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Biogeography and the Cambrian radiation of arachnomorph 
arthropods

JONATHAN R. HENDRICKS & BRUCE S. LIEBERMAN

ONE of John Shergold’s abiding research interests, 
and an area in which he made fundamental 
contributions to the fields of palaeontology and 
geology, was the study of Cambrian arthropods 
in general, and trilobites in particular (e.g., 
Shergold 1977, 1988, 1991; Shergold et al. 1990; 
Shergold & Laurie 1997). Here we focus on 
what Cambrian arthropods, including trilobites, 
can tell us about the nature of evolutionary and 
biogeographic patterns, and their relationship to 
geological changes, during a key episode in the 
history of life, the Cambrian radiation. The first 
appearance of animal life in Cambrian strata has 
stimulated the curiosity of naturalists ever since 
Buckland (1836). A growing body of evidence, 
from studies of molecular sequence evolution to 
trilobite biogeography, supports the hypothesis 
that bilaterian lineages originated and began to 
diverge at the end of the Neoproterozoic, perhaps 
a few tens of millions of years before their first 
appearance in the fossil record (e.g., Meert & 
Lieberman 2004; Peterson et al. 2004).

Much recent attention has focused on the 
roles that extrinsic environmental or geological 

factors may have played in the Cambrian radiation 
(Hoffman 1991; Knoll 1996; Dalziel 1997; 
Lieberman 1997; Veevers et al. 1997; Hoffman 
et al. 1998). The late Neoproterozoic to early 
Cambrian was a period of substantial tectonic 
activity and Meert & Lieberman (2004; also see 
references therein) provided a recent review of 
these events, which are briefly recounted here. 
The supercontinent Rodinia broke apart ca. 
750 Ma, with major rifting occurring between 
western Laurentia and Gondwana (Australia, East 
Antarctica and South China). Around 600 Ma, 
the ephemeral supercontinent Pannotia formed. 
Pannotia rifted apart during the subsequent 50 
million years (550-600 Ma), resulting in four 
distinct land masses by the beginning of the 
Cambrian: Laurentia; Baltica (Scandinavia 
and eastern Europe); Siberia; and Gondwana 
(including South America, Africa, Antarctica, 
Australia, India, North and South China, Avalonia, 
and western and central Europe). 

Of interest here are the roles that tectonic 
factors may have played in the early evolution 
and radiation of arachnomorph arthropods, which 
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Biogeographic patterns in primarily Cambrian arachnomorph taxa are investigated using a 
recently constructed phylogenetic hypothesis in order to explore the biogeographic context 
of the Cambrian radiation. A modified version of Brooks Parsimony Analysis is employed to 
elucidate patterns of vicariance and geodispersal in taxa from six regions (Laurentia, Baltica, 
Siberia, Australia, Africa and China). Well resolved vicariance and geodispersal trees are very 
similar and reconstruct Laurentia and China as sister areas. This close area relationship between 
Laurentia and China provides extensive evidence for congruent vicariance and range expansion in 
Cambrian arachnomorphs, while data from trilobites do not show this pattern. Our results imply 
that cyclic events (such as sea-level change), in conjunction with dispersal ability, may have 
been more important than tectonic events in generating the biogeographic patterns we observed 
in Cambrian arachnomorphs. Further, the greater degree of dispersal in various non-trilobite 
arachnomorph lineages relative to trilobites is correlated with greater extinction resistance across 
the early-Middle Cambrian boundary.   

Jonathan R. Hendricks (jrhendri@ku.edu), Department of Geology, 1475 Jayhawk Boulevard, 120 
Lindley Hall, University of Kansas, Lawrence, 66045-7613, USA; Bruce S. Lieberman (blieber@
ku.edu), Department of Geology and Natural History Museum and Biodiversity Research Center, 
1475 Jayhawk Boulevard, 120 Lindley Hall, University of Kansas, Lawrence, 66045-7613, USA. 
Received 29 October 2007. 

Keywords: Arachnomorpha, Arthropoda, Cambrian radiation, geodispersal, macroevolution, 
palaeobiogeography, phylogeny, tectonics, vicariance.



AAP Memoir 34 (2007)462

include trilobites, chelicerates and many poorly 
scleritised, enigmatic arthropods only known 
from Burgess Shale-type deposits. Our study 
considers over 20 relevant, early Palaeozoic 
arachnomorph taxa. It was not possible, however, 
to consider every taxon that has been treated 
as an arachnomorph (or close relative) in our 
study. For example, we did not explore the 
phylogenetic position of the pycnogonids relative 

to Cambrian arachnomorphs and crown-group 
chelicerates. Biogeographic patterns in these 
other taxa are outside the scope of this paper, and 
the interested reader is referred to discussions on 
the phylogenetic status of the arachnomorphs 
by Wills et al. (1998), Edgecombe & Ramsköld 
(1999), Budd (2002), Cotton & Braddy (2004), 
Scholtz & Edgecombe (2006) and Hendricks & 
Lieberman (in press), and references therein. 
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Fig. 1. Combined phylogenetic hypothesis (Hendricks & Lieberman in press) of arachnomorph relationships 
(strict consensus of 12 most parsimonious trees, each of 78 steps and with CI = 0.62 and RI = 0.75; the consensus 
has 82 steps) and area cladogram resulting from substituting biogeographic character states for taxon names and 
mapping biogeographic characters to ancestral nodes.  Numbers adjacent to taxon names refer to geographic 
occurrence records (also see Table 1): 1) Laurentia; 2) Baltica; 3) Siberia; 4) Australia; 5) Africa; and 6) China.  
Geographic data for “Marrellomorpha” are derived from Marrella and geographic data for Weinbergina are 
derived from Eolimulus and Paleomerus (see text for details); further, “Trilobita” represents a sister-group 
relationship found for Eoredlichia and Olenoides by Hendricks & Lieberman (in press). Numbers in boxes 
are biogeographic regions reconstructed at ancestral nodes using Fitch (1971) optimisation as described by 
Lieberman (2000).  Numbers in circles refer to nodes or terminals developed into biogeographical characters 
shown in Tables 2 and 3. Numbers in boxes are support values [normal type, bootstrap support (Felsenstein 
1985); italicised type, jackknife support (Farris et al. 1996); bold type, Bremer support (Bremer 1988, 1994)] 
calculated for the phylogenetic hypothesis of Hendricks & Lieberman (in press, fig. 3). 
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It has been previously demonstrated (Lieberman 
2003a, b; Lieberman & Meert 2004; Meert & 
Lieberman 2004) that vicariant biogeographic 
patterns (those involving the fragmentation 
of geographic areas, with subsequent lineage 
diversification and range contraction) in early 
Cambrian trilobites are congruent with the 
600-550 Ma breakup of Pannotia. Further, analyses 
of patterns of geodispersal (those involving the 
joining of geographic areas, with subsequent range 
expansion) in early Cambrian trilobites show little 
evidence for significant amounts of congruent 
dispersal or range expansion between tectonic 
regions (Lieberman 2003a; Lieberman & Meert 
2004; Meert & Lieberman 2004). Indeed, many 
early Cambrian trilobites are highly endemic. For 
example, among more than 100 species of early 
Cambrian olenelline trilobites, all were confined 
to a single craton and only one species occurred 
in more than one tectonic basin (Lieberman 1997, 
1999, 2001, 2003c). On the face of it, however, 
this pattern of endemicity is not present in many of 
the Cambrian Burgess Shale-type arthropod taxa, 
including many non-trilobite arachnomorphs; for 
instance, some of these taxa are known to occur 
in multiple tectonic basins (Lieberman 2003c). 
Here we use new analyses to study biogeographic 
patterns of vicariance and geodispersal in 
primarily Cambrian arachnomorphs in order 
to better understand the biogeographic context 
of the Cambrian radiation and to consider how 
these patterns compare to those that have been 
previously observed in trilobite taxa.

 
METHODS AND MATERIALS
A variety of methods have been developed to 
explore phylogenetic biogeographic patterns 
(e.g., Ebach & Edgecombe 2001). Our study 
utilised a modified version of Brooks Parsimony 
Analysis (BPA) to consider biogeographic 
patterns in Cambrian arachnomorphs; this method 
was chosen because it allows examination of 
both patterns of vicariance and patterns of 
geodispersal. The modified BPA methodology 
used here has been described in detail previously 
(Lieberman & Eldredge 1996; Lieberman 1997, 
2000). The method relies on first constructing 
an area cladogram by replacing the terminal 
taxa from a phylogenetic hypothesis with the 
geographic regions occupied by those taxa. 
Geographic occurrences are then reconstructed 
at the nodes of the cladogram using Fitch (1971) 
optimisation (see Lieberman, 2000, p. 121-123), 
a parsimony algorithm. Once constructed, 
information from the area cladogram is used to 
explore how the geographic distributions of taxa 
changed during cladogenesis by creating two 
data matrices: one designed to retrieve congruent 

episodes of vicariance; the other designed to 
retrieve congruent episodes of geodispersal. Each 
data matrix is then individually analysed using a 
parsimony algorithm. The results are expressed 
as a most parsimonious tree (or consensus 
tree) depicting, respectively, the best supported 
congruent patterns of vicariance and the best 
supported congruent patterns of geodispersal 
in the data. A recently constructed phylogenetic 
hypothesis for mostly Cambrian, Palaeozoic 
arachnomorph taxa (Hendricks & Lieberman 
in press) forms the basis of this study. Our 
phylogenetic hypothesis (see Fig. 1) was built 
by modification of, and addition to, a character 
matrix previously published by Edgecombe 
& Ramsköld (1999) and included a total of 26 
terminal taxa. The topology shown (Fig. 1) is 
the strict consensus (with all unsupported nodes 
collapsed) of 12 most parsimonious trees, each 
of 78 steps.

Some changes were made to the phylogenetic 
hypothesis of Hendricks & Lieberman (in 
press) for the purposes of the present study. 
In particular, because the goal of the present 
study was to deduce patterns of biogeography in 
Cambrian arachnomorphs (see Table 1), two of 
the Devonian-aged terminal taxa were replaced 
on the tree by Cambrian taxa considered to 
be either nearly equivalent or closely related. 
These two changes included: 1) replacing the 
composite outgroup terminal “Marrellomorpha”, 
which comprises both the Cambrian taxon 
Marrella and the Devonian taxon Mimetaster, 
with just Marrella; and 2) substituting either 
Eolimulus or Paleomerus, both Cambrian taxa, 
for the Devonian chelicerate Weinbergina. We 
acknowledge that because information about 
the appendages of Eolimulus and Paleomerus 
are lacking, their phylogenetic positions cannot 
be confidently established. For the purposes 
of the present study, however, we assume that 
one (or both) may be on the xiphosuran stem 
lineage and are thus appropriate placeholders for 
Weinbergina, especially because all three taxa 
share a similar palaeogeographic provenance 
(Baltica). Additionally, the trilobite genera 
Eoredlichia and Olenoides, found to be sister 
taxa in the earlier analysis, were fused into a 
single terminal labeled here simply as “Trilobita” 
(as shown in Fig. 1). With the exceptions of 
the Ordovician taxa Tariccoia and Soomaspis, 
these changes resulted in all terminal taxa being 
Cambrian in age. 

Global geographic occurrence data for all taxa 
considered in this study were collected from a 
comprehensive review of the relevant literature, 
especially the work of Raasch (1939), Bergström 
(1968), Dzik & Lendzion (1988), Hammann et 



AAP Memoir 34 (2007)464

al. (1990), Robison (1991), Briggs et al. (1994), 
Fortey & Theron (1994), Nedin (1999), Hagadorn 
(2002), Zhao et al. (2002), Hou et al. (2004), Tetlie 
& Moore (2004), Steiner et al. (2005), Lin (2006), 
Zhang et al. (2007) and Briggs et al. (in press). 
We grouped these occurrence records into six 
major tectonic provinces or areas of endemism: 1) 
Laurentia (including taxa from present day British 
Columbia, Greenland, Pennsylvania, Utah and 
Wisconsin); 2) Baltica (Poland and Sweden); 
3) Siberia; 4) Australia (in this case the lower 
Cambrian deposits from Kangaroo Island); 5) 
Africa (in this case South Africa and Sardinia, 
which sat close to the margins of the African 
craton; Meert & Lieberman 2004); and 6) China 
(in this case Yunnan and Guizhou provinces). 

These occurrence data are summarised in Table 1. 
The assignment of the biogeographic state of the 
Trilobita to Siberia is based upon the phylogenetic 
biogeographic analysis of Lieberman (2002), 
which reconstructed Siberia as the region 
where eutrilobites originated. Additionally, a 
hypothetical, ancestral outgroup region (0) was 
created to provide polarity for the biogeographic 
character data in the six ingroup regions; see 
further details below.

Some geographical assignments of taxa remain 
controversial. Relevant examples include the 
occurrence records for Alalcomenaeus, Sidneyia 
and Naraoia. It has been suggested (e.g., 
Briggs & Collins 1999) that a small number of 
Chengjiang specimens referred to Leanchoilia 

Taxon Laurentia (1) Baltica (2) Siberia (3) Australia (4) Africa (5) China (6)
Aglaspis  Hall, 1862 Raasch 1939

Alalcomenaeus  Simonetta, 1970 Robison 1991; Briggs 
et al.  1994

Cindarella  Chen, Ramsköld, 
Edgecombe & Zhou in Chen et
al. , 1996 

Hou et al.  2004

Dicranocaris  Briggs et al. , in 
press Briggs et al.  in press

Emeraldella  Walcott, 1912 Robison 1991; Briggs 
et al.  1994

Eolimulus  Bergström, 1968 
(Placeholder for Weinbergina )

Bergström
1968

Helmetia  Walcott, 1918 Briggs et al.  1994
Kuamaia  Hou, 1987 Hou et al.  2004

Leanchoilia  Walcott, 1912 Robison 1991; Briggs 
et al.  1994

Zhao et al.  2002; Hou 
et al.  2004

Liwia  Dzik & Lendzion, 1988
Dzik & 

Lendzion
1988

Marrella  Walcott, 1912 
(Placeholder for Marrellomorpha) Briggs et al.  1994 Zhao et al.  2002

Misszhouia  Chen et al. , 1997 Hou et al.  2004; 
Steiner et al.  2005

Naraoia  Walcott, 1912
Robison 1991; Briggs 
et al.  1994; Zhang et

al.  2007
Nedin 1999

Hou et al.  2004; 
Steiner et al.  2005; 

Lin 2006; Zhang et al. 
2007

Nettapezoura  Briggs et al. , in
press Briggs et al.  in press

Paleomerus  Størmer, 1956 
(Placeholder for Weinbergina )

Tetlie & 
Moore 2004

Retifacies  Hou et al. , 1989 Hou et al.  2004
Sanctacaris  Briggs & Collins, 
1988 Briggs et al.  1994

Saperion  Hou et al. , 1991 Hou et al.  2004
Sidneyia  Walcott, 1911 Briggs et al.  1994 Hou et al.  2004
Sinoburius  Hou et al. , 1991 Hou et al.  2004

Skioldia  Hou & Bergström, 1997 Hou et al.  2004; 
Steiner et al.  2005

Soomaspis  Fortey & Theron, 
1994

Fortey & Theron 
1994

Tariccoia  Hammann et al. , 1990 Hammann et al. 
1990

Tegopelte  Simonetta & Delle 
Cave, 1975 Briggs et al.  1994

Trilobita (Placeholder for 
Eoredlichia  and Olenoides ) Lieberman 2002

Xandarella  Hou et al. , 1991 Hagadorn 2002 Hou et al.  2004

Table 1. Regional biogeographic occurrence data (presence indicated by reference) for the arachnomorph taxa 
considered in this study. Presence in a region is indicated by a recent reference.
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may be Alalcomenaeus, though this assignment 
has not yet been conclusively determined and 
several recent publications do not recognise 
this taxon as occurring in China (Hou et al. 
2004; Steiner et al. 2005). Therefore, we do not 
treat Alalcomenaeus as occurring in China in 
this study. Sidneyia—first described from the 
Burgess Shale of Laurentia by Walcott (1911) 
as S. inexpectans—has been reported (Zhang 
et al. 2002) to occur in the Chengjiang as S. 
sinica, though Briggs et al. (in press) challenge 
this generic assignment. Nevertheless, Briggs 
et al. (in press) argue that S. sinica is similar to 
Sidneyia inexpectans in many respects and was 
likely closely related. Hence, we have chosen 
to include an occurrence record for Sidneyia in 
China. Recently, Lin et al. (2006) and Zhang et al. 
(2007) challenged Nedin’s (1999) identification of 
Naraoia in the Emu Bay Shale, claiming instead 
that Nedin’s material may represent Primicaris or 
Skania. Nedin’s (1999, fig. 2a) figured specimen 
is somewhat poorly preserved and in general form 
could be compatible with an interpretation either 
as Naraoia, Primicaris or Skania. Specimens 
of Naraoia tend to be larger than specimens of 
Primicaris and Skania (see sizes for these taxa 
presented by Zhang et al. 2003; Lin et al. 2006), 
however, and the size of Nedin’s (1999, fig. 2a) 
figured specimen (ca. 12 mm) from the Emu Bay 
Shale is within the range of Naraoia, but appears 
to be too large for the other two taxa. Thus, until 
decisive Emu Bay Shale specimens present 
themselves to the contrary, we follow Nedin’s 
(1999) identification of his material from the Emu 
Bay Shale, South Australia.

We acknowledge the possibility that potential 
biases may have led to some true taxon occurrence 
records going unrecognised due to either their 
missing fossil record (not being fossilised due 
to taphonomic biases) or their lack of collection 
to date. This is a challenging problem without 
a simple solution: how should one weigh 
negative occurrence evidence? We argue that the 
distributional patterns considered here could be 

easily tested, further evaluated and modified, if 
need be, as new fossil discoveries are made.

We replaced the terminal taxon names on our 
phylogenetic hypothesis (Hendricks & Lieberman 
in press) with their associated geographic 
occurrence data (tectonic provinces 1-6); see 
Figure 1. Next, unordered Fitch optimisation 
(Fitch 1971) was used to optimise the geographic 
states on the tree topology, as described by 
Lieberman (2000, p. 121-123). This resulted 
in an area cladogram (see Fig. 1) that could 
be used to construct a vicariance matrix and 
a geodispersal matrix, which are respectively 
designed to discover congruent historical episodes 
of vicariance and range expansion (Lieberman 
2003a). These matrices were constructed and 
coded from the area cladogram (Fig. 1) following 
the methodology described by Lieberman (2000, 
p. 144-150). All characters were treated as ordered 
(=additive), with a vicariant transition between 
a region denoted by a transition from state ‘1’ 
to state ‘2’ in the vicariance matrix; similarly, a 
transition involving range expansion would be 
denoted by a transition from state ‘1’ to state ‘2’ 
in the geodispersal matrix. The vicariance matrix 
is shown in Table 2 and the geodispersal matrix is 
shown in Table 3. In both cases, all biogeographic 
characters for the hypothetical ancestral outgroup 
region (0) were coded as absent in order to 
provide polarity to the characters in the ingroup 
regions. These matrices were used to reconstruct 
the best supported vicariance and geodispersal 
topologies using the parsimony criterion, which 
may be interpreted as follows: on a vicariance 
tree (or a consensus of multiple trees), the closer 
two regions sit on the tree, the more recently they 
were separated (Lieberman 2003a); the closer 
two regions sit on the geodispersal tree, the more 
recently they were joined (Lieberman 2003a). 
Significant amounts of similarity between the two 
trees may suggest that the same environmental 
processes responsible for vicariance were 
also responsible for geodispersal (e.g., cyclic 
processes such as sea-level change). By contrast, 
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Ancestor (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Laurentia (1) 1 1 1 2 1 1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 2 1 1 1 1 1 0 0 2 1 1 2 1 2 1 0 0
Baltica (2) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0
Siberia (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0
Australia (4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Africa (5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 2 1 1 0 0 0 0 0 0 0 0 0
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Table 2. Matrix of biogeographical characters and character states used in the analysis of vicariance. State 
0 signifies the primitive condition (absent) and states 1 and 2 signify the derived conditions (present). All 
characters treated as ordered (additive). Characters 5, 6, 8-10, 12, 13, 15-18, 22-24, 33, 34, 42 and 43 are 
uninformative and were deactivated prior to cladistic analysis.
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significant differences between the two trees may 
suggest that tectonic events, a single profound 
episode of sea-level rise (or fall), or chance 
dispersal events may have played more important 
roles in influencing the observed biogeographic 
patterns in a given group (Lieberman 2003a); see 
Lieberman & Eldredge (1996) and Lieberman 
(1997, 2000) for additional discussion.

The vicariance and geodispersal matrices were 
managed using WinClada (Nixon 1999-2002) and 
heuristic parsimony analyses were independently 
carried out on each matrix using NONA 2.0 
(Goloboff 1999). Prior to each parsimony 
analysis, all uninformative characters were 
selected and deactivated using WinClada. The 
matrices were then submitted to NONA for 
analysis. The tree-bisection reconnection (TBR) 
algorithm of Swofford & Olsen (1990) was used 
in NONA to search for most parsimonious tree 
(MPT) topologies. Each analysis involved 2,500 
replications (during each replication, 15 trees 
were stored in memory for branch-swapping) and 
space was held in memory to store up to 10,000 
trees. After this search, the shortest MPT’s were 
swapped to completion and only unique trees 
were saved. The command line for this search 
sequence in NONA is “h10000; h/15; mult*2500; 
max*; unique; sv* filename.tre sv/;”. Ensemble 
consistency index (CI; Kluge & Farris 1969) and 
retention index (RI; Farris 1989) values were then 
computed using NONA’s “fit;” command. Saved 
trees were imported into WinClada for study and 
nodes lacking character support were collapsed. 
Additionally, bootstrap (Felsenstein 1985) and 
jackknife support (Farris et al. 1996) values were 
calculated for each matrix using NONA (executed 
through WinClada).

RESULTS
The parsimony analysis of the vicariance matrix 
resulted in the discovery of a single most 
parsimonious tree of length 41 steps (CI = 0.95; 
RI = 0.93), which is shown in Figure 2A. The 

tree is well resolved. Note, however, that no 
characters support separation of Africa from 
Baltica, resulting in a collapsed node; thus, it is 
not clear whether Baltica is positioned basal to 
Africa, or vice-versa. 

The analysis of the geodispersal matrix resulted 
in the discovery of a single most parsimonious tree 
of length 24 steps (CI = 0.87, RI = 0.82), which 
is shown in Figure 2B. This well resolved tree 
features two major groupings: 1) a monophyletic 
area composed of Siberia, Laurentia and China; 
and 2) a sister-area relationship for Baltica and 
Africa. These two groupings in turn have a sister-
group relationship, with Australia positioned 
(relatively) one node down the tree.

The vicariance (Fig. 2A) and geodispersal (Fig. 
2B) trees are very similar in appearance. Both 
show a derived sister-area relationship between 
Laurentia and China and show Siberia one node 
“down the tree” from this grouping. Further, both 
show a basal position for Australia. As described 
above, and shown in Figure 2A-B, the vicariance 
and geodispersal trees differ only in their relative 
placements of Baltica and Africa. 

DISCUSSION AND CONCLUSIONS 
The results from the analysis of phylogenetic 
biogeographic patterns in predominantly Cambrian 
arachnomorphs are rather different from the results 
that have been observed previously in Cambrian 
trilobites (Lieberman 2002, 2003a). In particular, 
the most parsimonious patterns of geodispersal 
are well resolved for the arachnomorphs (Fig. 2B), 
whereas the patterns from the trilobites showed 
relatively little resolution. This suggests that the 
arachnomorphs experienced significantly more 
congruent episodes of range expansion during the 
Cambrian than trilobites did. Another fundamental 
difference between the biogeographic patterns 
in arachnomorphs and trilobites involves the 
association between the faunas of Laurentia and 
China. These regions are sister areas in both 
the arachnomorph vicariance and geodispersal 
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Ancestor (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Laurentia (1) 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0
Baltica (2) 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Siberia (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Australia (4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Africa (5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
China (6) 1 1 1 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1

Table 3.  Matrix of biogeographical characters and character states used in the analysis of geodispersal. State 
0 signifies the primitive condition (absent) and states 1 and 2 signify the derived conditions (present). All 
characters treated as ordered (additive). Characters 3-8, 10, 12, 13, 15-18, 20-24, 28, 31-34, 37, 38 and 40-43 
are uninformative and were deactivated prior to cladistic analysis.
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trees (Fig. 2A-B); by contrast, the trilobite 
faunas of Laurentia and China do not have a 
close area relationship. Our recovered pattern 
is part of a more general pattern that other 
authors have recognised. For instance, of the 112 
early Cambrian trilobite taxa from the western 
Gondwanan margin considered in the study 
by Álvaro et al. (2003, fig. 5), only one genus 
(Serrodiscus) is found in both Laurentia and 
China. Similarly, of 94 Middle Cambrian trilobite 
genera (also from western Gondwana), Álvaro et 
al. (2003, fig. 6) reported only eight (Centropleura, 
Diplagnostus, Doryagnostus, Hypagnostus, 
Lejopyge, Oidalagnostus, Peratagnostus and 
Ptychagnostus) common to Laurentia and China. 
[Of these nine Cambrian trilobite genera, only 
Centropleura belongs to the polymeroid trilobite 
clade; the other eight taxa are ‘miomeroids’. 
The latter likely had a pelagic lifestyle and 
consequently were more widely distributed than 
polymeroids (Laurie 1988; Shergold et al. 1990; 

Shergold & Laurie 1997)]. By contrast, the 
Cambrian Burgess Shale-type faunas of Laurentia 
and China share many elements in common, 
including arachnomorphs. 

Still, on tectonic grounds, it is somewhat 
unexpected to find such a close area relationship 
between Laurentia and China (Fig. 2A): these 
two regions were last in tectonic contact about 
750 Ma (see Meert & Lieberman 2004, but also 
see Veevers et al. 1997 for an alternative breakup 
time). The close association between Laurentia 
and China in our area cladograms may be partly 
related to the fact that the most diverse and well 
known Cambrian arthropod faunas occur in 
Laurentia (for example, the Middle Cambrian 
Burgess Shale biota [e.g., Briggs et al. 1994] and 
biotas of similar age from Utah [e.g., Robison 
1991; Briggs et al. in press]) and China (for 
example the Chengjiang biota [e.g., Hou et al. 
2004]). It has been shown previously that low 
diversity faunas can sometimes map “down the 
tree” in phylogenetic biogeographic analyses, 
causing high diversity faunas to potentially group 
together (Fortey & Cocks 1992). We acknowledge 
this potential bias. However, it is worth noting 
that the close area relationship we recovered here 
between Laurentia and China does seem to reflect 
a truly different pattern from the one uncovered in 
the trilobites. In particular, while the non-trilobite 
faunas of Laurentia and China share many 
elements in common (e.g., see discussion above), 
the trilobites that co-occur in the early Cambrian 
Chengjiang biota and other early Cambrian or 
Middle Cambrian Burgess Shale-type faunas in 
Laurentia share very few elements in common. 
Further, many non-trilobite arthropod genera (for 
instance, the arachnomorphs Leanchoilia and 
Naraoia, as well as Anomalocaris, Branchiocaris, 
Canadaspis, Isoxys, Marrella, Tuzoia and Waptia) 
are widely distributed, and occur in both Laurentia 
and China. This too, as mentioned above, is 
very different from the trilobites, which tend to 
be much more narrowly distributed, except in 
the case of the agnostoids (Shergold & Laurie 
1997). We are not alone in recognising a biotic 
association between Laurentia and China near the 
beginning of the Phanerozoic: Waggoner (1999) 
recovered a biogeographic association between 
some Ediacaran taxa from southwestern Laurentia 
and south China, although our data are based on 
different methods, and other aspects of our results 
are very different.

When dispersal is minimal or absent, the 
timing of tectonic events—for example, the age 
when two regions that are now separated were 
last joined and homogeneous—can potentially 
be used to constrain the age of origination of 
monophyletic groups. For example, studies of 
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Fig. 2. Single most parsimonious area cladograms 
resulting from modified Brooks Parsimony Analyses 
of the vicariance (2A; see Table 2) and geodispersal 
(2B; see Table 3) matrices. Values at nodes are 
bootstrap (normal type) and jackknife (italicised type) 
support values.  The vicariance tree (2A) is 41 steps 
in length (CI = 0.95; RI = 0.93); one node is collapsed 
due to lack of character support. The geodispersal 
tree is 24 steps in length (CI = 0.87, RI = 0.82) and is 
completely resolved.
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trilobite palaeobiogeography were used to make 
inferences about the timing of the Cambrian 
radiation (e.g., Lieberman 2003b; Meert & 
Lieberman 2004). This was possible because not 
only did the vicariance patterns in trilobites match 
the pattern predicted for the 600-550 Ma breakup 
of Pannotia, but also there was very limited 
evidence for any kind of dispersal, congruent or 

otherwise, in trilobite lineages. By contrast, the 
congruent patterns of vicariance and geodispersal 
observed here in arachnomorphs (particularly 
between Laurentia and China) mean that the 
tectonic vicariance between these regions does 
not equate to the last time of contact between 
their respective faunas. This is because dispersing 
lineages could recolonise regions after they were 
no longer in contact geologically. Still, the fact 
that biogeographic patterns indicate that trilobites 
likely originated somewhere in the interval of 
600-550 Ma (Lieberman 2003a; Lieberman 
& Meert 2004) can be used as a phylogenetic 
constraint on the origination time of a whole host 
of arachnomorph lineages. In particular, these 
lineages—including the true chelicerates—must 
have minimally also commenced diverging by 
600-550 Ma (Fig. 3).

The failure of Australia to biogeographically 
group with China also differs from the inferred 
sequence of late Neoproterozoic and early 
Cambrian tectonic events (Lieberman & Meert 
2004; Meert & Lieberman 2004). This, and 
the fact that there are very strong similarities 
between our vicariance and geodispersal trees 
(Fig. 2A-B), may suggest that in the case of these 
arachnomorphs, tectonics was not the primary 
factor that governed diversification. Instead, the 
processes producing the pattern in the vicariance 
tree may have been those driving the patterns in 
the geodispersal tree (Lieberman 2000) and likely 
included cyclic processes including repeated 
episodes of sea-level rise and fall. 

The palaeobiogeographic patterns described 
herein also have the potential to inform our 
understanding of macroevolutionary processes 
operating during (and immediately prior to) the 
Cambrian radiation. This is because Cambrian 
trilobites and many non-trilobite arthropods show 
not only differing biogeographical patterns, but 
also different patterns of extinction across the 
early-Middle Cambrian boundary, as has been 
noted previously (Conway Morris & Robison 
1986; Conway Morris 1989; Lieberman 2003c). 
These two aspects may be related. Highly endemic 
early Cambrian trilobites show significant 
taxonomic turnover at the early-Middle Cambrian 
boundary (Palmer 1998; Lieberman 2003c), while 
many other non-trilobite taxa cross this boundary 
unscathed. This extinction resistance is in fact 
reflected in the faunal similarities between the 
early Cambrian Chengjiang fauna of China and 
other Cambrian faunas in Laurentia, including the 
Middle Cambrian Burgess Shale fauna of British 
Columbia and the Middle Cambrian Pioche Shale 
of Nevada (e.g., Lieberman 2003c). The topic of 
the causal link between broad geographic range 
and extinction resistance has been frequently 
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Fig. 3.  Strict consensus of the 12 most parsimonious 
trees found in the analysis of Hendricks & Lieberman 
(in press) with minimum ages of origination (in 
millions of years ago) mapped at some nodes.  
Biogeographic data suggest that trilobites (represented 
here by Eoredlichia and Olenoides) originated by 
550-600 Ma.  The derived position of the trilobites in 
this tree implies that many other arachnomorph taxa 
must also have originated by no later than 550 Ma.
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supported (Eldredge 1979; Stanley 1979; 
Vrba 1980; Hansen 1982; Gould 2002) and 
we hypothesise that such an association may 
have been important for the early evolution and 
persistence of many metazoan taxa. In particular, 
the relatively endemic nature of certain early 
Cambrian trilobites, especially the olenellines, 
would have made them more susceptible to 
extinction, whereas by contrast, more broadly 
distributed Cambrian non-trilobite arthropod taxa 
would have been naturally extinction resistant. 
This, however, remains to be studied in greater 
detail.
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