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Proposition 6: Let m 2 p and j arbitrary. If all weights in c are 
divisible by 2p, then the degree of the set C,E3(zm) A, does not 
exceed 2m - 2p. 

Pro03 If the set C1EJ(2m) A, is empty, the proposition is 
trivial. If A, is nonempty, then j must be divisible by 
2p. Hence, the set '&(2m) S, of degree 2" - 1 is contained in 
the set C110(2p) Sa of degree 2p - 1. By assumption, the latter set 
contains the code C, so deg, (C n CzEo(2p) S,) = 0. Hence, 

5 (2" - 1) - (2P - 1) = 2" - 2p. U 

Note that Brouwer's theorem 1 corresponds to the case p = 1, 
m = 2, and j = 0. It directly follows from known facts about 
the structure of second order Reed-Muller codes. Much more can be 
s a i d i f p  = m - 1 .  

Proposition 7: If all weights in the linear code C are divisible by 
2"-1 , then the degree of Ct30(2m) A, does not exceed m. 

(Based on Brouwer's proofs of Theorems 2 and 3.) In 
virtue of Proposition 1, part iii), we have to show that an (m + 1)- 
dimensional linear code C all of whose words have weight divisible 
by 2m-1 must have an even number of codewords whose weight is 
divisible by 2m. We proceed by induction on m. The case m = 1 is 
trivial. Take m 2 2 and choose a minimal codeword X E C such that 
1x1 

Proof: 

2m-1(2"). (We are done if X does not exist.) The formula 

I x + Y I - I Y I = I x I - ~ ~ X ~ Y ~  

implies that IX n YI = 0(2"-') for ali Y E C. The punctured code 
Cx: = {Y\X I Y E C} satisfies the induction hypothesis for m - 1, 
so it contains an even number of words with IY\Xl = 0(2"-l). 
Now from 

I X + Y ~  Iyl(2") e 2 2 ) X n Y I  
2m--1(2m) e IY\Xl=  2"--2(2"--1) 

we infer that an even number of cosets of {$, X} in C contains 
exactly one word whose weights is divisible by 2" and each of the 
remaining cosets contains an even number of words whose weight is 

Open Problem: Does a result comparable to Proposition 7 exist 
for p 5 m - 2? The first nontrivial case is m = 4, p = 2. Proposition 
6 implies that in all doubly even codes the words whose weight is 
divisible by 16 constitute a set of degree 5 12. On the other hand, 
the direct sum of three [7, 3,4] simplex codes is 9dimensional code 
for which the zero vector is the only word whose weight is divisible 
by 16. Does a doubly even code with deg (czGo(16) A,) = 10 exist? 
The following proposition may be of some value. 

Proposition 8: Let C be a binary linear [n, k] code, and let X C C 
be any subset. Then deg, (X) < k - r if and only if all shortened 
codes CT with respect to coordinate sets T of cardinality 5 T intersect 
X in an even number of-codewords. 

Proof: The codes CT with 12'1 5 T generate the Reed-Muller 
0 

Example: Let C be the extended binary Golay code, and let 
I:= (0, IS}. Using the fact that the words of fixed weight in C 
form a five-design, we calculate the number of codewords in C r l  AI. 
For IT1 = 0, 1, 2, 3, 4, 5, this number is 760, 254, 78, 22, 6, 2, 
respectively, but for 12'1 = 6, odd intersections must occur. Hence, 
deg(A1) = 6. 

divisible by 2". 0 

code SDI( T ,  C). Now apply part iii) of Proposition 1. 
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On a Class of Optimal Nonbinary Linear 
Unequal-Error-Protection Codes for Two Sets of Messages 

Robert H. Morelos-Zaragoza and Shu Lin 

Absfract- Several authors have addressed the problem of designing 
good linear unequal error protection (LUEP) codes. However, very little 
is known about good nonbinary LUEP codes. We present a elass of opHmal 
nonbinary LUEP codes for two different sets of messages. By combining 
t-error-correcting ReedSolomon (RS) cod- and shortened nonbinary 
Hamming codes, we obtain nonbinary LUEP codes -that protect one set 
of messages against any t or fewer symbol errors and the remaining set of 
messages against any single symbol error. For t 2 2, we show that these 
codes are optimal in the sense of achieving the Hamming lower bound 
on the number of redundant symbols of a nonbinary LUEP code with 
the same parameters. 

Index Term-Unequal error protection codes. 

I. INTRODUCTION 
Let C be a linear (n, k) block code over GF(q) with generator 

matrix G. Let message vectors i i  E G F ( Q ) ~  consist of 2 parts 
u1, H Z  where E, is a IC,-symbol component message, for i = 1, 2, 
k = kl + kz, i.e., 

- 

H =  ( H I ,  H z ) ,  211 E GF(q)'l, H z  E GF(q)k2. 

Define the separation vector of C as 

X(G) = ( s i ( G ) ,  s z (G))  

s , (G)  = min {wt ( H G ) ~ ~  E GF (#>, j = 1, 2, H% # 0) 

with 

where i = 1, 2, k = kl + kz, and wt (T) is the Hamming weight of 
T E GF(q)n. The parameter 

t , (G) L(sE(G) - 1)/2], 

Manuscript received June 9, 1992; revised October 23, 1993. This work 
was supported by the NSF under Grants NCR-88813480. NCR-9115400, 
and by NASA under Grant NAG 5-931. This paper was presented in part 
at the Intemational Symposium on Information Theory and Its Applications, 
Honolulu, HI, November 27-30, 1990. 

The authors are with the Department of Edectrical Engineering, University 
of Hawaii at Manoa, Honolulu, HI 96822. 
IEEE Log Number 9215117. 

0018-9448/94$04.00 0 1994 IEEE 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994 197 

a2m -2 1 Ly ... 

Or 01 O/ 

H ( 2 ) =  1 a3 a3(2n ' -2 )  

is called the level ofprotection for the ith component message, 
i = 1, 2.  (1.J denotes the largest integer less than or equal to 2.) 

Note that if sl(G) = sz(G), then C is a conventional linear (n ,  IC) 
block code with minimum distance dmin = sz(G) that protects all k 
message symbols against any [(sZ(G) - l ) / Z J  or less random errors. 

For convenience, we will write s. and t, instead of s,(G) and 
t ,(G), keeping in mind that both parameters depend on the encoding 
rule of linear code C,  i.e., the generator matrix G. We will also 
assume, without loss of generality, that we have an LUEP code C 
with separation vector Z, with both components distinct, i.e., s1 > s2. 

We call C a linear (tl , tz)-error-correcting code over GF ( q )  for 
the message space 

M = G F ( & ~  x GF(&. 

PI * .  . PZm+l-zm 

0, '.. 

Om 1 

Boyarinov and Katsman's (BK) optimal binary LUEP codes of 
separation vector (5, 3) [l], were constructed by combining parity 
check matrices of binary 2-error-correcting and 1-error-correcting 
BCH codes. Recently, M. C. Lin and S. Lin [2] generalized the 
above class and constructed optimal binary LUEP codes of separation 
vector (5, 3) by combining the parity check matrix of a binary 2- 
error-correcting BCH code of length 2" - 1, and the parity check 
matrix of a shortened binary Hamming code, whose columns belong 
to the field GF(2'+"). For I = m, these codes are equivalent to 
BK LUEP codes. Unfortunately, the construction method used in [2] 
yields binary (t, 1)-error-correcting codes which are not optimal for 
t > 2 .  

In [l], a class of binary LUEP codes with separation vector 
(2t + 1,  3 ) ,  t 2 2, based on t-error-correcting BCH codes and 
Hamming codes is also presented, and it is shown that these codes 
are asymptotically optimal. In this paper, the class of optimal binary 
LUEP codes of [2] is generalized to symbols over the field GF (2").  
The codes obtained are optimal not only for separation vector (5, 
3), as in the binary case, but in general for separation vectors 
5 = (2t + 1 ,  3 ) ,  with t 2 2.  Our result constitutes a generalization 
of the asymptotically optimal binary LUEP codes of Boyarinov and 
Katsman to codes over any Galois field GF(2"), s 2 3.  

III. (2, I)-ERROR-CORRECTING CODES OVERGF ( 2 " )  
Let y be a primitive element of GF (2""). Let C(2") be the linear 

code over GF ( 2 " )  with parity check matrix 

where each power of y is represented as a column vector of length 
m over GF(2"), s > 1, 0, represents a (F-ary) column vector of 
i zeros, and 41, . . . , represent column vectors, not multiples of 
each other, of length 2m + 1 over GF ( 2 " )  for which the last E entries 
are not all zeros where 

2 4 2 " )  (2"' - 1 )  
nb = 

2 8 - 1  * 

Note that H(2") can be written as 

where 

is the parity check matrix of a BCH code C,(2") over GF (Y) of 
length n, = 2"" - 1, dimension ICa  2 2"" - 4m - 1, and minimum 
distance d,  2 5; Haa(2')  is the parity check matrix of a BCH 
code C,,(2") over GF(2"), which contains C,(2'), of length ne, 
dimension k,, 2 2"" - 2m - 1, and minimum distance d,, 2 3; 

is the parity check matrix of a shortened Hamming code Cb(2") of 
length nb = 22sm(2Sr  - 1 ) / ( 2 "  - 1 )  = 2 2 s m ( 2 s ( ' - 1 )  +. . e +2" + l ) ,  
dimension kb = nb - 2m - 1 and minimum distance db 2 3; and 
Cbb(2') is a linear code over GF(2"), containing cb(2").  of length 
nb, dimension k b b  2 nb - E and minimum distance d b b  = 2;  and 01 
and 0 2  denote all zero matrices of appropriate dimensions. 

Theorem 2: C(2") is an (n,  k )  LUEP code over GF(2"), s > 2 ,  
with parameters, 

n = 22""(2"('-') + 2 8 ( ' - 2 )  + . . . + 2" + 1) + 2sm - 1, 

k 2 n - 4m - 1 ,  

Z = (s1, s z ) ,  s1 2 5 ,  8 2  = 3, 

for the message space M = GF(2")k1 x GF(2")k2 where 

IC1 2 2"" - 2m - 1, 
k2 2 22"m(28('-1) + . . . + 2" + 1) - 2m - 1. 

In other words, C(2") protects the first 2"" - 2m - 1 information 
symbols against any combination of 2 or less symbol errors, and the 
remaining information symbols against any single symbol error. 

Code C(2")  can be transformed into a systematic code with the 
same parameters and separation vector. This is done by performing 
elementary row operations on its parity check matrix, which do not 
change the error protection level of any code symbol, as indicated 
in [l]. 

Note that for m = 1,  Ca(2')  and CQ,(2") are Reed-Solomon 
(RS) codes over GF(2"). In this case, the expressions for kl and k2 

in Theorem 2 above become equalities. 
Proofi (Similar to [ l ,  Theorem 11) That C(2")  has minimum 

distance dmin = sz = 3 follows easily from the fact that all columns 
of H ( 2 " )  in (3) are different and we can find 3 columns from HZ in 
(3) that add to the all-zero vector [3]. It remains to show that SI 2 5. 
Let x!3) denote the ith column of submatrix H3 in (3), j = 1 ,  2 .  We 
need to prove that any column is linearly dependent on no less 
than four other columns of H(2").  This is done by considering the 
following cases of linear combinations of columns of H(2").  

and 



198 EEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994 

Three columns: 
i) 2') + 2') + 2') # 0, by definition of H,(2"). 
ii) 21) + +) + + # U, since ~ 1 2 )  # U. 
iii) h,, + h,, + h,, U, since # U. 
0 Four columns: 
i) E,=l 2:) # 0, by definition of H,(2"). 
ii) E:=, 2;) + K::) # U, since xi:' # U. 
iii) + K!:) + + # 0, since columns are different. 

iv) 2;) + E:=, k:f' # U, since # 0. 
Example: Let 2 = m = 1 and s = 3. C p 3 )  is then a (71, 66) 

41) 4 2 )  4') 

LUEP code over GF(23), with 5 information symbols protected 
against any two or less random errors, and 61 information symbols 
protected against any single random error. This code meets the 
Hamming lower bound on the number of redundant symbols from 
GF p 3 ) ,  as will be shown in the next paragraph, and therefore is an 
example of an optimal linear two-level (2, 1)-error-correcting code 
over G F ( ~ ~ ) .  

A. Hamming Bound 
For a binary linear ( t i ,  tz)-error-correcting (n, IF) code, the fol- 

lowing Hamming bound was first derived by Boyarinov and Katsman 
DI: 

For linear codes over GF(2"), we obtain a lower bound on the 
number of redundant symbols as follows: 1) the number of cosets is 
now 2"("-'); 2) the number of vectors in (GF(2"))" of weight less 
than or equal to t 2  is 

and iii) the number of vectors over GF(2") of weight w, such that 
t2  < w 5 t i ,  with at least one nonzero component in the IF1 most 
significant positions is 

We conclude that linear (2, 1)-error-correcting codes over GF (2"), 
with parity check matrix (2) and m = 1 (i.e., the upper left submatrix 

-of (2) is the parity check matrix of an RS code), are optimal linear 
codes. 

IV. (t,  ~)-ERROR-~ORRECTING CODES OVERGF (2") 
Let C ( 2 7  be the linear code over GF (2") with parity check matrix 

as in (3) where Ha(2') is now the parity check matrix of a t-error- 
correcting BCH code CQ(2') over GF(2") of length n, = 2""' - 1 
and dimension E, 2 2"m - 2mt - 1, and Ha,(2') is the parity-check 
matrix of a ( t  - 1)-error-correcting BCH code Ca,(2') over GF(2") 
of length n,, = 2"" - 1 and dimension IC,, 2 2"" - 2m(t-  1) - 1. 

Theorem 3: C(2') is an (n, k) LUEP code over GF(2"), s > 2, 
with parameters 

= 22~"(24'-1) + 24l-2) + . . . + 25 + 1)  + 25m - 1 
k 2 n - 2mt  - 1 
5 = (SI, S Z ) ,  SI 2 2t + 1, s2 2 3 

and 

(7) 

for the message space M = GF(2")'l x GF(2a)k2 where 
IC1 2 2"" - 2m(t  - 1) - 1 

2 22sm(2a('-1) + . . . + 2" + 1)  - 2m - 1 .  

Code C(2") can be transformed into a systematic code with the 
same parameters and separation vector. This is done by performing 
elementary row operations on its parity check matrix, which do not 
change the error protection level of any code symbol, as indicated 
in [l]. Again note that for m = 1,  C,(2") and CQQ(2") are 
Reed-Solomon (RS) codes over GF (2"). In this case, the expressions 
for kl and IC2 in Theorem 3 above become equalities. 

Pmofi (Similar to the proof of Theorem 2) The minimum 
distance of C(2") is dmin = 5 2  = 3. That any column 2') from 
submatrix Hi in (3) is linearly dependent on no less than 2t other 
columns of H(2") is shown as follows. 

contradicts the definition of Ha,(2"), for 1 5 m 5 2t - 2. 

two cases: 

-(I) 2t-2-m - (2 )  - 
0 u p  to 2t - 2 columns: E,"=, hZ3 + Ej,=l htJ, = 0, 

0 2t - 1 columns: 

i) m = 2t - 1, contradicts the definition of H,(2"). 
ii) 1 5 m 5 2t - 2, contradicts the definition of H,,(2"). 

2t columns: E,"=, h,, + &=l hlJ, = 0. Divide into three 

2;) + C:l"z:-" $:! = U. Divide into 

-(I) 2t--m - (2 )  - 

cases: 
As a result, we obtain the following Hamming bound for a linear 
two-level ( t l ,  t2)-error-correcting code over GF (2"): 

i) m = 2t, contradicts the definition of H,(2"). 
ii) m = 2t - 1, impossible because 22; # U. 

2"("--') 2 5 ( 7 ) ( 2 '  - 1); 
P=O 

For the class of codes of Theorem 2, we let tl = 2 and t z  = 1 in 
(5) ,  obtaining 

2+-') > - 1 + (2," - 1)(2" - 1)  

+ ( Y m  - 2m - l)(Ym-' + m - 1)(2" - 112 
+ 22Sm(281 - 1)[1+ (2"" - 2m - 1)(2" - l)]. (6) 

We have evaluated (6) for different values of I, s, and m and found 
that Theorem 2 gives optimal codes for m = 1, s > 2, and 2 > 0. 
From (6), with m = 1, we can show that 

(1 + A >  24n-k) > 28(1+4)-1 - 

where 0 < A < 1. Therefore, n - k 2 I + 4. Note that for m = 1, 
codes from Theorem 2 have redundancy n - IC = 1 + 4. 

iii) 1 5 m 5 2t - 2, contradicts the dehnition of HaQ(2"). 0 

A. Hamming Bound, t = 3 
Let ti = 3 and t z  = 1 in inequality (5). Then 

2"("-k) > - k ( 3 2 '  - 1); 
*=O 

with m = 1, we have for codes from Theorem 3, 

2"("-') 2 1 + 2272"' - 1) + (2" - 1)(2" - 1) 
+ (2" - 5)(2"-' - 3)(2" - 1)' 
+ 2'"(2"' - 1)(2" - 1)  + 4(2" - 5)(2" - 1)' 

+ -(2' - 5)(2" - 6)(2" - 7)(2" - 1)3 

+ {22s(2s1 - 1)(2" - 1)' + 4(2" - 1)3}(2" - 5)(2" - 3) 

1 
6 

- - 28('+6)-' (1 + A) 
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where 1 > A > - i, for s 2 4. Therefore, a linear nonbinary two- 
level (3, 1)-error-correcting code with parameters as in (7) requires at 
least E + 6 redundant symbols. For t = 3 and m = 1, the codes given 
by Theoerm 3 have 2t + 1 = 1 + 6 redundant symbols. We conclude 
that the class of codes being considered is optimal for t = 3, and 
m = 1. 

B. Asymptotic Hamming Bound 

practically impossible to evaluate. From (5), we obtain 
For tl = t, t > 3, and t z  = 1, the Hamming bound (5 )  becomes 

+(n - k i ) k C  k_l 1) (2" - 1)j. (8) 
j=2 

We are going to derive an asymptotic equivalent of (8), for fixed t 
and large s. A good lower bound on (8) is obtained by taking only 
the most dominant term, 

2"("-k) > (n - kl)&(j k_l 1) (2" - 1)j. (9) 
j=2 

A lower bound on the sum of binomial coefficients is given by [3] 

j = 1  k(j?l) 
> 2"'IH((t-l)/k1)-(1/2kl) logz [Sk~(( t - - l ) /kl)((kl  -t+l)/kl)I} (10) - 

where R(.) denotes the binary entropy function. In addition, it is 
possible to show that 

k l { H ( F )  - &log, [ 8 k 1 ( Y ) ( ~ ' i ; + ~ ) ] }  
lim . .  

1 = I - -  
2(t - 1) 

k l H ( F )  

8'00 lim (t - 1) log, kl = 1. (12) 

On the other hand, 

kl H ( y) > (t - 1) log, - (t - 1) log, (t  - 1) (13) 

and 

(t - 1) log, kl = 1. (14) lim 
s-00 (t - 1) log, k1 + (t - 1) log, (t - 1) 

Using (11)-(14) in (lo), and the inequality (2" - 
obtain 

> 2("-llt, we 

.[(t - 1) log, kl - (t - 1) log, (t - l)] + (s - l ) t ]  (15) 

where U(.) N b ( s )  [read U(.) asymptotic to b ( s ) ]  means that 

(Note that both n and kl grow exponentially with s.) In other words, 
the expression on the right-hand side (RHS) of (9) is asymptotic (after 
taking logarithm base 2) to the RHS of (15) and, at the same time, 
the RHS of (9) is greater than the RHS of (15). 

TABLE I 
SOME 0m.a ( t ,  I)-ERROR-CORRECTING CODES OVER GF(28) 

~ 

199 

S 1 n 5 ic1 2 t 
3 1 71 66 5 61 2 
3 2 583 577 5 572 2 
4 1 271 266 13 253 2 
4 1 271 264 1 1  253 3 
4 2 4367 4361 13 4348 2 

3 4 2 4367 4359 1 1  4348 
5 1 1055 1050 29 1021 2 
5 1 1055 1048 27 1021 3 
5 1 1055 1046 25 1021 4 

3 6 1 4159 4152 59 4093 
6 1 4159 4150 57 4093 4 

5 4159 4148 55 4093 6 1 

Inequality (15) can be rewritten as follows: 

s(n - k) 2 [log, n + (t - 3/2)log, k1 + st  

+log, (1 - ki/n) - [(t - 3/2)10g, (t - 1) = t ] ] .  (16) 

Let c ( t )  = (t - 3/2)log, (t - 1) + t, a constant that depends on 
t but not on s (and therefore not on n nor on k l ) .  Then, for large 
s, we have that 

- c( t )  x 0. 
5 

In addition, we assume that kl < cn where 0 < c << 1. It follows 
from (16) that 

(n - k) 2 -[log, n + (t - 3/2)lOg, ki]  + t ]  (17) 

which is the desired asymptotic Hamming lower bound on the number 
of redundant symbols of a linear (t, 1)-error-correcting code over 
GF (2"). For codes with parameters as those in (7) we have, for large 
8, 

1: 

and kl 2 2"m-1. (18) 2 242m+l--1) 

Let m = 1. It follows from (17) and (18) that the number of redundant 
symbols has the following asymptotic Hamming lower bound 

This bound reduces to 

n - k 2 r2t + 11 

because (t - 3/2)/s M 0. Note that, for m = 1, LUEP codes of The- 
orem 3 have exactly 2t + I redundant symbols, and thus achieve the 
Hamming bound. We have shown that the LUEP codes obtained from 
Theorem 3 are optimal when their parity-check matrices are combi- 
nations of parity-check matrices of t-error correcting Reed-Solomon 
codes and parity-check matrices of shortened Hamming codes, both 
over the field GF(2"), for large s, s 2 3. 

In Table I we present a list of some optimal linear (t, 1)-error- 
correcting codes over GF (2'). 
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The n-Dimensional Key Equation 
and a Decading Application 

HervC Chabanne and Graham H. Norton 

Abstract-We intraduce the n-dimensional key equation, which exhibits 
the error-locator polynomial of an n-dimensional cyclic code as a product 
of n univariate polynomials and the error-evaluator polynomial as an n- 
variable polynomial. We then reinterpret these polynomials in the context 
of linear recurring sequences. In particular, we reduce the decoding 
problem to successive application of the BerlekampMassey algorithm. 
With this new method, we are able to decode (up to half their mini" 
distance) many codes in a table of 2-D cyclic codes due to Jensen. 

I. INTRODUCITON AND NOTATION 
Let n 2 2, K be a finite field and K[X] = K [ X 1 , .  . . , X,]. An n- 

dimensional (n-D) cyclic or abelian code is an ideal in the polynomial 
algebra K [ X ] / ( X p  - l,.-.,X,N" - 1). See [1]-[3] for details. We 
consider the problem of decoding these codes. Our approach is based 
on generalizing the key equation to n dimensions and successive 
application of the ordinary BerlekampMassey algorithm. We give 
several examples of our algorithm at work; all of the 2-D cyclic codes 
in Jensen's table [8], whose minimum distance does not exceed eight, 
can be decoded. 

In more detail, let 

. (XI=  eiX' 
i ~ u p p  (e) 

be a nonzero polynomial corresponding to a transmitted codeword 
where i = (il,-..,in), Supp(e) = {i  E IN": ei  # 0) and 
X' = X;l . . X > .  Denote by L the smallest extension of K 
containing an NLb primitive root of unity ark for 1 5 k 5 n. (We 
do not exclude the case K = L.) Our key equation has the form 

(u1. * a,)S,(x-l) = x w  

where for 1 5 k 5 n, (Tk E L[Xk] is the monic "error-locator 
Xk-polynomial," w E L[X] is the error-evaluator polynomial, and 

S , ( X - ~ )  = C e ( a - * ) X i  E L[[X-'II. 

(By i = ( i l , - . . , & )  5 j = (jl,..-,j,,), we mean i k  5 j k  for all 
k, 1 5 k 5 n; i 2 j is synonymous with j 5 i. Also, we abbreviate 
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. . . a Z Z n  to a-'.) When se and the (Tk are known, we can 
recover e from the spectral properties of the uk and w (Theorem 
2.4). 

Let E be the n-D linear recumng sequence (lrs) with generating 
function Se(X- ' ) ,  and let Ann(E) be its characteristic ideal. We 
show that (Tk generates Ann(Z) n L[Xk] for 1 5 k 5 n and give 
two methods of computing the generators (Theorems 3.4, 3.6). Thus 
we can compute e when Se is known (Algorithm 3.7). 

The last section begins with an introductory example of "decoding 
by sections" (Algorithm 4.3) at work and continues with several 
3-error-correcting 2-D cyclic codes from [8]. 

The problem of decoding 2-D cyclic codes has recently been 
considered in [13], using the 2-D BerlekampMassey algorithm of 
[12] and the non-trivial theory of Grobner bases. In contrast, our 
approach is self-contained (apart from two results on n-D Irs) and as 
far as we know, is the only method which can decode the %error- 
correcting 2-D cyclic codes of [8]. 

Although Berman [ 11 has shown that abelian codes form a class of 
good codes, we are unaware of codes which are useful in applications 
and which are decodable by sections. Also, it would be interesting to 
know if our key equation can be solved using the XPRS algorithm 
of [5], [6] or by the 2-D Berlekamp-Massey algorithm. 

A preliminary version of this paper appeared in [4]. We conclude 
with a short list of additional notation: 

Notation Meaning 

w 

11. THE n-D KEY EQUATION 
Our goal is to write the series S = Se described in the Introduction 

as a quotient of two relatively prime polynomials. We begin with an 
important expression for S. 

Lemma 2.1: 

Pmofi By expanding: and-rewriting S, we obtain S = 
&-Supp(e) e j ( x j r p  (a*X- l )3 ) .  An easy induction on n shows 

that cj,, (aiX-1)3 = n;=, (1 - c~yokkXL~)-~, which yields the 
result. 0 

In n dimensions, we will need a product of univariate error-locator 
polynomials. 
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