
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Publications Aviation and Technology

January 2014

Analysis of Software Contributions to Military Aviation and Drone Analysis of Software Contributions to Military Aviation and Drone

Mishaps Mishaps

Veronica Foreman
Georgia Institute of Technology

Francesca Favaro
Georgia Institute of Technology

Joseph Saleh
Georgia Institute of Technology

Follow this and additional works at: https://scholarworks.sjsu.edu/aviation_pub

 Part of the Aviation Safety and Security Commons, and the Risk Analysis Commons

Recommended Citation Recommended Citation
Veronica Foreman, Francesca Favaro, and Joseph Saleh. "Analysis of Software Contributions to Military
Aviation and Drone Mishaps" 2014 Annual Reliability and Maintainability Symposium (RAMS) Conference
(2014). https://doi.org/10.1109/RAMS.2014.6798450

This Presentation is brought to you for free and open access by the Aviation and Technology at SJSU
ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/aviation_pub
https://scholarworks.sjsu.edu/aviation
https://scholarworks.sjsu.edu/aviation_pub?utm_source=scholarworks.sjsu.edu%2Faviation_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1320?utm_source=scholarworks.sjsu.edu%2Faviation_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1199?utm_source=scholarworks.sjsu.edu%2Faviation_pub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/RAMS.2014.6798450
mailto:scholarworks@sjsu.edu

Analysis of Software Contributions to Military Aviation
and Drone Mishaps

Veronica L. Foreman, Georgia Institute of Technology
Francesca M. Favarò, Georgia Institute of Technology
Joseph H. Saleh, Georgia Institute of Technology

Key Words: military aviation; mishap; accidents investigation; software; drones.

SUMMARY & CONCLUSIONS

Software is assuming an increasing role in the aerospace
industry, and by the same token it is also playing an increasing
role in many recent incidents and accidents of both military
and commercial vehicles. To better understand this role, we
examine two case studies from the accident database of the
Air Force Accident Investigation Board (AIB). We previously
illustrated the limitations of the notion of “software failure”
and developed, in its stead, the notion of software contribution
to adverse events. We show here how specific operational
scenarios, generally unconsidered during the software
development and testing, trigger those contributions. We
provide an analysis of the recurrent patterns of those
mechanisms and preliminary recommendations for software
development and testing. We also suggest ways to consolidate
AIB reports’ findings and to be more mindful of the chain of
causality in the accident sequences.

1 INTRODUCTION

This work is at the intersection of three considerations
and research areas: software in safety-critical systems;
aviation accidents; and military aircraft and drone mishaps.
Each area contributes to the motivation for this work, and
collectively they provide broad relevance and applicability of
the analyses and findings here reported.

 Software has become pervasive and central to the
operation of many systems of various scales and complexities,
and by the same token, it is playing an increasing role, albeit
not well understood, in system accidents. This is especially
true in the aerospace industry where software is a safety-
critical element for flight operation and control, and, either
independently or in conjunction with the hardware (e.g.,
actuators, sensors) or liveware (e.g., human-in-the-loop),
software is contributing in different ways to adverse events in
this industry. In the past five years (2008 – 2012), the U.S.
Air Force reported mishaps in aviation (both crewed and
unmanned) resulting in $5 billion in lost equipment and
injuries and over 9,000 lost workdays [1]. Regarding the
unmanned category, 96 drone mishaps (with damages
exceeding $ 2 millions each) have been reported in the last ten
years [1]. While the media has been concerned with privacy

issues of flying drones within the U.S. for surveillance or
other purposes, safety concerns are still missing from the
public debate and media coverage for this highly-software
relying systems. Recent aircraft accidents involving software
are a worrying indication of limitations in the current
understanding of software contributions to accidents and of
the lack of suitable methods for software testing (with the
purpose of capturing and eliminating these contributions
before systems are fielded for operation). In addition, software
contributions are not emphasized enough or carefully
examined in accident investigation reports, to the extent that
their importance warrants. Examples of such overlooks can be
found in [2] and will be highlighted in the presentation of the
case studies.

To investigate the role of software contributions to
military aircraft accidents, we examined for this work the
accident database of the U.S. Air Force Accident Investigation
Board (AIB). Two Class A mishaps – the most grievous
category of accidents based on the Air Force classification
from Class A to Class D [1] – are here analyzed in detail. We
hope the lesson learned from them can advance the thinking
about these issues, expanding the intellectual toolkit of safety
professionals and researchers, and inviting further scrutiny of
software contributions to aircraft accidents by both military
and civil communities. We have argued elsewhere [2] about
the limitations of the notion of “software failure” currently
defined in various professional standards (e.g., [3]), as it does
not capture the diversity of software’s roles in accidents—
some of which do not involve a “failure”. Leveson also
challenged the notion of software failure as non-compliance
with requirements [4]. We argued for a shift in perspective,
that software failure is not necessarily an ill-defined concept,
but that the notion itself is too limited to capture the diversity
of ways in which software can contribute to accidents. We
developed the notion of software contribution to adverse
events as a better way to frame these issues, and a more
important problem to analyze and tackle. We revise and
extend this concept in this work, bringing the focus to military
aviation and drones accidents. Operational environment and
flight parameters of military aviation offer in some cases
distinctive flight conditions that can act as triggers of deeply

buried software pathogens (or lurking software defects – see
[5] for a definition of accident pathogens). As such, military
aviation accidents offer a unique learning opportunity to
address software defects, which are unlikely to be triggered
under nominal operating conditions, across the entire military
fleet and with important spillovers to commercial aviation.

Before delving into the case studies presentation a caveat
is in order: due to the constraining six-page limit for this
conference, many implications of the presented findings (that
may occur to the reader as insightful contributions) are left as
future venue for a broader spectrum work on the current
limitations in our understanding of the role of software in
accidents and incidents. The remainder of this work is
organized as follows. In Section 2 we introduce the case
studies, and we analyze in detail each accident sequence and
the software contributions to the mishap. Section 3 concludes
this works with a brief synthesis.

2 SELECTED CASE STUDIES

The case studies selected for this work were chosen to
identify and highlight recurrent patterns of software
contributions to military aviation accidents. These constitute a
subset of such patterns and, while important, they should not
be considered exhaustive. The information for the two
following Class A mishaps derives from the respective AIB
reports. For each case study, background information relevant
to the mishap is first presented, and then the accident sequence
is reconstructed and discussed. The software contributions to
the accident are then identified and analyzed. Additional
concerns that do not specifically relate to software but
highlight important safety issues are included at the end of
each case.

A clarification is in order before proceeding. Following a
safety accident, the Air Force conducts two separate
investigations: the first is known as a “safety investigation”,
and it is conducted by the Safety Investigation Board (SIB)
with the objective to “prevent future mishaps”; the second is
known as the “accident investigation” and it is “conducted [by
the AIB] to provide a report for public release” [6]. The SIB
report consists of two parts: the first part is factual and data-
centric, while the second is analytic and contains privileged
information, and as such, it is not releasable outside the Air
Force. The factual part of the SIB report is passed to the AIB
investigation and is then incorporated in the AIB report. After
reviewing the first part of the SIB report, the AIB may gather
additional evidence and conduct its own investigation. The
AIB Board President then appends to the report his/her
Statement of Opinion about what caused the mishaps using a
“clear and convincing evidence” standard [6]. The
reconstructions of the following mishaps are based only on
publically releasable information—the AIB reports. We
acknowledge that additional privileged information may be
available but withheld from the public in the SIB reports, and
as such, our analyses may be limited in some ways and to
varying extent. Critical thinking however was exercised
throughout our examination of the AIB reports, and while
some context information and elements in each accident

sequence may be missing, we believe our conclusions
regarding the software contributions to the mishap are robust
to such omissions.

 2.1 T1-A Jayhawk Accident, August 16, 2003

The first case study involves a T1-A jet trainer, a twin-
engine typically used for advanced stage pilot training. Upon
landing on the evening of August 16, 2003, the aircraft
overran Runway 21 at Keesler Air Force Base in Mississippi
with a student and an instructor pilot onboard. As the aircraft
departed the runway, the left main landing gear became stuck
in the mud. The aircraft pivoted counter clockwise as the left
wingtip impacted the ground, and the nose and right landing
gears collapsed. The aircraft continued to rotate, and came to
a stop 190 feet off the end of the runway. While there were no
fatalities associated with this accident, the cost of damage to
the aircraft and associated military property was estimated at
$2.5 million, [7].

Several contributing factors were involved in this accident
and we briefly mention them before examining the software
contribution to this accident: 1) the landing runway was wet
due to scattered thunderstorms moving through the area; 2) the
instructor configured the aircraft for an approach based on
distance information from a different radio frequency
(Gulfport) than the one of the landing runway at Kessler AFB
(why this error occurred was not discussed in the report; it
may reflect an important issue in human factors and training,
and it deserves careful attention in accident investigations as a
consequence, not just a cause). This misconfiguration directly
led to the initiating event of this accident sequence in the
following manner: Keesler AFB is about 5 miles east of
Gulfport, and as a result, the pilots believed they were 5 miles
further away from their assigned runway. When the situation
was recognized, the aircraft was 800 feet above the correct
glide scope at 3 miles from the runway, and the pilot adopted a
higher sink rate and slightly faster airspeed than
recommended. The accident sequence that unfolded will be
examined shortly.

It is important to recognize that the chain of causality in
system accidents involve multiple strands, and while training
and human factors were clearly involved in the T-1A accident,
the software strand was rather disregarded in the investigation,
and yet it contributed significantly to the accident.

2.1.1 Software and the braking system on the T-1A

An overview of the aircraft braking system is necessary to
understand the software contribution to this accident. To
prevent unintentional in-flight activation, neither the spoilers
nor the landing gear speed brakes on the T1-A can be engaged
until either the left or the right ground safety switch indicates
aircraft touchdown. Touchdown is confirmed once a ground
safety switch senses full compression of the landing gear struts
for at least 2.5 seconds. As an additional safety precaution, the
speed brakes become available if either one of the landing
gear wheels reaches a spin speed greater than 37 knots.

Once touchdown is confirmed, the ground sensors switch
to ‘Ground’ mode by removing the electrical ground within
the sensor relays. The touchdown protection circuit is then
opened and allows the use of the hydraulic pressure to engage
the speed brakes. Failure to fully compress the struts, or full
compression lasting less than 2.5 seconds, yields continued
‘Air’ mode software functionality. When in Air Mode, the
software overrides all braking commands by the pilot, and the
spoilers cannot be engaged. This particular braking
configuration and control, or variations on it, is present in both
military and civilian aircraft software systems, and the current
design presents a particular hazard. A similar runway overrun
event involving the aborted takeoff of a Bombardier Learjet 60
occurred in September of 2008. Using a similar Air Mode and
Ground Mode designation, the FADEC software onboard the
aircraft took invalid inputs from the failed main landing gear
sensors and used that information to override pilot commands
to deploy the thrust reversers. The accident resulted in the
deaths of four people as well as substantial damage to the
aircraft and airport property (see [2] for details).

2.1.2 The T-1A Accident Sequence

We resume the narrative of the T-1A case with the aircraft
at 800 feet above the correct glide scope at 3 miles from the
runway. The pilot recognizes the situation and adopts a higher
sink rate and slightly faster airspeed than recommended. This
is an off-nominal situation but not an unusual one; even when
considering the human factors behind it, it does not contain the
seeds of an imminent accident. The software, we argue, was
the more important link in the chain of causality between this
off-nominal landing condition and the accident.

The aircraft touched down about 1500 feet down the
runway, landing approximately 12 knots faster than
recommended with a throttle setting at 7% above idle. Upon
touchdown, the pilot activated the brakes but the aircraft did
not respond or decelerate. The Flight Data Recorder shows
that that “the aircraft was in Ground Mode for less than one
second, and then reverted to Air Mode for nine seconds” [7].
During these crucial nine seconds, the flight software, by
design, prevented the activation of the brakes and overrode the
pilot’s repeated commands to engage the brakes. The
instructor then engaged the emergency brakes, which did not
have anti-skid protection (a serious hardware flaw or accident
pathogen waiting to be activated), and as a result the wheels
locked into position. The wet conditions on the runway
transformed this situation into “skidding on water or
hydroplaning” and resulted in the accident.

2.1.3 Software Contributions to the Accident

The software contributed to this accident in two important
and related ways: 1) it estimated the aircraft to be in the air
(Air Mode after touchdown) while the aircraft was on the
runway for several seconds; and 2) it had control authority to
act on this wrong assessment and to override the pilot’s
repeated commands to engage the brakes. Said differently, a

critical input by the pilot during a critical phase of the mission
was disallowed by the software given its flawed assessment of
the situation.

Why this mismatch emerged between the software
estimated and actual flight condition is an important learning
opportunity and ought to be thoroughly investigated to prevent
recurrence of such accidents. This was not conclusively
discussed in the report. What is known is that the flight control
software entered Ground Mode for less than one second after
touchdown, and reverted to Air Mode immediately afterward.
The possibility of Ground Mode disengagement after
touchdown is an important flaw in the software design and
may be ascribed to an unconsidered scenario and missing
software requirement. Sine details about this mismatch are not
available, we can only hypothesize that the likely cause for
this was either an improper setting of the threshold on the
Ground Safety Switch (GSS) sensors, or a flawed software
logic or implementation of the constraints for triggering the
Ground Mode as we discuss next: 1) a threshold of strut
compression is required to validate Ground Mode. For a
bumpy landing such as this one, the readings from the pressure
sensors may have fluctuated and dropped below this threshold
and the aircraft exited Ground Mode; 2) the spin speed
threshold for the landing gears should have averted this
situation, but it was either implemented incorrectly in the
software (as an AND constraint for example), or that the
conditions on the runway did not result in the threshold spin
speed for the wheels (37 knots). The report includes
contradictory statements to this effect, but notes that the
“wheels were spinning at 37 knots due to the speed of the
aircraft at touchdown” [7]. This information is a bit suspicious
and contradictory with other statements in the report
confirming that the aircraft was in Air Mode.

We recommend to aircraft software developers (and
acquisition officers) to consider including requirements to the
following effect: that once Ground Mode has been validated,
the software should not be sensitive to the fluctuations of
pressure sensors; this is particularly important in cases of
bumpy landings, which are not uncommon in military and
civilian aviation. In addition, it is a serious automation mistake
for the software to be able to override the pilot trying to
engage the brakes after the software has validated that the
aircraft has touched down. A requirement to this effect can be
included to eliminate this possibility. Moreover, if the part in
our second hypothesis of a flawed implementation of the spin
constraint were correct, this would have important
consequences for software testers to consider.

This case study, its accident report, and many others we
have examined also prompt us to make a recommendation to
accident investigators: software’s role in accidents has been
conspicuously missing in accident investigation reports, even
when that role was prominent. The absence of this feedback
loop constitutes a missed learning opportunity for contributing
more efficiently to accident prevention. We recommend that
the AIB includes in the template of its reports a section on the
role of software in the mishap, and both train and urge each
Board president to carefully examine this role when

warranted. We also recommend that software experts be
appointed as part of the accident investigation team.

2.2 MQ-1B Predator Accident, May 7, 2011

The second case study involves a MQ-1B Predator Drone
that crashed into the Gulf of Aden on May 7, 2011. The drone
experienced two uncommanded rolls on final approach due to
a malfunctioning right aileron. The operator handled the first
roll but was unable to counter the second one because of a
particular software limitation. The drone impacted the water
about a half mile off the coast of Djibouti. The loss of the
drone was estimated at $4.4 million [8].

Although software played a secondary role in this
accident – electrical problems and operational factors were
much more prominent causal factors – we selected this case
study for the distinctiveness of the software contribution to the
accident. Unlike the previous case, here software became an
issue far downstream the accident sequence, and its
contribution amounted to “preventing the prevention” of the
accident, as we will explain shortly. This is a particular shade
or primitive of causality and it is worth recognizing in
accident investigations.

2.2.1 System Background

The Predator is typically operated by two crews. The first
is known as the launch and recovery element (LRE), which is
located on the same airfield as the aircraft, and the second is
the mission control element (MCE), which operates the drone
via satellite link from a remote location. The LRE is “typically
deployed in a theater of operations, where it will launch the
aircraft, get it to specified altitude, accomplish a systems
check”, and then pass it on to the MCE, [8]. After the mission
is completed, the drone is handed back to the LRE for
approach and landing. This split operation will have some
implications for this accident.

The drone has a primary flight control system and a
backup system. In addition, separate wing modules control the
ailerons; for example the right aileron is controlled by the
Right Wing Control Module (RWCM). An electrical
malfunction in the RWCM, and its subsequent failure, were
the initiating event of this accident sequence and the main
cause of the mishap, as we discuss next. It is interesting to
note that many of the Class A mishaps investigated since 2000
are attributed to various ‘catastrophic electrical failures’ and
that the RWCM was a causal factor in the loss of another MQ-
1 in Afghanistan on May 8, 2009 (whose loss was valued at
$4.6 million [9]). Whether this is coincidental or indicative of
a systemic problem, this electrical failure pattern, including
the performance of the RWCM, deserves careful attention
across the entire fleet of MQ-1B in service.

2.2.2 Accident Sequence

Approximately 57 minutes into the flight, following a
nominal launch and operating team transition from LRE to
MCE, a transistor in the right wing control module shorted

out, initiating the accident sequence. The transistor short
resulted in an excessive current draw, which caused the
RWCM to fail and led the actuator servo to place the right
aileron in a trailing edge up position.

The electrical architecture and specific hardware design
that led to this particular failure mode in the right wing/aileron
is not available for examination, and it was not investigated in
the accident report. We surmise nonetheless that this failure
mode may have been averted if the designers had implemented
a fail-safe principle to the ailerons, which, in case of wing
control module failure, would lock the ailerons in their level
position. How the fail-safe principle can be implemented for
the ailerons (and other control surfaces) would require some
creativity and technical ingenuity [10], but it is not beyond
skills of aircraft manufacturers. As a result of the RWCM
failure, the ground operators could no longer control the right
aileron. The right servo, which was drawing excessive current
but still functioning, held the right aileron in the trailing edge
up position. This situation will change on final approach, as
we will see shortly.

The operators worked around this situation by raising the
left aileron to compensate for the “stuck up” right aileron.
They turned the drone around toward the base, and handed its
operation over to the LRE crew at 16,000 feet instead of the
standard 6,500 feet handoff altitude. This added about 5
minutes to the flight, a relevant detail in this accident
sequence.

To address the excessive altitude, the LRE crew
performed two descending spirals, which likely imposed
further stresses on the ailerons. Upon final approach, the right
aileron moved again, uncommanded, to a higher trailing edge
up position, and the resulting right roll was countered by the
left aileron. Two minutes before landing, the accumulated
stresses reached a breaking point and precipitated the accident:
the right servo, which had been drawing excessive current for
about 40 minutes, failed and could no longer hold the right
aileron up. As a result, the right aileron dropped to a trailing
edge down position.

At this point, the software contribution to the accident
emerges: to counter this drop of the right aileron and the left
roll that ensued, the drone operator attempted to command a
right roll. This required a left aileron down position. However,
the “MQ-1B software prohibits the […] aileron from moving
to a position below level” [8]. In other words, while the
hardware allows the deflection of ailerons from trailing edge
up to trailing edge down positions, the software restricts this
degree of freedom from trailing edge up to the level position.
The presence of this hard software constraint is surprising, and
the rationale for its existence was not examined in the report.
We encourage a reevaluation of this software constraint, and if
needed, an examination of a different implementation (for
instance, more gradual and possibly with force feedback).

 Due to the inability to symmetrically match the right
aileron down position, the drone continued its left roll until it
impacted the water.

2.2.3 Software Contributions and Additional Concerns

As noted earlier, software became an issue in this mishap
late downstream in the accident sequence, and its contribution
to the accident was of a different causal nature than in the
previous case.

While electrical problems and operational factors were the
main causal factors in this accident, as indicated earlier,
software played a particular causal role by preventing the
prevention of the accident. An operational solution to
preventing the accident was hardware-available, and the crew
attempted to execute it; the software-imposed limitation
prevented this execution and led directly to the loss of the
drone. Said differently, despite the significant electrical
problems with this drone, the unresponsive right aileron, and
the ill-advised operational decisions (e.g. the handover at
16,000 feet and subsequent spiral descent), these adverse
conditions would not have resulted in an accident had it not
been for the software contribution and the limitation it
imposed on the ailerons deflection.

We recognize this software contribution reflects a
particular shade or primitive of causality [11], probably of
lesser familiarity and significance than the traditional causal
factors in accidents. It is, however, worth examining in
accident investigations, after the traditional causes have been
identified. The implications of such contributions to software
developers and testers constitute a fruitful venue for future
research.

Additional concerns with this drone, not software-related,
are worth mentioning as well, as they are distinctive and offer
an opportunity for further reflection and lessons learned for
preventing future mishaps. Several maintenance issues with
this drone were logged within a short period of time prior to
the accident. For example, in the 60 days prior to the mishap,
electrical problems occurred repeatedly, and the Right Wing
Control Module (RWCM) experienced partial failure on three
occasions [8]. Within this same time period, the drone
experienced problems with all exhaust temperature sensors on
two occasions. Pressure sensors were also found deficient and
replaced on three occasions. The Secondary Control Module
(SCM) was replaced six times, and the Primary Control
Module was removed twice within the same time period (once
for a software upgrade).

For an independent observer, these repeated occurrences
might reflect a deficient safety culture and lax attitude toward
safety in operating and maintaining the drones. This however
need not be the case, and a more useful conclusion can be
reached by further reflecting on these occurrences. The AIB
report notes that “maintenance correctly followed the fault
analysis guidance and performed the required operational
checks”, and the AIB President noted in his statement of
opinion: “since maintenance performed all tasks correctly […]
I do not find any maintenance procedures, supervision, or
actions of any individual as causal or contributory to this
mishap” [8]. Fault analysis guidance as well as maintenance
policies and guidelines were clearly deficient in this case, and
if these apply to other military systems, we strongly
recommend that they be revised and upgraded, to account for
repeated failures in the same item for example, and trigger a

different response than the band-aid solution of replacing
faulty elements without proper analysis and understanding.

Finally, we note that a non-military version of this drone
is already in use in the continental U.S., by Border Patrol for
example. In light of the discussion in this subsection, we hope
these non-military drones are subject to much more stringent
safety testing, certification, and regulations than their military
counterparts.

3 CONCLUSIONS

Software has wiggled its way into our daily lives to an
extent we may not have taken the full measure of yet. Modern
life in the developed and developing world is inconceivable
without software. But with this increasing reliance on software
come new and increasing vulnerabilities. Software is playing a
growing role in adverse events, and our present understanding
of its failure mechanisms and contributions to system
accidents is significantly lacking. There is a widening safety
gap between the software-intensive capabilities we create and
our understanding of the ways they can fail or contribute to
accidents, and hence our ability to prevent accidents.

To advance the thinking about these issues and expand
the intellectual toolkit of safety professional and researchers,
we adopted a pragmatic approach in this work and examined
two case studies of software contributions to military aviation
and drone accidents. This choice was motivated by several
considerations, some are military (Air Force) centric, and
some are broadly relevant to the safety community.

First, military aviation mishaps rarely get attention from
the media, or the academic and research community, yet they
offer significantly rich learning opportunities that extend far
beyond their particular context, especially when software is
involved. As noted in the Introduction, the operational
environment and flight parameters of military aviation offer
distinctive flight conditions, which can act as triggers of
(deeply buried) software pathogens or lurking software
defects. As such, military aviation can be thought of as an
accelerated, and high stress, testing environment and regime
for all aviation software.

Second, the military is an early adopter of drones and has
extensive operational experience with these systems. Given
the recent push to integrate drones in the U.S. National
Airspace, this military experience is particularly rich for
probing and analysis, and making better-informed decisions.
The drone mishaps here examined was included as the
proverbial tip of the iceberg, and it highlighted a number of
safety issues in the design, operation, and maintenance of
drones. We recommended these systems be subject to much
more stringent and informed safety testing, certification, and
regulation than their military counterparts before they are
allowed to share the same resource, the National Airspace,
with commercial airliners. We hope our work helps inform a
richer public debate on this subject beyond, or in addition to,
the privacy issues that drones raise, and that this subject
attracts more scrutiny by academics and safety professionals.

Third, in the past five years the Air Force reported
mishaps in aviation resulting in $5 billion in lost equipment
and injuries (excluding ground-related mishaps) and over

9,000 lost workdays. Within this time frame, the Air Force lost
787 lives to all safety mishaps [1]. Any contribution for
improvements in this area can help save lives, preserve
military capabilities, and reduce costs associated with
mishaps. The case studies here examined led to a number of
recommendations, some software-centric and broadly relevant,
and some specific to the systems studied, and others were
procedural or organizational in nature and specific to the Air
Force and the AIB reports. We hope this work encourages and
invites more academic interest and research in this area. Doing
so would bring some public scrutiny and provide thought-
partnership to the various military safety centers in their
efforts to improve safety, and help better capture and
disseminate lessons learned.

REFERENCES

1. US Air Force (2013a): “Air Force Safety Center Annual
Report”. headquarters Air Force Safety Center, Fiscal Year
2012, Kirtland Air Force Base, NM.

2. Favarò, F. M., Jackson, D. W., Saleh, J. H., and Mavris, D.
N. (2013). “Software contributions to aircraft adverse
events: Case studies and analyses of recurrent accident
patterns and failure mechanisms”. Reliability Engineering
& System Safety, Vol. 113, pp. 131-142.

3. ISO/IEC/IEEE (2010): System and Software Engineering
Vocabulary 24765. Institute of Electrical and Electronics
Engineering, NY.

4. Leveson, N. G. (1995). “Safeware - System Safety and
Computers”. Addison-Wesley, New York, NY.

5. Saleh, J. H., Saltmarsh, E. A., Favarò, F. M., Brevault, L.

(2013). “Accident precursors, near misses, and warning
signs: critical review and formal definitions within the
framework of Discrete Event Systems”. Reliability
Engineering & System Safety.

6. US Air Force (2013b): “Air Force safety and accident
board investigations”. U.S. Air Force fact sheet. Available
at: http://www.acc.af.mil/library/factsheets/factsheet.asp?
fsID=2356

7. U.S. Air Force (2003). Aircraft Accident Investigation
Board Report: T1-A, S/N 91-0092, 16 August 2003.
Keesler Air Force Base, Mississippi. 6 October 2003.

8. US Air Force (2011). Aircraft Accident Investigation
Board Report: MQ-1B, T/N 06-3173, 7 May 2011. 432D
Wing, Creech Air Force Base, Nevada. 28 July 2011.

9. US Air Force (2009). Aircraft Accident Investigation
Board Report: MQ-1B, T/N 05-3140, 8 May 2009. Ghazni,
Afghanistan.

10. Saleh, J. H., Marais, K., Favarò, F. M. (2013) “A Synthesis
of System Safety Principles: Multidisciplinary Engineering

Perspective”. Submitted to Reliability Engineering and
System Safety, May 2013.

11. Brevault, L., Favarò, F. M., Saleh, J. H. (2013). “On

primitives of causality: from the semantics of agonist and
antagonist to models of accident causation and system
safety”. Presented at the ESREL 2013 conference,
Amsterdam, September 29th – October 2nd, 2013.

BIOGRAPHIES

Veronica L. Foreman
Georgia Institute of Technology
270 Ferst Drive, MK 211
Atlanta, GA, 30332, US

e-mail: vforeman3@gatech.edu

Ms. Foreman is an undergraduate student at Georgia Institute
of Technology. She is majoring in Aerospace Engineering,
with a minor in Economics. She is a Stamps Leadership
Scholar, a Dean’s List Scholar, and an undergraduate
researcher in Georgia Tech’s Space Systems Design Lab. In
the past, she served as an undergraduate researcher for
Georgia Tech Aerospace System Design Lab.

Francesca M. Favarò
Georgia Institute of Technology
270 Ferst Drive, MK 211
Atlanta, GA, 30332, US

e-mail: ffavaro3@gatech.edu

Mrs. Favarò is a PhD student in Aerospace Engineering at
Georgia Institute of Technology. She earned a BE and ME in
space engineering at Politecnico di Milano, Italy. Mrs. Favarò
authored and co-authored multiple journal papers on accident
causation and system safety and is the recipient of the Amelia
Earhart Fellowship for 2013.

Joseph H. Saleh
Georgia Institute of Technology
270 Ferst Drive, MK 321-2
Atlanta, GA, 30332, US

e-mail: jsaleh@gatech.edu

Dr. Saleh is an Associate Professor in the School of Aerospace
Engineering at the Georgia Institute of Technology. He
received his undergraduate degree from Supaero in Toulouse,
France, his Masters degree from Harvard University, and his
PhD from MIT. He serves on the Editorial Board of
Reliability Engineering and System Safety, and is an associate
Editor of the IEEE Transactions on Aerospace and Electronic
Systems. Dr. Saleh is an AIAA Associate Fellow and a Senior
Member of the IEEE. He received several awards for his
research, teaching and mentoring. His research platform
covers three broad topics: Reliability and Multi-State Failure
Analysis; Programmatic Engineering; and Accident Causation
and System Safety.

	Analysis of Software Contributions to Military Aviation and Drone Mishaps
	Recommended Citation

	Microsoft Word - RAMS_Conference.docx

