regime (15°S–18°N). Contour plots of salinity, oxygen, dAl, dFe, LADCP zonal
velocity, and nitrate are shown in Figure 2 along with the position of the principal water masses, fronts, and
currents identified on the I08S and I09N transects. All acronyms used in this paper that refer to the water
masses, currents, and hydrographic provinces are defined in the captions of Figures 1 and 2.

Themost striking features in the dAl distribution are the uniformly low values characterizing the Southern Ocean
domain (≤1nM), the sharp concentration gradient in dAl below 100m at the northern boundary of the Southern
Ocean near 45.5°S, and two regions of elevated dAl at the northern edge of the south Indian subtropical
gyre and in the BoB (Figure 2c). The distribution of dFe shows an entirely different pattern across the section
(Figure 2d). Elevated dFe values were measured in the immediate vicinity of the Antarctic shelf (up to 1.67 nM)
and below 200m beginning at the SEC and extending to the BoB (Figure 2d), where dFe concentrations
were greater than 1nM from 300 to 700m with maximum concentrations east of Sri Lanka (~8°N–10°N). The
lowest dFe levels were observed throughout the water column of the south Indian subtropical gyre (Figure 2d).

Figure 2. Property distributions along the CLIVAR I08S and I09N cruise tracks contoured using Ocean Data View 4.6.2 [Schlitzer, 2014]. (a) Salinity with overlaid potential
density contours (σ0), (b) dissolved oxygen (μmol kg�1), (c): dAl (nM), (d) dFe (nM), (e) LADCP zonal velocity (m s�1), and (f) nitrate (μmol kg�1). Note that the color
bar of the dAl plot only ranges from 0 to 12 nM (compared to the observed range of 0.3–32.35 nM) to minimize loss of detail at the lowest dAl levels (Figure 2c). We also
altered the linearity of the color mapping scale of the dFe contour plot to reveal details of the distribution in the Bay of Bengal (Figure 2d). The colored diamonds
show the position of the Southern Ocean fronts (see text) and South Equatorial Current (brown diamond). ASW: Antarctic Surface Water; SASW: Subantarctic Surface
Water; UCDW: Upper Circumpolar Deep Water; AAIW: Antarctic Intermediate Water; SAMW: Subantarctic Mode Water; STUW: Subtropical Under Water; ITW: Indonesian
Throughflow Water; IIW: Indonesian Intermediate Water; BBW: Bay of Bengal Water; NICW: North Indian Central Water; ACC: Antarctic Circumpolar Current; SICC:
South Indian Counter Current; SEC: South Equatorial Current; SECC: South Equatorial Counter Current; SMC: Southwest Monsoon Current; SIO Gyre: South Indian Ocean
Gyre; ITF: Indonesian Throughflow.
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In the following section, we describe the circulation, water masses, and other relevant hydrographic features in
relation to the distribution of dFe and dAl in the upper 1000m of each hydrographic domain. We will discuss
the most striking features of the dAl and dFe distributions, their most probable origins, and biogeochemical
implications starting from the Southern Ocean domain (65.8°S–38°S) and ending at the northernmost stations
in the BoB (18°N).

3.1. Southern Ocean Domain (65.8°S–38°S)
3.1.1. Oceanographic Setting
The eastward flowing Antarctic Circumpolar Current (ACC) governs the circulation of the Southern Ocean
domain. In our study area, the ACC circulation is greatly impacted by the shallow topography (<2000m) of
the Kerguelen Plateau (Figure 1), which constitutes a major barrier to the ACC. According to Park et al. [2009],
about 60% of the total ACC transport passes north of Kerguelen Island. The remaining 40% is mostly channeled
through Fawn Trough, a deep gap (~2650m) which divides the Kerguelen Plateau into the northern and
southern plateaus near 56°S (Figure 1). The ACC flow is concentrated in three main fronts that were identified
using the property criteria of Orsi et al. [1995]. These fronts separate zones with relatively uniform
temperature/salinity (T/S) and macronutrient properties. The Southern Ocean domain is bounded to the
north by the Subtropical Front (STF) near 38°S, whose position varies between basins and is sometimes more
poorly defined than the principal ACC fronts, and to the south by the Southern Boundary (SB), which appears to
merge with the South ACC front (SACCF) near 63°S on the I08S section (Figure 1). The Subantarctic Front (SAF),
the strongest jet of the ACC flow field, was positioned near 49°S. The Polar Front (PF) was placed in a band
spanning 3° of latitude (57°S–54°S) because a great deal of variability obscured its positioning using the
subsurface temperature criterion of Orsi et al. [1995]. We note that similar ambiguity in defining the location of
the PF was also reported during a previous occupation of the I08S transect [McCartney and Donohue, 2007].
While this could reflectmultiple filaments of the PF, the variability in properties could also be related to the large
poleward meander of the PF downstream of the Kerguelen Plateau and the eddy-rich flow field of the Polar
Frontal Zone [Belkin and Gordon, 1996; McCartney and Donohue, 2007]. The ACC fronts separate four zones
[Talley et al., 2011]: the Southern Zone (SZ) poleward of the SACCF, the Antarctic Zone (AZ) between the SACCF
and the northern branch of the PF (54°S), the Polar Frontal Zone (PFZ) from the PF to the SAF, and the
Subantarctic Zone (SAZ), which extends from the SAF to the STF (Figures 1 and 2).

Antarctic Surface Water (ASW) and Subantarctic Surface Water (SASW) occupy the upper ocean south of the
PF and north of the SAF (Figure 2a), respectively [Talley et al., 2011]. The transition from ASW to SASW is
accompanied by an increase in salinity, a gradual drop in oxygen and nitrate concentrations, a near-complete
depletion of dissolved silica and a northward decrease in surface dFe from 0.46 ± 0.22 nM (n= 5) in the SZ,
0.23 ± 0.10 nM (n=8) in the AZ, to 0.17 ± 0.06 nM (n= 10) in the PFZ&SAZ. Intermediate-depth water masses
in this region include Upper Circumpolar Deep Water (UCDW) and Antarctic Intermediate Water (AAIW).
UCDW shoals to about 100m near the SACCF and has origins in the deep Pacific and Indian oceans
[Whitworth and Nowlin, 1987; Orsi et al., 1995]. UCDW is the subsurface oxygen minimum (<180μmol kg�1)
lying at density values 27.35 kgm�3< σθ< 27.75 kgm�3, which shoals to about 150m between the SACCFand
the southern branch of the PF (57°S). It can be visualized as the tongue of elevated nitrate poleward of the
30μM nitrate contour (Figure 2f). On this section, the mean dFe concentration of UCDW was 0.51± 0.16 nM
(mean ± 1 SD, n= 19), comparable to the 0.4–0.5 nM dFe range reported in other sectors of the Southern
Ocean [Hoppema et al., 2003 and references therein]. The core of the low salinity AAIW is centered at
σθ = 27.2 kgm�3 and is found between the SAF and the northern reaches of the south Indian subtropical
gyre [Fine, 1993; Wong, 2005].
3.1.2. Advection of dAl Enriched Waters From the Agulhas Region
Except in the SZ, where dAl values reached up to 2.1 nM, the concentration of dAl in the Southern Ocean
poleward of the SAF was uniformly low with values generally below 1nM in the upper 1000m (Figure 2c). In
fact, in the Southern Ocean (65.8°S–38°S), 55 samples out of 287 (~19%) had dAl levels equal to or less than
the analytical detection limit (~0.3 nM). From the SACCF to the SAF, the dAl profiles were nearly featureless,
exhibiting only small concentration gradients from the surface to 1000m. A surface dAl maximum and a
subsurface minimum were observed in some profiles [e.g., Middag et al., 2011], but this was not a consistent
feature and the differences were not significantly greater than the analytical uncertainty. Our data confirm
that dAl concentrations in the Southern Ocean are among the lowest found in the global ocean with values
typically less than 1 nM throughout the main thermocline (Figure 2c). Middag et al. [2011] report dAl in the
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upper 1000m of the ACC along the Greenwich meridian averaging 0.74 ± 0.44 nM (±1 SD, n=94), which
matches our mean dAl concentration of 0.79 ± 0.60 nM (n=229) from all ACC stations in this study. Surface
dAl (<25m) from the Antarctic margin to the STF was 0.54 ± 0.25 nM (n= 25), comparable to previous reports
near the Greenwich meridian (0.71 ± 0.43 nM [Middag et al., 2011]), Drake Passage (0.39 ± 0.21 nM [Middag
et al., 2012]), and southeast of New Zealand (0.38 ± 0.05 nM [Measures and Vink, 2000]). The low dAl levels
that characterize the remote Southern Ocean reflect the negligible mineral dust inputs impacting the surface
of the circumpolar ocean [Grand et al., 2015] and the subsequent subduction of these dAl-depleted water
masses into the ocean interior. The lack of a significant margin imprint of dAl compared to dFe has been
previously observed near Drake Passage [Hatta et al., 2013; Measures et al., 2013]. Whether this is a result of
the inhibiting effect of elevated Si levels on dAl release from resuspended shelf sediments in Antarctic
regions [Van Hulten et al., 2014] is unknown at this time.

The most striking feature in the dAl distribution in the eastern Indian sector of the Southern Ocean (>38°S) is
the sharp dAl concentration gradient below 100m between the SAF and the STF (Figure 2c). A closer look at
three vertical dAl profiles sampled within this region from 47°S to 45°S shows that dAl levels below 100m
increase by more than 0.5 nM over a degree of latitude (Figure 3a). In the Crozet Basin near 60°E, van
Beusekom et al. [1997] observed a meridional trend in unfiltered Al that is strikingly similar to the one we
observed, that is, low Al values (<1 nM) throughout the water column poleward of 50°S and a sharp front
near 45°S separating Al-depleted circumpolar waters from Al-rich subtropical waters (>4 nM). At the Crozet
Basin and along the present section, the transition from low to high Al waters was accompanied by a
significant increase in salinity and potential temperature (Figure 3b), suggesting that the meridional increase
in dAl concentrations is the product of advected subtropical waters. In the Crozet region, van Beusekom et al.
[1997] attributed the sharp meridional increase in Al to the Agulhas Return Current and speculated that
this current carries waters imprinted with a dust signal between Africa to the Crozet Basin, which would
be preserved due to minimal scavenging removal along the transport pathway. An advected dAl signal
emanating from Africa is consistent with the adjusted steric height maps of Reid [2003]. These maps display
streamlines flowing southward along the east coast of Africa as part of the Agulhas Current system,
which then loop eastward along the latitudinal band (~45°S–40°S) where we observed the discontinuity
in the dAl distribution (Figures 2c and 3a). Recent data from seven stations of the CLIVAR I05 section
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Figure 3. (a) Vertical dAl profiles at three CLIVAR I08S stations across the dAl concentration gradient (47°S–45°S) at the
northern edge of the Southern Ocean domain. (b) T/S properties from the three CLIVAR I08S stations and from the
CLIVAR I05 section in the Agulhas Current region along the South African shelf (32°S, 30.3°E–32.2°E), where the dAl
enrichment seen on the present section may originate. Only data within the density intervals σθ = 26.6–27.2 kg m�3

(>100 m) are included in these plots.
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(M. M. Grand et al., The impact of circulation and dust deposition in controlling the distributions of dissolved
Fe and Al in the south Indian subtropical gyre, manuscript in preparation, 2015) that crossed the Reid [2003]
streamlines in the Agulhas Current along 32°S and 30.3°E–32.2°E showed that the mean dAl concentrations
were 4.5 ± 0.9 nM and 3.0 ± 0.3 nM, between potential density contours 26.6–26.8 and 26.8–27.2 kgm�3,
respectively. We measured 1.5 ± 0.5 and 2.1 ± 0.6 nM dAl within the same density intervals at seven stations
just north of the dAl concentration gradient (>46°S). Figure 3b also shows that the T/S properties of the
CLIVAR I08S stations where the gradient in dAl occurs tend to approach the linear T/S properties of the central
waters observed during the CLIVAR I05 section between σθ =26.6–27.2 kgm

�3 near the south African shelf.
Therefore, the sharp increase in dAl concentrations observed at ~45°S along 95°E seems consistent with a dAl
signal eroded via mixing and scavenging processes that originated from the Agulhas Current region. Although
van Beusekom et al. [1997] attributed the dAl enrichment at the edge of the Southern Ocean domain to a
subducted and advected dust signal, it is also possible that the resuspension of shelf sediments along the
advective pathway of the Agulhas Current along the coast of Africa contributes to the dAl enrichment observed
along our cruise track.
3.1.3. Elevated Subsurface dFe South of the Polar Front
Figure 4 shows the mean austral spring (October–December) surface chlorophyll-a levels from 1997 to 2007
based on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imagery in the eastern Indian sector of the
Southern Ocean. This satellite chlorophyll-a climatology and the recent model estimates of net primary
productivity of Takao et al. [2012] show that the I08S cruise track transected two anomalously productive
sectors of the high-nutrient low-chlorophyll (HNLC) Southern Ocean. The first extends from the Antarctic
margin until the ice limit defined by Park et al. [1998] near 56°S–58°S and is possibly fueled by the advection
of Antarctic waters from the south carrying biomass and nutrients along the western flank of the southern
Kerguelen Plateau [Rintoul et al., 2008]. The second productive zone, north of PF, has been attributed to
natural Fe fertilization, with the Fe supplied via resuspension of shelf sediments and lateral transport of
waters that have been in contact with the plateau’s sediments [Blain et al., 2008; Chever et al., 2010]. In the
following, we compare our mean Southern Ocean dFe concentrations with historical observations and then
discuss the principal sources of dFe in relation to the circulation and productivity patterns that characterize
our study area (Figure 4).
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Figure 4. Mean climatological austral spring (October–December) surface chlorophyll-a levels (mgm�3) from 1997 to
2010 in the southeast Indian Ocean based on SeaWiFS satellite imagery. The black diamonds show trace metal stations
sampled on the I08S cruise track. SeaWiFS data retrieved from http://oceanwatch.pifsc.noaa.gov.
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Table 1 lists the mean dFe values
observed south and north of the
northern branch of the PF (54°S)
along with the measurement
compilation statistics of Tagliabue
et al. [2012] for the Indian sector of
the Southern Ocean (20°E–180°E). Note
that seven stations with a bottom depth
shallower than 2000m (near the
Antarctic margin and above the
southern extension of the Kerguelen
Plateau near 60°S) were excluded from
the statistics displayed in Table 1 to

ensure a meaningful comparison with the definition of “off-shelf” used in the database of Tagliabue et al.
[2012]. On the I08S transect, the mean dFe concentrations in the upper (0–100m), intermediate (100–500m),
and deep (500–1000m) depth intervals were significantly higher in the Antarctic Zone (AZ) than in the Polar
Frontal Zone and Subantarctic Zone combined (PFZ&SAZ; Mann–Whitney U test, p< 0.05). This overall trend of
decreasing dFe concentrations to the north in surface and intermediate waters is consistent with the
aforementioned database (Table 1). However, our mean dFe concentrations were more than twice those of the
database in AZ waters deeper than 100m and also in the deepest depth interval of the PFZ&SAZ (500–1000m;
Table 1). This database does not include the region of our cruise track above and downstream of the Kerguelen
Plateau, which, as we discuss later, is the most likely source for this subsurface dFe enhancement.

Poleward of the PF, potential dFe sources to the upper layers include sedimentary inputs [Dulaiova et al.,
2009; Ardelan et al., 2010; de Jong et al., 2012; Measures et al., 2013; Hatta et al., 2013; Klunder et al., 2014], the
seasonal melting of sea ice and icebergs enriched in dFe from shelf and dust inputs [Lannuzel et al., 2007,
2010; Lin et al., 2011], and upwelling inputs from deep waters [de Baar et al., 1995; Croot et al., 2004; Klunder
et al., 2011]. The latter process may lift the ferricline to shallower depths [Sokolov and Rintoul, 2007; Boyd and
Ellwood, 2010], thereby facilitating the entrainment of dFe-rich deep waters into the euphotic zone during
deep winter mixing [Nishioka et al., 2011; Tagliabue et al., 2014b]. Dust deposition is a negligible source of
dFe to surface waters of the Southern Ocean domain [Tagliabue et al., 2014a]. Indeed, using mixed layer
dAl data from our cruise track and a modified version of the Measurement of Al for Dust Calculations in
Oceanic Waters model (MADCOW) [Measures and Brown, 1996; Grand et al., 2015] calculated that the
dissolution of mineral dust could supply 1.2 ± 1.1μmolm�2 yr�1 of dFe to surface waters of the Southern
Ocean domain. This aeolian flux is small relative to the mean dFe inventory (12 ± 5μmolm�2, n= 23)
observed in the mixed layer (53 ± 20m, n= 23) of our Southern Ocean domain and nearly 20 times smaller
than the mean winter entrainment pulse of dFe (21.1μmolm�2 yr�1) recently estimated for the Southern
Ocean [Tagliabue et al., 2014b].

Poleward of the SACCF (63°S), in the Southern Zone (SZ), the most important dFe sources are most likely shelf
inputs from the Antarctic margin at depth and the seasonal melting of fast ice and grounded icebergs near
the surface. Elevated dFe concentrations (0.64–1.67 nM) were observed at all depths at the two stations
closest to the Antarctic shelf (bottom depth 450m), consistent with previous observations in other Antarctic
sectors that attributed enhanced dFe to shelf sediments [Sohrin et al., 2000; Sedwick et al., 2008; Klunder et al.,
2011; Hatta et al., 2013; Measures et al., 2013]. Two lines of evidence support the existence of sedimentary Fe
inputs in the SZ. The first is the absence of correlation between dFe and apparent oxygen utilization (AOU)
from the base of the mixed layer to the depth of the oxygen minimum in the dense and cold waters of
the SZ (σ0> 27.5 kgm�3, θ< 0°C), implying that remineralization processes are not the sole source of dFe
there (data not shown). In contrast, dFe and AOU are linearly correlated farther north in the AZ and PFZ&SAZ,
suggesting that sedimentary dFe inputs in these regions do not overwhelm the dFe signal resulting from the
remineralization of organic matter (data not shown). The second is that unlike any other region sampled
along the cruise track, dAl and dFe were positively correlated throughout the water column of the SZ
(R2 = 0.68, n=44; Figure 5). This correlation implies that a common process, presumably of sedimentary
origin, regulated their distributions (Figure 5). The surface freshening (Figure 2a) and elevated yet spatially
variable dFe concentrations (0.46 ± 0.22 nM, n= 5) observed at all stations of the SZ suggest that the melting

Table 1. Dissolved Fe (dFe) Statistics (mean ± 1 SD) South and North of
the Polar Front From This Study Compared With a Recent Compilation
of Historical Observations in the Indian Sector of the Southern Oceana

Depth Range (m) This Study Databaseb

AZ(<54°S) 0–100 0.34 ± 0.15 0.43 ± 0.51
100–500 0.64 ± 0.28 0.32 ± 0.24
500–1000 0.69 ± 0.22 0.28 ± 0.14

PFZ&SAZ(54°S–38°S) 0–100 0.18 ± 0.10 0.23 ± 0.20
100–500 0.27 ± 0.11 0.24 ± 0.19
500–1000 0.53 ± 0.12 0.30 ± 0.11

aAZ: Antarctic Zone; PFZ&SAZ: Polar Frontal Zone and Subantarctic Zone.
bTagliabue et al. [2012].
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of fast ice and grounded icebergs
enriched in particulate and dissolved Fe
is another possible source of dFe to
surface waters of the SZ [Lannuzel et al.,
2007, 2010, 2014].

Farther north, in the AZ, two mechanisms
related to the interaction of the ACC with
the shallow topography of the southern
Kerguelen Plateau may be invoked to
explain the anomalously elevated dFe
concentrations that we observed
deeper than 100m (Table 1). The first
mechanisms involve the northward
meander that the ACC executes around
the western flank of the Kerguelen
Plateau prior to passing through the
Fawn Trough (Figure 1), which truncates
the southern and northern portions of
the Kerguelen Plateau near 56°S, 78°E
[Rintoul et al., 2008; Roquet et al., 2009]. In
their investigations of the origin of the
large sea ice tongue that recurrently

forms near 85°E above the southern Kerguelen Plateau, Rintoul et al. [2008] observed and modeled strong
northward currents near 85°E that likely carry sea ice and waters from the SZ to the latitude of the Fawn
Trough (Figure 1). Offshore flow near 85°E may also carry dFe-enriched waters northward, which, as we
showed above, likely received dFe from shelf sediments at depth (Figure 5) and ice melt inputs near the
surface. The second mechanism that may contribute to the elevated dFe observed below the mixed layer in
the AZ revolves around the possibility of enhanced upwelling above the southern Kerguelen Plateau due to
the bottom pressure torque that results from the interaction of the ACC with the shallow bathymetry
(<2000m) of the plateau [Sokolov and Rintoul, 2007] and/or enhanced vertical mixing associated with strong
internal tides [Park et al., 2008]. Such processes may enhance the uplift of dFe-rich deep waters to shallower
depths, thereby contributing to the anomalously elevated values that we observed deeper than 100m in
the AZ relative to other Southern Ocean regions devoid of shallow bathymetry (Table 1). In this regard, it
is worth noting that the recurrent annual blooms observed in the vicinity of major bathymetric features
around the Southern Ocean (including our study region across Kerguelen Plateau) appear to coincide with
model outputs of enhanced vertical velocities [Sokolov and Rintoul, 2007]. This observation suggests that
topographic upwelling is an important process that could supply deep dFe to the upper layers and fuel
the hot spots of productivity observed near bathymetry along the flow path of the ACC. In summary, we
speculate that the offshore advection of dFe rich waters from the SZ near 85°E and enhanced upwelling
above the southern Kerguelen Plateau are likely to sustain the elevated dFe values that we observed below
the mixed layer in the AZ of our cruise track. The entrainment of these dFe-rich subsurface waters into the
euphotic zone during deep winter mixing [Measures and Vink, 2001; Tagliabue et al., 2014b] may also contribute
to the hot spot of productivity that characterize the AZ of our cruise track in austral spring (Figure 4).
3.1.4. Elevated Subsurface dFe in the PFZ-SAZ Downstream of Kerguelen Plateau
The Kerguelen bloom is one of the largest recurrent blooms of the Southern Ocean and appears to be
fueled in dFe via lateral transport of waters that have been in contact with the plateau’s sediments as
well as enhanced vertical mixing of dFe-rich deeper waters [Moore and Abbott, 2000; Chever et al., 2010;
Park et al., 2008]. The bloom typically extends 1000–2000 km downstream of the Kerguelen Fe source in
a matter of weeks, which is much shorter than the 2–3month period required for transport by the ACC
over such a distance [Mongin et al., 2009]. This excludes the possibility that the spatial extent of the
Kerguelen Bloom is simply a product of advection and suggests that there is potentially enough dFe of
Kerguelen origin advected during the unproductive winter season to produce and sustain the bloom
when favorable light and stratification conditions return [Mongin et al., 2009].
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The PFZ&SAZ sampled in this study encompasses
four stations located ~1500 km southeast of the
naturally Fe fertilized area of the Kerguelen-Heard
Plateau [Blain et al., 2008]. We observed a great
deal of variability in the vertical dFe profiles and
T/S plots at the four PFZ stations that were within
the annual Kerguelen bloom (Figure S1 in the
supporting information). This variability may
reflect the presence of a dense field of mesoscale
eddies spanning across the PFZ-SAZ inferred from
sea surface height altimetry maps of February
2007 (Figure S2). Our mean dFe values in the
PFZ-SAZ compare well with the database of
Tagliabue et al. [2012], except in the 500–1000m
depth interval, where our values were significantly
higher (Table 1). Several processes may act in
concert to produce elevated deep dFe levels
(500–1000m) on our cruise track, downstream of
the Kerguelen Plateau. In the first, discussed
previously, interaction of the ACC with the
Kerguelen Plateau could enhance vertical mixing
[Sokolov and Rintoul, 2007; Park et al., 2008].
This may entrain dFe-rich waters to shallower
depths and this anomaly could be propagated
~1500 km to our cruise track [Sokolov and Rintoul,
2007]. It is also possible that a sedimentary
signal emanating from the Kerguelen Plateau’s
sediments is advected to our cruise track. In this
regard, the particulate Fe profiles (>0.4 μm)
measured on the cruise show a distinct tongue of
elevated particulate Fe centered near 50°S and
deeper than 300m in the SAZ downstream of
Kerguelen Plateau relative to stations sampled

in the AZ near Fawn Trough (Figure 6). It would take approximately 87–174 days for a water mass in contact
with the plateau’s sediments to travel the ~1500 km separating the plateau from our cruise track assuming
an eastward ACC flow of 0.1–0.2m s�1 below 500m in the PFZ-SAZ. Considering that the residence
time of pFe in SAZ waters southeast of New Zealand was estimated to be on the order of 100 days
[Frew et al., 2006], it is conceivable that the remnants of a particulate and dFe signal emanating from the
plateau’s sediments could be transported and detected along our cruise track. Finally, organic matter
remineralization could also contribute to the elevated subsurface dFe observed in the PFZ-SAZ since we
sampled the region in late February at the end of the annual Kerguelen bloom when surface chlorophyll-a
levels had returned to background levels (<0.3mgm�3).

3.2. Subtropical Gyre and Indonesian Throughflow Plume (38°S–15°S)
3.2.1. Oceanographic Setting
We define the south Indian subtropical gyre as the region extending from the Subtropical Front (STF) to the
westward flowing South Equatorial Current (SEC) near 15°S (Figure 1). The circulation in the upper 200m of the
central gyre is dominated by the northeastward flowing South Indian Counter Current (SICC) and conforms
to the anticyclonic gyral circulation deeper than 200m [Reid, 2003; Siedler et al., 2006; Talley et al., 2011].
The upper thermocline is composed of Subtropical Underwater (STUW), characterized by an equatorward
spreading salinity maximum in the upper 300m of the gyre (Figure 2a). In the southern reaches of the
gyre at the base of the STUW, Subantarctic Mode Water (SAMW) occupies the water column between
σθ = 26.6 and 26.8 kgm�3 (Figure 2a). SAMW is a product of the Southern Ocean subantarctic zone and is
formed during deep winter convection. This process yields a thick water mass of relatively uniform
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properties that is subducted northward into the subtropical gyre. On this section, we sampled the densest
variety of SAMW (also known as Southeast Indian Subantarctic Mode Water (SEISAMW)), which probably
originated from the subantarctic region south of Australia [Karstensen and Tomczak, 1997; Wong, 2005;
Koch-Larrouy et al., 2010]. Below the SAMW and deeper than 750m lies the characteristic salinity minimum
of AAIW, which extends to about 20°S in the gyre (Figure 2a).

At the northern end of the gyre, the SEC carries low-salinity waters of the Indonesian Throughflow (ITF)
westward at surface and intermediate depths across the Indian Ocean [Gordon et al., 1997; Schott and
McCreary, 2001; Talley and Sprintall, 2005]. On this section, the ITF outflow was associated with a sharp
surface salinity front near 15°S (Figure 2a), a well-defined zone of westward velocities in the upper
200m (Figure 2e) and a bullet of fresh and silica-rich (>80 μM) waters extending from 15°S to 11°S at
intermediate depths (>800m), which characterizes Indonesian Intermediate Water (IIW). The upper ITF
layer is commonly referred to as Indonesian Throughflow Water (ITW) and fills the upper 400m of
the water column. Note that this water mass is also referred to as Australasian Mediterranean Water
(AAMW [You and Tomczak, 1993]) but we use themore recent ITW naming convention, which is more explicit
in terms of its source region.
3.2.2. Australian Dust Deposition and Indonesian Throughflow
The most striking feature in the subtropical dAl distribution is the region of elevated values (>4 nM) centered
near 18°S and extending from the surface to about 400m at the northern edge of gyre (Figure 2c). The
surface maxima (up to 11.7 nM) of all vertical dAl profiles in this region result from the deposition and
dissolution of mineral dust emanating from Australia [Grand et al., 2015]. This signal is then injected into the
upper 200m of the gyre via subduction along outcropping isopycnals from ~25°S to 18°S (Figures 2a and 2c).
Low scavenging rates arising from the low productivity of the south Indian gyre likely play a role in the
maintenance of this zone of elevated dAl, consistent with the lack of pronounced subsurface dAl minima in
the vertical dAl profiles of the gyre.

The elevated dAl concentrations observed at the northern limb of the south Indian subtropical gyre may
also reflect the lateral advection of ITF waters (Figure 2c), which are imprinted with a significant surface
228Ra signal from shelf sediments and a specific surface rare earth element pattern sourced from the
Pacific and Indonesian Seas [Nozaki and Yamamoto, 2001; Alibo and Nozaki, 2004]. In particular, the
outflow of ITF waters could be invoked to explain the origin of the elevated dAl levels (>4 nM) observed
below 200m (σθ> 25.5 kgm�3) from 20°S to 10°S, which cannot be a product of subduction since the
isopycnals occupying this depth range outcrop south of 30°S where the surface dAl concentrations were
less than 4 nM (Figure 2c). In this regard, we note that some of the highest dAl concentrations of the gyre
overlap with the position of the westward flowing SEC (Figures 2c and 2e). In addition, the sharp decline
in dAl at the northern boundary of the region of elevated dAl near 10°S coincides with a reversal in
LADCP current velocities, marking the transition from the westward flowing SEC to the eastward flowing
South Equatorial Counter Current (SECC; Figure 2e). If the lateral transport of ITF waters was the principal
source of dAl at the northern limb of the south Indian subtropical gyre, one would expect to observe
a negative gradient in dAl concentrations from the ITF outflow to our cruise track because some of the
dAl should be lost via mixing and scavenging processes along the flow path of the SEC. However, our
dAl concentrations within the core of the SEC at 12.5°S were generally higher than the soluble Al data
(<0.04 μm) of Obata et al. [2004] collected near the ITF outflow at 12.5°S, 117°E (Figure S3). This may
result from interannual variations in the strength or interaction of the ITF with sediments between
the 10 years that separated our sampling from that of Obata et al. [2004]. More observations in the
Indonesian seas and along the advective flow path of the SEC are needed to investigate the potential
role of the ITF in supplying dAl and perhaps other trace elements across the northern limb of the south
Indian subtropical gyre.

Deep dAl values were relatively uniform across the gyre and ITF plume region with a mean concentration of
2.5 ± 0.3 nM (n= 20, >980m). The only other published dAl data in the south Indian subtropical gyre were
collected at two stations located 20–30 degrees west of our cruise track as part of the GEOTRACES-Japan
expedition in December 2009 [Vu and Sohrin, 2013]. In the 500–1000m depth interval, where temporal
variations in dAl should be negligible on a 2 year timescale, Vu and Sohrin [2013] reported a mean dAl of 2.65
± 0.48 (n=6), which is virtually identical to the mean dAl (2.63 ± 0.35 nM; n= 42) we observed in the same
depth range in the gyre (38°S to 15°S) along 95°E.
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Unlike dAl, the distribution of dFe in the gyre did not show enrichment associated with the deposition and
dissolution of mineral dust originating from Australia. In fact, the lowest dFe values of the entire section
were measured throughout the water column of the central subtropical gyre, where dFe levels remained
below 0.3 nM in the upper 500m. This region overlaps with the saltiest near-surface waters observed
in the region (i.e., STUW) and the most intense depletion of nitrate observed in the upper 300m of the
section (Figure 2f). Grand et al. [2015] suggested that the lack of dFe enrichment in the upper layers
of the gyre is likely due to its short residence time in surface waters (~0.6 years), which is shorter than the
0.7 year that separates the most recent Australian dust inputs and our sampling. The low dFe concentrations
observed at depth are consistent with the low productivity of the gyre surface waters, resulting in
negligible subsurface remineralization inputs of dFe. Our mean dFe from 500 to 1000m in the gyre
(0.47 ± 0.13, n= 21) is virtually identical to that observed by Vu and Sohrin [2013] at the two GEOTRACES-Japan
stations ER-10 and ER-11 sampled west of our cruise track (0.48±0.13, n=6) but is higher than the initial
shipboard values reported by Nishioka et al. [2013] at the same stations analyzed via shipboard FIA
(0.30 ± 0.09, n= 6).

3.3. The Northern Indian Ocean and Bay of Bengal (15°S–18°N)
3.3.1. Oceanographic Setting
The position of the SEC near 15°S coincides with a remarkable biogeochemical front across the upper
1000m of the water column, separating the monsoon-dominated regime of the northern Indian Ocean
from the south Indian subtropical gyre [Gordon et al., 1997; Tomczak and Godfrey, 2003]. In the upper
100m, the position of the SEC coincides with an abrupt decrease in salinity (Figure 2a) that intensifies
in the BoB (>5°N). Below ~200m, the SEC appears to separate dFe-rich and oxygen-depleted waters
from the northern Indian Ocean from the dFe-depleted and oxygen-rich waters of the south Indian
subtropical gyre (Figures 2d and 2e). The strong property gradients observed at this latitude imply
little meridional transport across 15°S along the cruise track [You and Tomczak, 1993; Tomczak and
Godfrey, 2003].

The principal water masses of the northeast Indian Ocean thermocline are the low-salinity Bay of Bengal
Water (BBW), which overlies North Indian Central Water (NICW). Excess precipitation over evaporation
and monsoonal river inputs collectively create BBW, which spreads southward across the surface of the
BoB to produce a salinity gradient in the upper layers of the water column. This, combined with warm sea
surface temperature, generates a strongly stratified surface layer in the BoB that impedes entrainment of
nutrients from below via wind-driven mixing [Prasanna Kumar et al., 2002]. The mixed layer of the BoB
is thus relatively shallow (<20m), isolated from the main thermocline and mostly nitrogen limited
[Koné et al., 2009], consistent with the barely detectable nitrate levels (0–0.07 μM) observed at the time of
our sampling. In contrast, surface silicic acid (Si) levels doubled from 5°N to 18°N as a result of increasing
riverine influence, which is particularly visible in the northern reaches of the BoB (>10°N) where the
lowest surface salinities (down to 32.61) and highest Si concentrations (up to 2.35 μM) were observed.
Surface dFe and dAl concentrations also showed a meridional concentration gradient with pronounced
increases coinciding with decreasing salinity in the BoB [Grand et al., 2015]. Below the BBW, NICW
occupies the majority of thermocline in the north Indian Ocean [You and Tomczak, 1993; You, 1997]. NICW
is an aged form of Indian Central Water (ICW), which is subducted near the STF and injected northward
into the south Indian subtropical gyre. Since the jet-like inflow of the ITF suppressesmeridional transport across
10°S–15°S east of 50°E, ICW is transported westward once it reaches 10°S–15°S with the SEC and enters the
Northern Hemisphere along the African coast via the Somali Current during the southwest monsoon [You
and Tomczak, 1993; You, 1997]. Some ICW then retroflects eastward via the Southwest Monsoon Current
(SMC) and fills the BoB, where it has been renamed NICW. The thermocline of the BoB thus contains the
oldest central water of the north Indian Ocean [You and Tomczak, 1993; Fine et al., 2008], which has
accumulated macronutrients and became depleted in oxygen during its transit to the northeastern
Indian Ocean and BoB.

The north Indian Ocean is subjected to seasonally reversing monsoon winds, which causes a pronounced
seasonality in freshwater inputs and seasonally reversing currents. LADCP data revealed a complex
current structure in the upper 1000m of the north Indian Ocean. In particular, we observed a broad
subsurface region of westward velocities centered about the equator near 400m (Figure 2e), which
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could be interpreted as a deep equatorial jet or a seasonal Rossby wave. The region between the
equator and Sri Lanka is a major pathway for the exchange of water between the Arabian Sea and
the BoB, particularly during summer when the Southwest Monsoon Current (SMC) carries high-salinity
waters of the Arabian Sea past the Sri Lanka dome before turning northward into the BoB [Schott and
McCreary, 2001].
3.3.2. Lithogenic Inputs in Subsurface Waters of the Bay of Bengal
The distribution of dAl in the northern Indian Ocean shows an increase from south to north, with
systematically higher concentrations throughout the upper 1000m in the northern BoB (>10°N) where the
highest surface (up to 32 nM) and deep (>800m) dAl levels (up to 3.75 nM) of the entire section were
observed (Figure 2c). Note that Vu and Sohrin [2013] sampled a station in 2009 (station ER-2) located
within 30 nautical miles of one of our stations in the central BoB (8.5°N). They reported mean dAl
concentrations from 0 to 100m (8.6 ± 1.7 nM, n = 4), 100 to 500m (4.9 ± 0.6 nM, n= 3), and 500 to 1000m
(3.6 ± 0.3 nM, n= 3) that were not significantly different from the mean values we observed within these
same depth intervals (two-sample t-test: 0–100m: 6.7 ± 1.9 nM, n = 4; 100–500m: 5.2 ± 1.1 nM, n= 6;
and 500–1000m: 3.3 ± 0.4 nM, n = 2). In the stratified upper layers of the BoB, the most likely sources of dAl
and dFe include dust deposition and runoff from the Ganges-Brahmaputra and peninsular Indian rivers
[Grand et al., 2015].

The supply of suspended particulate matter associated with the Ganges-Brahmaputra river plume is one
of the largest in the world [Milliman and Meade, 1983] and can be traced in deep-sea sediments of the
northern Indian Ocean as far as 8°S [Nath et al., 1989]. The large fluvial input of particulate material
throughout the BoB is well documented in sediment trap studies, which show a decreasing trend in the
contribution of settling lithogenic material delivered to sediment traps at ~1000mwith increasing distance
from the coast [Unger et al., 2003]. The influence of riverine material in the BoB was also seen in the
distribution of particulate Al and Fe measured in this section, which exhibited a remarkable meridional
gradient across the northern Indian Ocean, with the highest values observed underneath the freshwater
lens of the northern BoB (P. Barrett, personal communication, 2014). In this region at depths below 100m,
the ratio of particulate Fe to Al averaged 0.37 ± 0.06 (mol : mol), which is close to the mean particulate Fe : Al
ratio of 0.24 (mol :mol) observed in riverborne sediments of the Ganges-Brahmaputra system [see
Subramanian et al., 1985, Table V]. The parallel north–south decreasing trends in dAl, particulate Al and
Fe, and settling lithogenic fluxes inferred from sediment trap studies suggest that the enormous input of
riverine particulate material from the Ganges-Brahmaputra and peninsular rivers likely influences the
distribution of dAl and dFe throughout the BoB. While the dissolution of settling riverine particulate
material has been invoked as an important source of rare earth elements below the stratified upper
layer of the BoB [Nozaki and Alibo, 2003; Singh et al., 2012], we surmise that the deposition of riverine
sediments to the shelves and their subsequent resuspension in turbidity currents cascading down the
slope may be an important source of dAl. These turbidity currents could release pore waters enriched in
dAl thereby contributing to the elevated subsurface dAl observed in the BoB relative to other regions
along the cruise track. As we will show in section 3.3.4, the subsurface distribution of dFe is also
impacted by sedimentary inputs but, unlike dAl, this signal is superimposed on that produced via
remineralization of settling organic matter.
3.3.3. dFe Distribution in the Sri Lanka Dome Bloom Region
East of Sri Lanka, from ~7.7°N to 9.8°N, subsurface dFe levels were enriched between ~200 and 800m
relative to other regions sampled in the BoB (Figure 2d). This zone of elevated subsurface dFe is
located at the northeastern edge of the Sri Lanka dome (Figure 1), an open ocean region where deep
waters are upwelled to the surface via Ekman pumping during the southwest monsoon [Vinayachandran
and Yamagata, 1998]. This process brings deep nutrients into surface layers and generates a recurrent
phytoplankton bloom, which usually peaks in June–July and extends from ~84°E to 88°E and 4°N to
10°N [Vinayachandran et al., 2004]. We sampled six stations at the northeastern edge of the Sri Lanka
dome (Figure 7a). These profiles exhibited variable dFe levels below 150m and dFe concentration maxima
of 1.14–1.51 nM located between ~300 and 650m (Figure 7a). Since the highest subsurface dFe
concentrations of the BoB coincide with the geographical extent of the Sri Lanka dome bloom
(Figures 1 and 2d), it is likely that this subsurface dFe enrichment partly results from remineralization
of the seasonal Sri Lanka bloom. Aeolian dFe inputs in the Sri Lanka dome bloom region, which
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appear to be of comparable magnitude to that observed underneath the Saharan dust plume in the
north Atlantic [Grand et al., 2015], probably also contribute to the surface inventory of bioavailable
dFe there.

The Sri Lanka dome bloom region was also sampled for dFe at GEOTRACES-Japan station ER-2 (8.5°N, 86°E)
in November 2009 [Vu and Sohrin, 2013]. Their dFe observations were higher than ours (April 2007)
in the upper 200m and below 800m, but were within the range of our observations between 200
and 800m (Figure 7a). Interestingly, salinity in the upper 200m was significantly higher during the
occupation of station ER-2 (Figure 7b). The higher salinity and dFe concentrations observed in the
upper 200m of the water column during the GEOTRACES-Japan expedition may reflect an advected
feature originating from the Arabian Sea or the different timing of the CLIVAR (April: prebloom)
and GEOTRACES-Japan observations (November: postbloom). It would appear, however, that the
elevated subsurface dFe levels that we observed underneath the Sri Lanka dome bloom may be a
quasi-persistent feature of the BoB considering the relative agreement between our subsurface
dFe observations and those of Vu and Sohrin [2013], which were sampled 2 years later and at a
different season.
3.3.4. Net Remineralization Inputs Along the Pathway of Indian Central Water
The most striking characteristic of the subsurface dFe distribution in the north Indian Ocean is the
pronounced increase in dFe below ~100m starting near the SEC and extending into the BoB (Figure 2d).
As mentioned previously, the southernmost extent of this zone of elevated dFe near ~15°S coincides
with a sharp front in the oxygen distribution and the ensuing northward dFe increase is accompanied by
declining oxygen levels (Figures 2b and 2d). The low oxygen content of these subsurface waters results
from the lack of direct ventilation in the north Indian Ocean, combined with the lateral transport of
oxygen deficient waters from the western Indian Ocean and in situ remineralization of sinking organic
matter along their flow path. Once a water mass last comes in contact with the atmosphere and is
advected away from its subduction region, it will lose oxygen and accumulate macronutrients and dFe as
a result of remineralization of settling organic matter. However, unlike macronutrients such as phosphate,
the subsurface distribution of dFe reflects the dynamic balance between remineralization inputs and
scavenging removal and can also be impacted by inorganic inputs, which are decoupled from the
remineralization and scavenging processes.
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Figure 7. (a) Dissolved Fe and (b) salinity profiles from the Sri Lanka dome region observed on this section and during the
GEOTRACES-Japan expedition in November 2009 (ER-2 [Vu and Sohrin, 2013]).
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To illuminate the role of remineralization (i.e., dFe released via remineralization of organic matter minus
scavenging removal) in controlling the subsurface distribution of dFe in the thermocline of the northern
Indian Ocean, it is instructive to explore the relationships between macronutrients, dFe and AOU along the
advective pathway of Indian Central Water (ICW) from its southernmost position in the subtropical gyre to
the northern reaches of the BoB along our cruise track. In the subtropical gyre, ICW occupies the water
column from σθ = 26.1–26.8 kgm�3. For the purposes of this analysis, we only include data north of 27°S
since the dFe data from 41.5°S to 27°S were questionable and could not be verified via shore-based ICP-MS
determinations (see section 2.2). In the gyre, the ICW density range (σθ = 26.1–26.8 kgm�3) encompasses
SAMW (σθ = 26.6–26.8 kgm�3), which is situated on the T/S mixing curve of ICW (Figure 8a). From 16.3°S
to 7.7°S, the T/S properties within the ICW density range show a significant freshening and large scatter
because of the inflow of ITF waters (Figure 8a). The waters within this latitudinal band are thus a mixture
of ICW and ITF. From 7.7°S to the northernmost stations of the BoB, we only consider data between
σθ = 26.6 and 26.8 kgm�3 because You and Tomczak [1993] showed that the supply of ICW to the
Northern Hemisphere occurs predominantly on the σθ = 26.7 kgm�3 density surface, where isopycnal
mixing predominates. Figure 8a shows that the T/S properties of waters within this density interval
cluster around the linear ICW T/S properties, consistent with isopycnal mixing of ICW along the core
density of σθ = 26.7 kgm�3.
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Figure 8. Remineralization dynamics along the pathway of ICW from its southernmost position in the south Indian
subtropical gyre of the present section to its northernmost extent in the Bay of Bengal where it has been renamed NICW.
T/S properties of (a) ICW (latitude: 27°S–16.3°S, σθ = 26.1–26.8 kgm�3), SAMW (latitude: 27°S–16.3°S, σθ = 26.6–26.8 kgm�3),
ICW&ITW mixture (latitude: 16.3°S–7.7°S, σθ = 26.1–26.8 kg m�3), “Equatorial” ICW (latitude: 7.7°S–6.5°N, σθ = 26.6–
26.8 kg m�3), and NICW (latitude: 6.5°N�18°N, σθ = 26.6–26.8 kgm�3). (b) Phosphate versus AOU. The dashed
line and equation show the ordinary least squares (OLS) fit of phosphate versus AOU in ICW (latitude: 27°S–16.3°S,
σθ = 26.1–26.8 kgm�3). (c) Nitrate versus AOU. The dashed line and equation show the OLS fit of nitrate versus AOU in
ICW (latitude: 27°S–16.3°S, σθ = 26.1–26.8 kg m�3). (d) Dissolved Fe versus AOU. The dashed line and equation show
the OLS fit of dFe versus AOU in ICW (latitude: 27°S–16.3°S, σθ = 26.1–26.8 kgm�3). The filled circles refer to NICW
occupying the seasonally productive Sri Lanka dome.
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As ICW is advected along the 26.7 kgm�3

density surface from the south Indian
gyre to the BoB, where it has been
renamed NICW (see section 3.3.1), it
gradually loses oxygen and accumulates
phosphate along its transport pathway.
Thus, plotting phosphate against AOU
from σθ =26.6 to 26.8 kgm�3 in NICW
falls on the line of the phosphate versus
AOU ordinary least squares regression
obtained in ICW (σθ =26.1–26.8 kgm

�3)
from the south Indian subtropical gyre
(Figure 8b). In contrast, a scatterplot of
nitrate and AOU for the ICW shows
that the NICW falls below the ICW fit due
to nitrate loss from denitrification
processes in the oxygen-depleted
waters of the Arabian Sea (Figure 8c).
The nitrate and phosphate content of
SAMW plot above the ICW regression
line because SAMW forms in the

subantarctic zone, where surface phosphate and nitrate levels are higher there than in the vicinity of the STF,
where ICW is subducted (Figures 8b and 8c).

Since the regression of phosphate versus AOU in ICW allows predicting the phosphate content in the NICW
end-member (Figure 8b), we can apply the same approach to dFe in order to determine if the subsurface
dFe enrichment that we observed north of the SEC is sustained solely by remineralization of settling
organic matter or if other sources may be supplying dFe. Figure 8d shows that the dFe in SAMW and the
mixture of ICW/ITF waters cluster around the ICW fit. However, the data points from ICW in the equatorial
domain (7.6°S–6.5°N) and from NICW in the BoB (>6.5°N) show significant scatter and plot above the dFe :
AOU linear fit that characterizes ICW farther south in the gyre (Figure 8d). The decoupling between dFe
and AOU in the northern Indian Ocean suggests that other dFe inputs, unrelated to net inputs of dFe via
organic matter remineralization, supply additional dFe along the advective flow path of ICW. Possible
sources of this extra dFe may result from (1) the interaction of ICW with sediments of the African shelf
during its northward transit with the Somali Current or with sediments of the western coast of India and/or
the southern tip of Sri Lanka as ICW is advected to the BoB via the West Indian Coast Current and SMC
during the southwest monsoon; (2) the large input of dust impacting the surface waters of this region
[Grand et al., 2015], possibly combined with reduced scavenging losses in the oxygen depleted subsurface
waters of the central and northern BoB (Figure 2b); and (3) sedimentary inputs from the deposition and
resuspension of riverine sediments on the shelf in the northern BoB.
3.3.5. Fe : C Net Remineralization Ratios in Indian Central Water
In ICW of the south Indian subtropical gyre (27°S–16.3°S), where there is no evidence of hydrothermal or
sedimentary inputs, the slope of the dFe : AOU relationship is 2.7 ± 0.8μmolmol�1 (n=12, R2 = 0.53), and the
intercept of the ordinary least squares regression implies a preformed dFe concentration of 0.14 ± 0.02 nM
in the subduction region of ICW. This predicted preformed dFe concentration is comparable to the mean
dFe (0.18 ± 0.05 nM, n=26) observed from 48°S to 40°S where the σθ = 26.1–26.6 kgm�3 isopycnals outcrop
along the present section. It is also worth mentioning that the ICW dFe : AOU ratio in the gyre was remarkably
similar to that observed in the ICW/ITW mixture farther north (2.9± 0.5μmolmol�1, n=19, R2 = 0.67), implying
similar net remineralization rates of dFe in ICW and waters within the same density interval originating from
the Indonesian Throughflow region.

Based on the slope of the ordinary least squares fit between DIC and AOU within the density intervals of ICW
(Figure 9), we estimate that the oxidation of 1mol of carbon consumes ~1.5 mol of oxygen during organic
matter remineralization. Using our DIC : AOU and Fe : AOU ratios in ICW, we can calculate a net Fe : C
remineralization ratio in ICW of 4.1 ± 1.5μmolmol�1. This ratio reflects the net release of dFe during organic
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matter remineralization along the flow path of ICW (i.e., dFe released during remineralization minus
scavenging losses). Thus our Fe : C ratio is probably significantly lower than the elemental Fe : C stoichiometry
of the original organic particles because a large proportion of the dFe released during organic matter
remineralization will be lost via scavenging removal [Twining and Baines, 2013; Hatta et al., 2014].

Our Fe : C ratio in ICW is significantly lower than that determined using similar approaches (i.e., calculated from
regressions of dFe against AOU) in the North Atlantic Ocean (6.6–11μmolmol�1), comparable to Fe : C ratios
from the North Pacific Ocean (~4.6± 2.7μmolmol�1) and higher than that calculated in the Equatorial Pacific
and Southern Ocean (~1.8± 0.4μmolmol�1; Table 2). The magnitude of the Fe : C ratios from different oceanic
regions is thought to scale with the degree of Fe availability in surface waters and the cellular Fe requirements
of phytoplankton growing in each region [Sunda, 1997; Twining and Baines, 2013]. The geographical
variations in Fe : C ratios may also scale with concentration of organic ligands in the subduction region of a
water mass, since excess ligand levels may buffer dFe removal via inorganic scavenging in the ocean interior
and hence produce elevated Fe : C ratios [Tagliabue et al., 2014c]. Additional data along the advective pathway
of water masses subjected to minimal diapycnal mixing and external dFe inputs in different oceanic regions
will improve our understanding of the geochemical imprint of remineralization in the ocean interior.

4. Summary and Conclusions

The CLIVAR I08S and I09N sections cover a broad range of hydrographic and biogeochemical conditions and
therefore reflect the effects of several source terms on the distributions of dFe and dAl in the eastern IndianOcean.
The distribution of dAl is mainly controlled by the large-scale gradients in dust deposition impacting the surface of
the eastern Indian Ocean, the outflow of dissolved and suspended matter from the Ganges-Brahmaputra river
system in the Bay of Bengal, and long-range subsurface transport of water masses labeled with dAl, particularly at
the northern boundary of the Southern Ocean and possibly within the Indonesian Throughflow region.

In the Southern Ocean, the interaction of the ACC with the shallow topography of the southern Kerguelen
Plateau appears to play a role in maintaining elevated subsurface dFe values that we observed below the mixed
layer throughout the Antarctic Zone. We surmise that the strong offshore currents above the southern Kerguelen
Plateau combined with enhanced vertical mixing rates could both contribute to the elevated subsurface dFe
values observed there relative to other sectors of the Southern Ocean. Downstream of the northern Kerguelen
Plateau, our dissolved and particulate dFe data may reflect long-range lateral inputs from the plateau’s
sediments, suggesting that shelf Fe inputs may be transported for up to ~1500 km away from the source region.

In the northern Indian Ocean, the South Equatorial Current (~15°S) marks a remarkable biogeochemical front
separating the well-oxygenated and Fe-poor south Indian subtropical gyre waters from the oxygen-deficient
and dFe-rich waters of the northern Indian Ocean and Bay of Bengal. Using the relationship between
macronutrients, dFe and AOU in central waters occupying the south Indian subtropical gyre, we show that
the subsurface waters of the northeast Indian Ocean and Bay of Bengal must receive extra dFe in addition to
that produced during remineralization of settling organic matter. The resuspension of shelf sediments and
release of pore waters along the pathway of Indian Central Water and in the Bay of Bengal probably
contribute to the elevated Fe and Al levels observed there.

Table 2. Literature Compilation of Fe : C Remineralization Ratios in Various Ocean Basinsa

Location Water Mass Fe : C × 10�6 Reference

Indian Ocean subtropical gyre ICW 4.1 ± 1.5 This work
North Atlantic Not specified 9.9 ± 4.0 Sunda [1997]; Johnson et al. [1997]
North Atlantic subtropical gyre NACW 6.6 ± 0.5 Hatta et al. [2014]
North Atlantic subtropical gyre AEW 7.4 ± 1.0 Hatta et al. [2014]
Tropical North Atlantic Not specified 11 ± 1.0 Bergquist and Boyle [2006]
Tropical North Atlantic Not specified 9.6–12.4 Fitzsimmons et al. [2013]
North Pacific Not specified 4.6 ± 2.7 Sunda [1997]; Johnson et al. [1997]
Equatorial Pacific Not specified 2.0 ± 0.4 Sunda [1997]; Johnson et al. [1997]
Southern Ocean Not specified 1.8 ± 0.4 Sunda [1997]; Johnson et al. [1997]

aAll ratios were estimated using dFe and AOU in the water column. All Fe :C ratios are all in μmol mol�1 and show
mean ± 1SD or reported range. Data from the Sunda [1997] reference are themean Fe :C that was reported in each ocean
basin of Table 1 in Sunda [1997].

Global Biogeochemical Cycles 10.1002/2014GB004920

GRAND ET AL. ©2015. American Geophysical Union. All Rights Reserved. 392



References
Alibo, D., and Y. Nozaki (2004), Dissolved rare earth elements in the eastern Indian Ocean: Chemical tracers of the water masses, Deep Sea

Res., Part I, 51, 559–576, doi:10.1016/j.dsr.2003.11.004.
Anderson, R., E. Mawji, G. Cutter, C. I. Measures, and C. Jeandel (2014), GEOTRACES: Changing the way we explore ocean chemistry,

Oceanography, 27(1), 50–61, doi:10.5670/oceanog.2014.07.
Archer, D., and K. Johnson (2000), A model of the iron cycle in the ocean, Global Biogeochem. Cycles, 14(1), 269–279, doi:10.1029/1999GB900053.
Ardelan, M. V., C. D. Hewes, C. S. Reiss, N. S. Silva, H. Dulaiova, E. Steinnes, and E. Sakshaug (2010), Natural iron enrichment around the

Antarctic Peninsula in the Southern Ocean, Biogeosciences, 7, 11–25, doi:10.5194/bg-7-11-2010.
Aumont, O., E. Maier-Reimer, S. Blain, and P. Monfray (2003), An ecosystem model of the global ocean including Fe, Si, P colimitations, Global

Biogeochem. Cycles, 17(2), 1060, doi:10.1029/2001GB001745.
Barrett, P. M., J. A. Resing, N. J. Buck, C. S. Buck, W. M. Landing, and C. I. Measures (2012), The trace element composition of suspended particulate

matter in the upper 1000m of the eastern North Atlantic Ocean: A16N, Mar. Chem., 142–144, 41–53, doi:10.1016/j.marchem.2012.07.006.
Belkin, I., and A. Gordon (1996), Southern Ocean fronts from the Greenwich meridian to Tasmania, J. Geophys. Res., 101(C2), 3675–3696,

doi:10.1029/95JC02750.
Bergquist, B. A., and E. A. Boyle (2006), Dissolved iron in the tropical and subtropical Atlantic Ocean, Global Biogeochem. Cycles, 20, GB1015,

doi:10.1029/2005GB002505.
Blain, S., G. Sarthou, and P. Laan (2008), Distribution of dissolved iron during the natural iron-fertilization experiment KEOPS (Kerguelen

Plateau, Southern Ocean), Deep Sea Res., Part II, 55(5–7), 594–605, doi:10.1016/j.dsr2.2007.12.028.
Bowie, A. R., D. Lannuzel, T. A. Remenyi, T. Wagener, P. J. Lam, P. W. Boyd, C. Guieu, A. T. Townsend, and T. W. Trull (2009), Biogeochemical iron

budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime
supply, Global Biogeochem. Cycles, 23, GB4034, doi:10.1029/2009GB003500.

Boyd, P. W., and M. J. Ellwood (2010), The biogeochemical cycle of iron in the ocean, Nat. Geosci., 3(10), 675–682, doi:10.1038/ngeo964.
Bucciarelli, E., S. Blain, and P. Tréguer (2001), Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean), Mar. Chem., 73,

21–36, doi:10.1016/S0304-4203(00)00070-0.
Chever, F., G. Sarthou, E. Bucciarelli, S. Blain, and A. R. Bowie (2010), An iron budget during the natural iron fertilisation experiment KEOPS

(Kerguelen Islands, Southern Ocean), Biogeosciences, 7, 455–468, doi:10.5194/bg-7-455-2010.
Croot, P. L., K. Andersson, M. Öztürk, and D. R. Turner (2004), The distribution and speciation of iron along 6°E in the Southern Ocean, Deep

Sea Res., Part II, 51(22–24), 2857–2879, doi:10.1016/j.dsr2.2003.10.012.
de Baar, D., J. W. Hein, D. Jong, T. M. Jeroen, C. E. Dorothee, andM. Bettina (1995), Importance of iron for plankton blooms and carbon dioxide

drawdown in the southern ocean, Nature, 373, 412–415, doi:10.1038/373412a0.
De Jong, J., V. Schoemann, D. Lannuzel, P. Croot, H. de Baar, and J.-L. Tison (2012), Natural iron fertilization of the Atlantic sector of the

Southern Ocean by continental shelf sources of the Antarctic Peninsula, J. Geophys. Res., 117, G01029, doi:10.1029/2011JG001679.
Dulaiova, H., M. V. Ardelan, P. B. Henderson, and M. A. Charette (2009), Shelf-derived iron inputs drive biological productivity in the southern

Drake Passage, Global Biogeochem. Cycles, 23, GB4014, doi:10.1029/2008GB003406.
Fine, R., W. Smethie, J. Bullister, M. Rhein, D.-H. Min, M. Warner, A. Poisson, and R. Weiss (2008), Decadal ventilation and mixing of Indian

Ocean waters, Deep Sea Res., Part I, 55, 20–37, doi:10.1016/j.dsr.2007.10.002.
Fine, R. A. (1993), Circulation of Antarctic intermediate water in the South Indian Ocean, Deep Sea Res., Part I, 40(10), 2021–2042, doi:10.1016/

0967-0637(93)90043-3.
Fitzsimmons, J. N., R. Zhang, and E. A. Boyle (2013), Dissolved iron in the tropical North Atlantic Ocean, Mar. Chem., 154, 87–99,

doi:10.1016/j.marchem.2013.05.009.
Frew, R. D., D. A. Hutchins, S. Nodder, S. Sanudo-wilhelmy, A. Tovar-Sanchez, K. Leblanc, C. E. Hare, and P. W. Boyd (2006), Particulate iron dynamics

during Fe cycle in subantarctic waters southeast of New Zealand, Global Biogeochem. Cycles, 20, GB1S93, doi:10.1029/2005GB002558.
Gordon, A. L., S. Ma, D. B. Olson, P. Hacker, A. Ffield, L. D. Talley, D. Wilson, and M. Baringer (1997), Advection and diffusion of Indonesian

Throughflow Water within the Indian Ocean South Equatorial Current, Geophys. Res. Lett., 24(21), 2573–2576, doi:10.1029/97GL01061.
Grand, M. M., C. S. Buck, W. M. Landing, C. I. Measures, M. Hatta, W. T. Hiscock, M. T. Brown, and J. A. Resing (2014), Quantifying the impact of

atmospheric deposition on the biogeochemistry of Fe and Al in the upper ocean: A decade of collaboration with the US CLIVAR-CO2

Repeat Hydrography Program, Oceanography, 27(1), 62–65, doi:10.5670/oceanog.2014.08.
Grand, M. M., C. I. Measures, M. Hatta, W. T. Hiscock, C. S. Buck, and W. M. Landing (2015), Dust deposition in the eastern Indian Ocean: The

ocean perspective from Antarctica to the Bay of Bengal, Global Biogeochem. Cycles, 29, doi:10.1002/2014GB004898.
Hatta, M., C. I. Measures, K. Selph, M. Zhou, J. Yang, andW. T. Hiscock (2013), Iron fluxes from the shelf regions near the South Shetland Islands

in the Drake Passage during the austral-winter 2006, Deep Sea Res., Part II, 90, 89–101, doi:10.1016/j.dsr2.2012.11.003.
Hatta, M., C. I. Measures, J. Wu, S. Roshan, J. N. Fitzsimmons, P. Sedwick, and P. Morton (2014), An overview of dissolved Fe and Mn distributions

during the 2010–2011 U.S. GEOTRACES North Atlantic cruises: GEOTRACES GA03, Deep Sea Res., Part II, doi:10.1016/j.dsr2.2014.07.005.
Hood, R., J. Wiggert, and S. Naqvi (2009), Indian Ocean research: Opportunities and challenges, in Indian Ocean Biogeochemical Processes and

Ecological Variability, edited by J. Wiggert et al., pp. 409–428, AGU, Washington, D. C.
Hoppema, M., H. J. W. de Baar, E. Fahrbach, H. H. Hellmer, and B. Klein (2003), Substantial advective iron loss diminishes phytoplankton

production in the Antarctic Zone, Global Biogeochem. Cycles, 17(1), 1025, doi:10.1029/2002GB001957.
Jickells, T. D., et al. (2005), Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308(5718), 67–71,

doi:10.1126/science.1105959.
Johnson, K. J., R. M. Gordon, and K. H. Coale (1997), What controls dissolved iron concentrations in the world ocean?,Mar. Chem., 57, 137–161,

doi:10.1016/S0304-4203(97)00043-1.
Karstensen, J., and M. Tomczak (1997), Ventilation processes and water mass ages in the thermocline of the southeast Indian Ocean,

Geophys. Res. Lett., 24(22), 2777–2780, doi:10.1029/97GL02708.
Klunder, M. B., P. Laan, R. Middag, H. J. W. De Baar, J. C. van Ooijen, and J. V. Ooijen (2011), Dissolved iron in the Southern Ocean (Atlantic

sector), Deep Sea Res., Part II, 58(25–26), 2678–2694, doi:10.1016/j.dsr2.2010.10.042.
Klunder, M. B., P. Laan, R. Middag, H. J. W. de Baar, and K. Bakker (2012), Dissolved iron in the Arctic Ocean: Important role of hydrothermal

sources, shelf input and scavenging removal, J. Geophys. Res., 117, C04014, doi:10.1029/2011JC007135.
Klunder, M. B., P. Laan, H. J. W. De Baar, R. Middag, I. Neven, and J. Van Ooijen (2014), Dissolved Fe across the Weddell Sea and Drake Passage:

Impact of DFe on nutrient uptake, Biogeosciences, 11(3), 651–669, doi:10.5194/bg-11-651-2014.
Koch-Larrouy, A., R. Morrow, T. Penduff, and M. Juza (2010), Origin and mechanism of Subantarctic Mode Water formation and transformation

in the Southern Indian Ocean, Ocean Dyn., 60(3), 563–583, doi:10.1007/s10236-010-0276-4.

Acknowledgments
All data used in this paper are publicly
available on the CLIVAR & Carbon
Hydrographic Data Office website
(CCHDO) using ExpoCodes 33RR20070204
and 33RR20070322 for I08S and I09N,
respectively (http://cchdo.ucsd.edu). We
thank the captain and crew of the R/V
Revelle, chief scientists Jim Swift (I08S) and
Janet Sprintall (I09N) and Kati Gosnell for
their tremendous help and support
during the seagoing part of this project.
Thanks are due to Francois Ascani for his
assistance with the preparation of
Figure 4, Yoshiki Sohrin for sharing the
data of the GEOTRACES-Japan expedition
and to A. Tagliabue, and an anonymous
reviewer for helpful comments. This work
was funded by NSFOCE-0649584 to C.I.M.,
NSF-OCE-0649639 to W.M.L., and NSF
OCE-61-4962 and 62–5889 to J.A.R. This is
SOEST publication 9280, PMEL publication
4141, and JISAO publication 2223.

Global Biogeochemical Cycles 10.1002/2014GB004920

GRAND ET AL. ©2015. American Geophysical Union. All Rights Reserved. 393

http://dx.doi.org/10.1016/j.dsr.2003.11.004
http://dx.doi.org/10.5670/oceanog.2014.07
http://dx.doi.org/10.1029/1999GB900053
http://dx.doi.org/10.5194/bg-7-11-2010
http://dx.doi.org/10.1029/2001GB001745
http://dx.doi.org/10.1016/j.marchem.2012.07.006
http://dx.doi.org/10.1029/95JC02750
http://dx.doi.org/10.1029/2005GB002505
http://dx.doi.org/10.1016/j.dsr2.2007.12.028
http://dx.doi.org/10.1029/2009GB003500
http://dx.doi.org/10.1038/ngeo964
http://dx.doi.org/10.1016/S0304-4203(00)00070-0
http://dx.doi.org/10.5194/bg-7-455-2010
http://dx.doi.org/10.1016/j.dsr2.2003.10.012
http://dx.doi.org/10.1038/373412a0
http://dx.doi.org/10.1029/2011JG001679
http://dx.doi.org/10.1029/2008GB003406
http://dx.doi.org/10.1016/j.dsr.2007.10.002
http://dx.doi.org/10.1016/0967-0637(93)90043-3
http://dx.doi.org/10.1016/0967-0637(93)90043-3
http://dx.doi.org/10.1016/j.marchem.2013.05.009
http://dx.doi.org/10.1029/2005GB002558
http://dx.doi.org/10.1029/97GL01061
http://dx.doi.org/10.5670/oceanog.2014.08
http://dx.doi.org/10.1002/2014GB004898
http://dx.doi.org/10.1016/j.dsr2.2012.11.003
http://dx.doi.org/10.1016/j.dsr2.2014.07.005
http://dx.doi.org/10.1029/2002GB001957
http://dx.doi.org/10.1126/science.1105959
http://dx.doi.org/10.1016/S0304-4203(97)00043-1
http://dx.doi.org/10.1029/97GL02708
http://dx.doi.org/10.1016/j.dsr2.2010.10.042
http://dx.doi.org/10.1029/2011JC007135
http://dx.doi.org/10.5194/bg-11-651-2014
http://dx.doi.org/10.1007/s10236-010-0276-4
http://cchdo.ucsd.edu


Kondo, Y., and J. W. Moffett (2013), Dissolved Fe(II) in the Arabian Sea oxygen minimum zone and western tropical Indian Ocean during the
inter-monsoon period, Deep Sea Res., Part I, 73, 73–83, doi:10.1016/j.dsr.2012.11.014.

Koné, V., O. Aumont, M. Levy, and L. Resplandy (2009), Physical and biogeochemical controls of the phytoplankton seasonal cycle in the Indian
Ocean: A modeling study, in Indian Ocean Biogeochemical Processes and Ecological Variability, edited by J. Wiggert et al., pp. 147–166, AGU,
Washington, D. C.

Lannuzel, D., V. Schoemann, J. de Jong, J.-L. Tison, and L. Chou (2007), Distribution and biogeochemical behaviour of iron in the East
Antarctic sea ice, Mar. Chem., 106(1–2), 18–32, doi:10.1016/j.marchem.2006.06.010.

Lannuzel, D., V. Schoemann, J. de Jong, B. Pasquer, P. van der Merwe, F. Masson, J.-L. Tison, and A. Bowie (2010), Distribution of dissolved iron
in Antarctic sea ice: Spatial, seasonal, and inter-annual variability, J. Geophys. Res., 115, G03022, doi:10.1029/2009JG001031.

Lannuzel, D., P. C. van der Merwe, A. T. Townsend, and A. R. Bowie (2014), Size fractionation of iron, manganese and aluminium in Antarctic
fast ice reveals a lithogenic origin and low iron solubility, Mar. Chem., 161, 47–56, doi:10.1016/j.marchem.2014.02.006.

Lin, H., S. Rauschenberg, C. R. Hexel, T. J. Shaw, and B. S. Twining (2011), Free-drifting icebergs as sources of iron to the Weddell Sea, Deep Sea
Res., Part II, 58(11–12), 1392–1406, doi:10.1016/j.dsr2.2010.11.020.

Martin, J. H. (1990), Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5, 1–13, doi:10.1029/PA005i001p00001.
Martínez-Garcia, A., A. Rosell-Melé, W. Geibert, R. Gersonde, P. Masqué, V. Gaspari, and C. Barbante (2009), Links between iron supply, marine

productivity, sea surface temperature, and CO2 over the last 1.1 Ma, Paleoceanography, 24, PA1207, doi:10.1029/2008PA001657.
Martínez-Garcia, A., D. M. Sigman, H. Ren, R. F. Anderson, M. Straub, D. A. Hodell, S. L. Jaccard, T. I. Eglinton, G. H. Haug, and A. Martínez-García

(2014), Iron Fertilization of the Subantarctic Ocean During the Last Ice Age, Science, 343(6177), 1347–1350, doi:10.1126/science.1246848.
McCartney, M. S., and K. A. Donohue (2007), A deep cyclonic gyre in the Australian-Antarctic Basin, Prog. Oceanogr., 75, 675–750,

doi:10.1016/j.pocean.2007.02.008.
Measures, C. I., and E. Brown (1996), Estimating dust input to the Atlantic Ocean using surface water aluminium concentrations, in The Impact

of Desert Dust Across the Mediterranean, edited by S. Guerzoni and R. Chester, pp. 301–311, Kluwer Acad., Netherlands.
Measures, C. I., and S. Vink (1999), Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea, Deep Sea Res.,

Part II, 46, 1597–1622, doi:10.1016/S0967-0645(99)00037-5.
Measures, C. I., and S. Vink (2000), On the use of dissolved aluminium in surface waters to estimate dust deposition to the ocean, Global

Biogeochem. Cycles, 14(1), 317–327, doi:10.1029/1999GB001188.
Measures, C. I., and S. Vink (2001), Dissolved Fe in the upper waters of the Pacific sector of the Southern Ocean, Deep Sea Res., Part II,

48(19–20), 3913–3941, doi:10.1016/S0967-0645(01)00074-1.
Measures, C. I., J. Yuan, and J. A. Resing (1995), Determination of iron in seawater by flow injection analysis using in-line preconcentration and

spectrophotometric detection, Mar. Chem., 50, 1–10.
Measures, C. I., W. M. Landing, M. T. Brown, and C. S. Buck (2008a), High-resolution Al and Fe data from the Atlantic Ocean CLIVAR-CO2 Repeat

Hydrography A16N transect: Extensive linkages between atmospheric dust and upper ocean geochemistry, Global Biogeochem. Cycles, 22,
GB1005, doi:10.1029/2007GB003042.

Measures, C. I., W. M. Landing, M. T. Brown, and C. S. Buck (2008b), A commercially available rosette system for trace metal clean sampling,
Limnol. Oceanogr. Methods, 6, 384–394, doi:10.4319/lom.2008.6.384.

Measures, C. I., M. T. Brown, K. E. Selph, A. Apprill, M. Zhou, M. Hatta, and W. T. Hiscock (2013), The influence of shelf processes in delivering
dissolved iron to the HNLC waters of the Drake Passage, Antarctica, Deep Sea Res., Part II, 90, 77–88, doi:10.1016/j.dsr2.2012.11.004.

Middag, R., H. de Baar, P. Laan, and K. Bakker (2009), Dissolved aluminium and the silicon cycle in the Arctic Ocean,Mar. Chem., 115, 176–195,
doi:10.1016/j.marchem.2009.08.002.

Middag, R., C. van Slooten, H. J. W. de Baar, and P. Laan (2011), Dissolved aluminium in the Southern Ocean, Deep Sea Res., Part II, 58(25–26),
2647–2660, doi:10.1016/j.dsr2.2011.03.001.

Middag, R., H. J. W. de Baar, P. Laan, and O. Huhn (2012), The effects of continental margins and water mass circulation on the distribution of
dissolved aluminum and manganese in Drake Passage, J. Geophys. Res., 117, C01019, doi:10.1029/2011JC007434.

Middag, R., H. J. W. de Baar, M. B. Klunder, and P. Laan (2013), Fluxes of dissolved aluminum and manganese to the Weddell Sea and
indications for manganese co-limitation, Limnol. Oceanogr., 58(1), 287–300, doi:10.4319/lo.2013.58.1.0287.

Milliman, J., and R. Meade (1983), World-wide delivery of river sediment to the oceans, J. Geol., 91, 1–21, doi:10.1086/628741.
Misumi, K., K. Lindsay, J. K. Moore, S. C. Doney, D. Tsumune, and Y. Yoshida (2013), Humic substances may control dissolved iron distributions

in the global ocean: Implications from numerical simulations, Global Biogeochem. Cycles, 27, 450–462, doi:10.1002/gbc.20039.
Moffett, J. W., T. J. Goepfert, and S. W. A. Naqvi (2007), Reduced iron associated with secondary nitrite maxima in the Arabian Sea, Deep Sea

Res., Part I, 54(8), 1341–1349, doi:10.1016/j.dsr.2007.04.004.
Mongin, M. M., E. R. Abraham, and T. W. Trull (2009), Winter advection of iron can explain the summer phytoplankton bloom that extends

1000 km downstream of the Kerguelen Plateau in the Southern Ocean, J. Mar. Res., 67(2), 225–237, doi:10.1357/002224009789051218.
Moore, J. K., and M. R. Abbott (2000), Phytoplankton chlorophyll distributions and primary production in the Southern Ocean, J. Geophys.

Res., 105(C12), 28,709–28,722, doi:10.1029/1999JC000043.
Moore, J. K., and O. Braucher (2008), Sedimentary and mineral dust sources of dissolved iron to the world ocean, Biogeosciences, 5, 631–656,

doi:10.5194/bg-5-631-2008.
Nath, B. N., V. P. Rao, and K. P. Becker (1989), Geochemical evidence of terrigenous influence in deep-sea sediments up to 8°S in the Central

Indian Basin, Mar. Geol., 87(2–4), 301–313, doi:10.1016/0025-3227(89)90067-4.
Nishioka, J., T. Ono, H. Saito, K. Sakaoka, and T. Yoshimura (2011), Oceanic iron supply mechanisms which support the spring diatom bloom

in the Oyashio region, western subarctic Pacific, J. Geophys. Res., 116, C02021, doi:10.1029/2010JC006321.
Nishioka, J., H. Obata, and D. Tsumune (2013), Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean, Earth

Planet. Sci. Lett., 361, 26–33, doi:10.1016/j.epsl.2012.11.040.
Nozaki, Y., and D. S. Alibo (2003), Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth

elements in the northeastern Indian Ocean, Earth Planet. Sci. Lett., 205, 155–172, doi:10.1016/S0012-821X(02)01027-0.
Nozaki, Y., and Y. Yamamoto (2001), Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced

“alkalinity pump” hypothesis, Global Biogeochem. Cycles, 15(3), 555–567, doi:10.1029/2008GB003406.
Obata, H., Y. Nozaki, D. S. Alibo, and Y. Yamamoto (2004), Dissolved Al, In, and Ce in the eastern Indian Ocean and the Southeast Asian Seas in

comparison with the radionuclides 210 Pb and 210 Po, Geochim. Cosmochim. Acta, 68(5), 1035–1048, doi:10.1016/j.gca.2003.07.021.
Orsi, A. H., T. I. I. I. Whitworth, and W. D. J. Nowlin (1995), On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep Sea

Res., Part I, 42, 641–673, doi:10.1016/0967-0637(95)00021-W.
Parekh, P., M. J. Follows, and E. A. Boyle (2004), Modeling the global ocean iron cycle, Global Biogeochem. Cycles, 18, GB1002, doi:10.1029/

2003GB002061.

Global Biogeochemical Cycles 10.1002/2014GB004920

GRAND ET AL. ©2015. American Geophysical Union. All Rights Reserved. 394

http://dx.doi.org/10.1016/j.dsr.2012.11.014
http://dx.doi.org/10.1016/j.marchem.2006.06.010
http://dx.doi.org/10.1029/2009JG001031
http://dx.doi.org/10.1016/j.marchem.2014.02.006
http://dx.doi.org/10.1016/j.dsr2.2010.11.020
http://dx.doi.org/10.1029/PA005i001p00001
http://dx.doi.org/10.1029/2008PA001657
http://dx.doi.org/10.1126/science.1246848
http://dx.doi.org/10.1016/j.pocean.2007.02.008
http://dx.doi.org/10.1016/S0967-0645(99)00037-5
http://dx.doi.org/10.1029/1999GB001188
http://dx.doi.org/10.1016/S0967-0645(01)00074-1
http://dx.doi.org/10.1029/2007GB003042
http://dx.doi.org/10.4319/lom.2008.6.384
http://dx.doi.org/10.1016/j.dsr2.2012.11.004
http://dx.doi.org/10.1016/j.marchem.2009.08.002
http://dx.doi.org/10.1016/j.dsr2.2011.03.001
http://dx.doi.org/10.1029/2011JC007434
http://dx.doi.org/10.4319/lo.2013.58.1.0287
http://dx.doi.org/10.1086/628741
http://dx.doi.org/10.1002/gbc.20039
http://dx.doi.org/10.1016/j.dsr.2007.04.004
http://dx.doi.org/10.1357/002224009789051218
http://dx.doi.org/10.1029/1999JC000043
http://dx.doi.org/10.5194/bg-5-631-2008
http://dx.doi.org/10.1016/0025-3227(89)90067-4
http://dx.doi.org/10.1029/2010JC006321
http://dx.doi.org/10.1016/j.epsl.2012.11.040
http://dx.doi.org/10.1016/S0012-821X(02)01027-0
http://dx.doi.org/10.1029/2008GB003406
http://dx.doi.org/10.1016/j.gca.2003.07.021
http://dx.doi.org/10.1016/0967-0637(95)00021-W
http://dx.doi.org/10.1029/2003GB002061
http://dx.doi.org/10.1029/2003GB002061


Parekh, P., M. J. Follows, and E. A. Boyle (2005), Decoupling of iron and phosphate in the global ocean, Global Biogeochem. Cycles, 19, GB2020,
doi:10.1029/2004GB002280.

Park, Y. H., E. Charriaud, and M. Fieux (1998), Thermohaline structure of the Antarctic Surface Water/Winter Water in the Indian sector of the
Southern Ocean, J. Mar. Syst., 17(1–4), 5–23, doi:10.1016/S0924-7963(98)00026-8.

Park, Y.-H., J. Fuda, I. Durand, and A. Naveiragarabato (2008), Internal tides and vertical mixing over the Kerguelen Plateau, Deep Sea Res., Part
II, 55(5–7), 582–593, doi:10.1016/j.dsr2.2007.12.027.

Park, Y.-H., F. Vivier, F. Roquet, and E. Kestenare (2009), Direct observations of the ACC transport across the Kerguelen Plateau, Geophys. Res.
Lett., 36, L18603, doi:10.1029/2009GL039617.

Planquette, H., et al. (2007), Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean, Deep Sea Res., Part II, 54(18–20), 1999–2019,
doi:10.1016/j.dsr2.2007.06.019.

Prasanna Kumar, S., P. Muraleedharan, T. Prasad, M. Gauns, N. Ramaiah, S. de Souza, S. Sardesai, and M. Madhupratap (2002), Why is the Bay of
Bengal less productive during summermonsoon compared to the Arabian Sea?, Geophys. Res. Lett., 29(24), 2235, doi:10.1029/2002GL016013.

Reid, J. L. (2003), On the total geostrophic circulation of the Indian Ocean: Flow patterns, tracers, and transports, Prog. Oceanogr., 56, 137–186,
doi:10.1016/S0079-6611(02)00141-6.

Resing, J. A., and C. I. Measures (1994), Fluorometric determination of Al in seawater by flow injection analysis with in-line preconcentration,
Anal. Chem., 66, 4105–4111.

Rijkenberg, M. J. A., R. Middag, P. Laan, L. J. A. Gerringa, H. M. van Aken, V. Schoemann, J. T. M. de Jong, and H. J. W. de Baar (2014), The
distribution of dissolved iron in the west Atlantic Ocean, PLoS One, 9(6), e101323, doi:10.1371/journal.pone.0101323.

Rintoul, S. R., S. Sokolov, and R. A. Massom (2008), Rapid development and persistence of a massive Antarctic sea ice tongue, J. Geophys. Res.,
113, C07045, doi:10.1029/2007JC004541.

Roquet, F., Y.-H. Park, C. Guinet, F. Bailleul, and J.-B. Charrassin (2009), Observations of the Fawn Trough Current over the Kerguelen Plateau
from instrumented elephant seals, J. Mar. Syst., 78(3), 377–393, doi:10.1016/j.jmarsys.2008.11.017.

Saager, P. M., H. J. W. De Baar, and P. H. Burkill (1989), Manganese and iron in Indian Ocean waters, Geochim. Cosmochim. Acta, 53(9),
2259–2267, doi:10.1016/0016-7037(89)90348-7.

Sarthou, G., C. Jeandel, L. Brisset, D. Amouroux, T. Besson, and O. Donard (1997), Fe and H2O2, distributions in the upper water column in the
Indian sector of the Southern Ocean, Earth Planet. Sci. Lett., 147, 83–92.

Schlitzer, R. (2014), Ocean data view. [Available at http://odv.awi.]
Schott, F. A., and J. P. McCreary (2001), The monsoon circulation of the Indian Ocean, Prog. Oceanogr., 51(1), 1–123, doi:10.1016/

S0079-6611(01)00083-0.
SCOR Working Group (2007), GEOTRACES – An international study of the global marine biogeochemical cycles of trace elements and their

isotopes, Chem. Erde, 67, 85–131, doi:10.1016/j.chemer.2007.02.001.
Sedwick, N., R. Bowie, and W. Trull (2008), Dissolved iron in the Australian sector of the Southern Ocean (CLIVAR SR3 Section): Meridional and

seasonal trends, Deep Sea Res., Part I, 55, 911–925, doi:10.1016/j.dsr.2008.03.011.
Siedler, G., M. Rouault, and J. R. E. Lutjeharms (2006), Structure and origin of the subtropical South Indian Ocean Countercurrent, Geophys.

Res. Lett., 33, L24609, doi:10.1029/2006GL027399.
Singh, S. P., S. K. Singh, V. Goswami, R. Bhushan, and V. K. Rai (2012), Spatial distribution of dissolved neodymium and εNd in the Bay of

Bengal: Role of particulate matter and mixing of water masses, Geochim. Cosmochim. Acta, 94, 38–56, doi:10.1016/j.gca.2012.07.017.
Sohrin, Y., S. Iwamoto, M. Matsui, H. Obata, E. Nakayama, K. Suzuki, N. Handa, andM. Ishii (2000), The distribution of Fe in the Australian sector

of the Southern Ocean, Deep Sea Res., Part I, 47, 55–84, doi:10.1016/S0967-0637(99)00049-7.
Sokolov, S., and S. R. Rintoul (2007), On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll

concentrations in the Southern Ocean, J. Geophys. Res., 112, C07030, doi:10.1029/2006JC004072.
Subramanian, V., L. Van’t Dack, and R. Van Grieken (1985), Chemical composition of river sediments from the Indian sub-continent, Chem.

Geol., 48, 271–179, doi:10.1016/0009-2541(85)90052-X.
Sunda, W. G. (1997), Control of dissolved iron concentrations in the world ocean, a comment, Mar. Chem., 57(3–4), 169–172, doi:10.1016/

S0304-4203(97)00045-5.
Tagliabue, A., T. Mtshali, O. Aumont, A. R. Bowie, M. B. Klunder, A. N. Roychoudhury, and S. Swart (2012), A global compilation of dissolved iron

measurements: Focus on distributions and processes in the Southern Ocean, Biogeosciences, 9(6), 2333–2349, doi:10.5194/bg-9-2333-2012.
Tagliabue, A., O. Aumont, and L. Bopp (2014a), The impact of different external sources of iron on the global carbon cycle, Geophys. Res. Lett.,

41, 920–926, doi:10.1002/2013GL059059.
Tagliabue, A., J.-B. Sallée, A. R. Bowie, M. Lévy, S. Swart, and P. W. Boyd (2014b), Surface-water iron supplies in the Southern Ocean sustained

by deep winter mixing, Nat. Geosci., 7(4), 314–320, doi:10.1038/ngeo2101.
Tagliabue, A., R. G. Williams, N. Rogan, E. P. Achterberg, and P. W. Boyd (2014c), A ventilation-based framework to explain the regeneration-

scavenging balance of iron in the ocean, Geophys. Res. Lett., 41, 1–10, doi:10.1002/2014GL061066.
Takao, S., T. Hirawake, S. W. Wright, and K. Suzuki (2012), Variations of net primary productivity and phytoplankton community composition

in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data, Biogeosciences, 9(10), 3875–3890,
doi:10.5194/bg-9-3875-2012.

Talley, L. D., and J. Sprintall (2005), Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial
Current, J. Geophys. Res., 110, C10009, doi:10.1029/2004JC002826.

Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift (2011), Descriptive Physical Oceanography: An Introduction, 6th ed., Elsevier Inc., Oxford, U. K.
Tomczak, M., and J. Godfrey (2003), Regional Oceanography: An Introduction, 2nd ed., Daya House, Delhi.
Twining, B. S., and S. B. Baines (2013), The trace metal composition of marine phytoplankton, Annu. Rev. Mar. Sci., 5, 191–215, doi:10.1146/

annurev-marine-121211-172322.
Unger, D., V. Ittekkot, P. Schäfer, J. Tiemann, and S. Reschke (2003), Seasonality and interannual variability of particle fluxes to the deep Bay

of Bengal: Influence of riverine input and oceanographic processes, Deep Sea Res., Part II, 50(5), 897–923, doi:10.1016/S0967-0645(02)
00612-4.

van Beusekom, J. E. E., A. J. V. Van Bennekom, J. Morvans, P. Treguer, and J. Morvan (1997), Aluminium and silicic acid in water and sediments
of the Enderby and Crozet Basins, Deep Sea Res., Part II, 44(5), 987–1003, doi:10.1016/S0967-0645(96)00105-1.

Van Hulten, M. M. P., A. Sterl, R. Middag, H. J. W. de Baar, M. Gehlen, J.-C. Dutay, and A. Tagliabue (2014), On the effects of circulation,
sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium*, Biogeosciences, 11(14), 3757–3779,
doi:10.5194/bg-11-3757-2014.

Vinayachandran, P., and T. Yamagata (1998), Monsoon response of the sea around Sri Lanka: Generation of thermal domes and anticyclonic
vortices, J. Phys. Oceanogr., 28, 1946–1960.

Global Biogeochemical Cycles 10.1002/2014GB004920

GRAND ET AL. ©2015. American Geophysical Union. All Rights Reserved. 395

http://dx.doi.org/10.1029/2004GB002280
http://dx.doi.org/10.1016/S0924-7963(98)00026-8
http://dx.doi.org/10.1016/j.dsr2.2007.12.027
http://dx.doi.org/10.1029/2009GL039617
http://dx.doi.org/10.1016/j.dsr2.2007.06.019
http://dx.doi.org/10.1029/2002GL016013
http://dx.doi.org/10.1016/S0079-6611(02)00141-6
http://dx.doi.org/10.1371/journal.pone.0101323
http://dx.doi.org/10.1029/2007JC004541
http://dx.doi.org/10.1016/j.jmarsys.2008.11.017
http://dx.doi.org/10.1016/0016-7037(89)90348-7
http://odv.awi
http://dx.doi.org/10.1016/S0079-6611(01)00083-0
http://dx.doi.org/10.1016/S0079-6611(01)00083-0
http://dx.doi.org/10.1016/j.chemer.2007.02.001
http://dx.doi.org/10.1016/j.dsr.2008.03.011
http://dx.doi.org/10.1029/2006GL027399
http://dx.doi.org/10.1016/j.gca.2012.07.017
http://dx.doi.org/10.1016/S0967-0637(99)00049-7
http://dx.doi.org/10.1029/2006JC004072
http://dx.doi.org/10.1016/0009-2541(85)90052-X
http://dx.doi.org/10.1016/S0304-4203(97)00045-5
http://dx.doi.org/10.1016/S0304-4203(97)00045-5
http://dx.doi.org/10.5194/bg-9-2333-2012
http://dx.doi.org/10.1002/2013GL059059
http://dx.doi.org/10.1038/ngeo2101
http://dx.doi.org/10.1002/2014GL061066
http://dx.doi.org/10.5194/bg-9-3875-2012
http://dx.doi.org/10.1029/2004JC002826
http://dx.doi.org/10.1146/annurev-marine-121211-172322
http://dx.doi.org/10.1146/annurev-marine-121211-172322
http://dx.doi.org/10.1016/S0967-0645(02)00612-4
http://dx.doi.org/10.1016/S0967-0645(02)00612-4
http://dx.doi.org/10.1016/S0967-0645(96)00105-1
http://dx.doi.org/10.5194/bg-11-3757-2014


Vinayachandran, P. N., P. Chauhan, M. Mohan, and S. Nayak (2004), Biological response of the sea around Sri Lanka to summer monsoon,
Geophys. Res. Lett., 31, L01302, doi:10.1029/2003GL018533.

Vu, H. T. D., and Y. Sohrin (2013), Diverse stoichiometry of dissolved trace metals in the Indian Ocean, Sci. Rep., 3, 1745, doi:10.1038/srep01745.
Whitworth, T., andW. D. Nowlin (1987), Watermasses and currents of the Southern Ocean at the GreenwichMeridian, J. Geophys. Res., 92(C6),

6462–6476, doi:10.1029/JC092iC06p06462.
Wong, A. P. S. (2005), Subantarctic Mode Water and Antarctic Intermediate Water in the South Indian Ocean based on profiling float data

2000–2004, J. Mar. Res., 63(4), 789–812, doi:10.1357/0022240054663196.
You, Y. (1997), Seasonal variations of thermocline circulation and ventilation in the Indian Ocean, J. Geophys. Res., 102(C5), 10,391–10,422,

doi:10.1029/96JC03600.
You, Y., and M. Tomczak (1993), Thermocline circulation and ventilation in the Indian Ocean derived from water mass analysis, Deep Sea Res.,

Part I, 40(1), 13–56, doi:10.1016/0967-0637(93)90052-5.

Global Biogeochemical Cycles 10.1002/2014GB004920

GRAND ET AL. ©2015. American Geophysical Union. All Rights Reserved. 396

http://dx.doi.org/10.1029/2003GL018533
http://dx.doi.org/10.1038/srep01745
http://dx.doi.org/10.1029/JC092iC06p06462
http://dx.doi.org/10.1357/0022240054663196
http://dx.doi.org/10.1029/96JC03600
http://dx.doi.org/10.1016/0967-0637(93)90052-5

	Dissolved Fe and Al in the upper 1000 m of the eastern Indian Ocean: A high‐resolution transect along 95°E from the Antarctic margin to the Bay of Bengal
	Recommended Citation
	Authors

	

