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SUMMARY & CONCLUSIONS 

Software is assuming an increasing role in the aerospace 
industry, and by the same token it is also playing an increasing 
role in many recent incidents and accidents of both military 
and commercial vehicles. To better understand this role, we 
examine two case studies from the accident database of the 
Air Force Accident Investigation Board (AIB). We previously 
illustrated the limitations of the notion of “software failure” 
and developed, in its stead, the notion of software contribution 
to adverse events. We show here how specific operational 
scenarios, generally unconsidered during the software 
development and testing, trigger those contributions. We 
provide an analysis of the recurrent patterns of those 
mechanisms and preliminary recommendations for software 
development and testing. We also suggest ways to consolidate 
AIB reports’ findings and to be more mindful of the chain of 
causality in the accident sequences.  

1 INTRODUCTION 

This work is at the intersection of three considerations 
and research areas: software in safety-critical systems; 
aviation accidents; and military aircraft and drone mishaps. 
Each area contributes to the motivation for this work, and 
collectively they provide broad relevance and applicability of 
the analyses and findings here reported.  

 Software has become pervasive and central to the 
operation of many systems of various scales and complexities, 
and by the same token, it is playing an increasing role, albeit 
not well understood, in system accidents. This is especially 
true in the aerospace industry where software is a safety-
critical element for flight operation and control, and, either 
independently or in conjunction with the hardware (e.g., 
actuators, sensors) or liveware (e.g., human-in-the-loop), 
software is contributing in different ways to adverse events in 
this industry.  In the past five years (2008 – 2012), the U.S. 
Air Force reported mishaps in aviation (both crewed and 
unmanned) resulting in $5 billion in lost equipment and 
injuries and over 9,000 lost workdays [1]. Regarding the 
unmanned category, 96 drone mishaps (with damages 
exceeding $ 2 millions each) have been reported in the last ten 
years [1]. While the media has been concerned with privacy 

issues of flying drones within the U.S. for surveillance or 
other purposes, safety concerns are still missing from the 
public debate and media coverage for this highly-software 
relying systems. Recent aircraft accidents involving software 
are a worrying indication of limitations in the current 
understanding of software contributions to accidents and of 
the lack of suitable methods for software testing (with the 
purpose of capturing and eliminating these contributions 
before systems are fielded for operation). In addition, software 
contributions are not emphasized enough or carefully 
examined in accident investigation reports, to the extent that 
their importance warrants. Examples of such overlooks can be 
found in [2] and will be highlighted in the presentation of the 
case studies. 

To investigate the role of software contributions to 
military aircraft accidents, we examined for this work the 
accident database of the U.S. Air Force Accident Investigation 
Board (AIB). Two Class A mishaps – the most grievous 
category of accidents based on the Air Force classification 
from Class A to Class D [1] – are here analyzed in detail. We 
hope the lesson learned from them can advance the thinking 
about these issues, expanding the intellectual toolkit of safety 
professionals and researchers, and inviting further scrutiny of 
software contributions to aircraft accidents by both military 
and civil communities. We have argued elsewhere [2] about 
the limitations of the notion of “software failure” currently 
defined in various professional standards (e.g., [3]), as it does 
not capture the diversity of software’s roles in accidents—
some of which do not involve a “failure”. Leveson also 
challenged the notion of software failure as non-compliance 
with requirements [4]. We argued for a shift in perspective, 
that software failure is not necessarily an ill-defined concept, 
but that the notion itself is too limited to capture the diversity 
of ways in which software can contribute to accidents. We 
developed the notion of software contribution to adverse 
events as a better way to frame these issues, and a more 
important problem to analyze and tackle. We revise and 
extend this concept in this work, bringing the focus to military 
aviation and drones accidents. Operational environment and 
flight parameters of military aviation offer in some cases 
distinctive flight conditions that can act as triggers of deeply 



buried software pathogens (or lurking software defects – see 
[5] for a definition of accident pathogens). As such, military 
aviation accidents offer a unique learning opportunity to 
address software defects, which are unlikely to be triggered 
under nominal operating conditions, across the entire military 
fleet and with important spillovers to commercial aviation. 

Before delving into the case studies presentation a caveat 
is in order: due to the constraining six-page limit for this 
conference, many implications of the presented findings (that 
may occur to the reader as insightful contributions) are left as 
future venue for a broader spectrum work on the current 
limitations in our understanding of the role of software in 
accidents and incidents. The remainder of this work is 
organized as follows. In Section 2 we introduce the case 
studies, and we analyze in detail each accident sequence and 
the software contributions to the mishap. Section 3 concludes 
this works with a brief synthesis. 

2 SELECTED CASE STUDIES 

The case studies selected for this work were chosen to 
identify and highlight recurrent patterns of software 
contributions to military aviation accidents. These constitute a 
subset of such patterns and, while important, they should not 
be considered exhaustive. The information for the two 
following Class A mishaps derives from the respective AIB 
reports. For each case study, background information relevant 
to the mishap is first presented, and then the accident sequence 
is reconstructed and discussed. The software contributions to 
the accident are then identified and analyzed. Additional 
concerns that do not specifically relate to software but 
highlight important safety issues are included at the end of 
each case.   

A clarification is in order before proceeding. Following a 
safety accident, the Air Force conducts two separate 
investigations: the first is known as a “safety investigation”, 
and it is conducted by the Safety Investigation Board (SIB) 
with the objective to “prevent future mishaps”; the second is 
known as the “accident investigation” and it is “conducted [by 
the AIB] to provide a report for public release” [6]. The SIB 
report consists of two parts: the first part is factual and data-
centric, while the second is analytic and contains privileged 
information, and as such, it is not releasable outside the Air 
Force. The factual part of the SIB report is passed to the AIB 
investigation and is then incorporated in the AIB report. After 
reviewing the first part of the SIB report, the AIB may gather 
additional evidence and conduct its own investigation. The 
AIB Board President then appends to the report his/her 
Statement of Opinion about what caused the mishaps using a 
“clear and convincing evidence” standard [6]. The 
reconstructions of the following mishaps are based only on 
publically releasable information—the AIB reports. We 
acknowledge that additional privileged information may be 
available but withheld from the public in the SIB reports, and 
as such, our analyses may be limited in some ways and to 
varying extent. Critical thinking however was exercised 
throughout our examination of the AIB reports, and while 
some context information and elements in each accident 

sequence may be missing, we believe our conclusions 
regarding the software contributions to the mishap are robust 
to such omissions. 

 2.1 T1-A Jayhawk Accident, August 16, 2003 

The first case study involves a T1-A jet trainer, a twin-
engine typically used for advanced stage pilot training. Upon 
landing on the evening of August 16, 2003, the aircraft 
overran Runway 21 at Keesler Air Force Base in Mississippi 
with a student and an instructor pilot onboard. As the aircraft 
departed the runway, the left main landing gear became stuck 
in the mud. The aircraft pivoted counter clockwise as the left 
wingtip impacted the ground, and the nose and right landing 
gears collapsed.  The aircraft continued to rotate, and came to 
a stop 190 feet off the end of the runway. While there were no 
fatalities associated with this accident, the cost of damage to 
the aircraft and associated military property was estimated at 
$2.5 million, [7].    

Several contributing factors were involved in this accident 
and we briefly mention them before examining the software 
contribution to this accident: 1) the landing runway was wet 
due to scattered thunderstorms moving through the area; 2) the 
instructor configured the aircraft for an approach based on 
distance information from a different radio frequency 
(Gulfport) than the one of the landing runway at Kessler AFB 
(why this error occurred was not discussed in the report; it 
may reflect an important issue in human factors and training, 
and it deserves careful attention in accident investigations as a 
consequence, not just a cause). This misconfiguration directly 
led to the initiating event of this accident sequence in the 
following manner: Keesler AFB is about 5 miles east of 
Gulfport, and as a result, the pilots believed they were 5 miles 
further away from their assigned runway. When the situation 
was recognized, the aircraft was 800 feet above the correct 
glide scope at 3 miles from the runway, and the pilot adopted a 
higher sink rate and slightly faster airspeed than 
recommended. The accident sequence that unfolded will be 
examined shortly.    

It is important to recognize that the chain of causality in 
system accidents involve multiple strands, and while training 
and human factors were clearly involved in the T-1A accident, 
the software strand was rather disregarded in the investigation, 
and yet it contributed significantly to the accident.  

2.1.1 Software and the braking system on the T-1A 

An overview of the aircraft braking system is necessary to 
understand the software contribution to this accident. To 
prevent unintentional in-flight activation, neither the spoilers 
nor the landing gear speed brakes on the T1-A can be engaged 
until either the left or the right ground safety switch indicates 
aircraft touchdown. Touchdown is confirmed once a ground 
safety switch senses full compression of the landing gear struts 
for at least 2.5 seconds. As an additional safety precaution, the 
speed brakes become available if either one of the landing 
gear wheels reaches a spin speed greater than 37 knots.    



Once touchdown is confirmed, the ground sensors switch 
to ‘Ground’ mode by removing the electrical ground within 
the sensor relays. The touchdown protection circuit is then 
opened and allows the use of the hydraulic pressure to engage 
the speed brakes. Failure to fully compress the struts, or full 
compression lasting less than 2.5 seconds, yields continued 
‘Air’ mode software functionality. When in Air Mode, the 
software overrides all braking commands by the pilot, and the 
spoilers cannot be engaged. This particular braking 
configuration and control, or variations on it, is present in both 
military and civilian aircraft software systems, and the current 
design presents a particular hazard. A similar runway overrun 
event involving the aborted takeoff of a Bombardier Learjet 60 
occurred in September of 2008. Using a similar Air Mode and 
Ground Mode designation, the FADEC software onboard the 
aircraft took invalid inputs from the failed main landing gear 
sensors and used that information to override pilot commands 
to deploy the thrust reversers. The accident resulted in the 
deaths of four people as well as substantial damage to the 
aircraft and airport property (see [2] for details). 

 
2.1.2 The T-1A Accident Sequence 

We resume the narrative of the T-1A case with the aircraft 
at 800 feet above the correct glide scope at 3 miles from the 
runway. The pilot recognizes the situation and adopts a higher 
sink rate and slightly faster airspeed than recommended. This 
is an off-nominal situation but not an unusual one; even when 
considering the human factors behind it, it does not contain the 
seeds of an imminent accident. The software, we argue, was 
the more important link in the chain of causality between this 
off-nominal landing condition and the accident. 

The aircraft touched down about 1500 feet down the 
runway, landing approximately 12 knots faster than 
recommended with a throttle setting at 7% above idle. Upon 
touchdown, the pilot activated the brakes but the aircraft did 
not respond or decelerate. The Flight Data Recorder shows 
that that “the aircraft was in Ground Mode for less than one 
second, and then reverted to Air Mode for nine seconds” [7]. 
During these crucial nine seconds, the flight software, by 
design, prevented the activation of the brakes and overrode the 
pilot’s repeated commands to engage the brakes. The 
instructor then engaged the emergency brakes, which did not 
have anti-skid protection (a serious hardware flaw or accident 
pathogen waiting to be activated), and as a result the wheels 
locked into position. The wet conditions on the runway 
transformed this situation into “skidding on water or 
hydroplaning” and resulted in the accident.  

 
2.1.3 Software Contributions to the Accident  

The software contributed to this accident in two important 
and related ways: 1) it estimated the aircraft to be in the air 
(Air Mode after touchdown) while the aircraft was on the 
runway for several seconds; and 2) it had control authority to 
act on this wrong assessment and to override the pilot’s 
repeated commands to engage the brakes. Said differently, a 

critical input by the pilot during a critical phase of the mission 
was disallowed by the software given its flawed assessment of 
the situation.  

Why this mismatch emerged between the software 
estimated and actual flight condition is an important learning 
opportunity and ought to be thoroughly investigated to prevent 
recurrence of such accidents. This was not conclusively 
discussed in the report. What is known is that the flight control 
software entered Ground Mode for less than one second after 
touchdown, and reverted to Air Mode immediately afterward. 
The possibility of Ground Mode disengagement after 
touchdown is an important flaw in the software design and 
may be ascribed to an unconsidered scenario and missing 
software requirement. Sine details about this mismatch are not 
available, we can only hypothesize that the likely cause for 
this was either an improper setting of the threshold on the 
Ground Safety Switch (GSS) sensors, or a flawed software 
logic or implementation of the constraints for triggering the 
Ground Mode as we discuss next: 1) a threshold of strut 
compression is required to validate Ground Mode. For a 
bumpy landing such as this one, the readings from the pressure 
sensors may have fluctuated and dropped below this threshold 
and the aircraft exited Ground Mode; 2) the spin speed 
threshold for the landing gears should have averted this 
situation, but it was either implemented incorrectly in the 
software (as an AND constraint for example), or that the 
conditions on the runway did not result in the threshold spin 
speed for the wheels (37 knots). The report includes 
contradictory statements to this effect, but notes that the 
“wheels were spinning at 37 knots due to the speed of the 
aircraft at touchdown” [7]. This information is a bit suspicious 
and contradictory with other statements in the report 
confirming that the aircraft was in Air Mode.    

We recommend to aircraft software developers (and 
acquisition officers) to consider including requirements to the 
following effect: that once Ground Mode has been validated, 
the software should not be sensitive to the fluctuations of 
pressure sensors; this is particularly important in cases of 
bumpy landings, which are not uncommon in military and 
civilian aviation. In addition, it is a serious automation mistake 
for the software to be able to override the pilot trying to 
engage the brakes after the software has validated that the 
aircraft has touched down. A requirement to this effect can be 
included to eliminate this possibility. Moreover, if the part in 
our second hypothesis of a flawed implementation of the spin 
constraint were correct, this would have important 
consequences for software testers to consider.    

This case study, its accident report, and many others we 
have examined also prompt us to make a recommendation to 
accident investigators: software’s role in accidents has been 
conspicuously missing in accident investigation reports, even 
when that role was prominent. The absence of this feedback 
loop constitutes a missed learning opportunity for contributing 
more efficiently to accident prevention. We recommend that 
the AIB includes in the template of its reports a section on the 
role of software in the mishap, and both train and urge each 
Board president to carefully examine this role when 



warranted. We also recommend that software experts be 
appointed as part of the accident investigation team. 

2.2 MQ-1B Predator Accident, May 7, 2011 

The second case study involves a MQ-1B Predator Drone 
that crashed into the Gulf of Aden on May 7, 2011. The drone 
experienced two uncommanded rolls on final approach due to 
a malfunctioning right aileron. The operator handled the first 
roll but was unable to counter the second one because of a 
particular software limitation. The drone impacted the water 
about a half mile off the coast of Djibouti. The loss of the 
drone was estimated at $4.4 million [8].    

Although software played a secondary role in this 
accident – electrical problems and operational factors were 
much more prominent causal factors – we selected this case 
study for the distinctiveness of the software contribution to the 
accident. Unlike the previous case, here software became an 
issue far downstream the accident sequence, and its 
contribution amounted to “preventing the prevention” of the 
accident, as we will explain shortly. This is a particular shade 
or primitive of causality and it is worth recognizing in 
accident investigations. 

2.2.1 System Background 

The Predator is typically operated by two crews. The first 
is known as the launch and recovery element (LRE), which is 
located on the same airfield as the aircraft, and the second is 
the mission control element (MCE), which operates the drone 
via satellite link from a remote location. The LRE is “typically 
deployed in a theater of operations, where it will launch the 
aircraft, get it to specified altitude, accomplish a systems 
check”, and then pass it on to the MCE, [8]. After the mission 
is completed, the drone is handed back to the LRE for 
approach and landing. This split operation will have some 
implications for this accident.    

The drone has a primary flight control system and a 
backup system. In addition, separate wing modules control the 
ailerons; for example the right aileron is controlled by the 
Right Wing Control Module (RWCM). An electrical 
malfunction in the RWCM, and its subsequent failure, were 
the initiating event of this accident sequence and the main 
cause of the mishap, as we discuss next. It is interesting to 
note that many of the Class A mishaps investigated since 2000 
are attributed to various ‘catastrophic electrical failures’ and 
that the RWCM was a causal factor in the loss of another MQ-
1 in Afghanistan on May 8, 2009 (whose loss was valued at 
$4.6 million [9]). Whether this is coincidental or indicative of 
a systemic problem, this electrical failure pattern, including 
the performance of the RWCM, deserves careful attention 
across the entire fleet of MQ-1B in service. 

2.2.2 Accident Sequence 

Approximately 57 minutes into the flight, following a 
nominal launch and operating team transition from LRE to 
MCE, a transistor in the right wing control module shorted 

out, initiating the accident sequence. The transistor short 
resulted in an excessive current draw, which caused the 
RWCM to fail and led the actuator servo to place the right 
aileron in a trailing edge up position.    

The electrical architecture and specific hardware design 
that led to this particular failure mode in the right wing/aileron 
is not available for examination, and it was not investigated in 
the accident report. We surmise nonetheless that this failure 
mode may have been averted if the designers had implemented 
a fail-safe principle to the ailerons, which, in case of wing 
control module failure, would lock the ailerons in their level 
position. How the fail-safe principle can be implemented for 
the ailerons (and other control surfaces) would require some 
creativity and technical ingenuity [10], but it is not beyond 
skills of aircraft manufacturers. As a result of the RWCM 
failure, the ground operators could no longer control the right 
aileron. The right servo, which was drawing excessive current 
but still functioning, held the right aileron in the trailing edge 
up position. This situation will change on final approach, as 
we will see shortly.    

The operators worked around this situation by raising the 
left aileron to compensate for the “stuck up” right aileron. 
They turned the drone around toward the base, and handed its 
operation over to the LRE crew at 16,000 feet instead of the 
standard 6,500 feet handoff altitude. This added about 5 
minutes to the flight, a relevant detail in this accident 
sequence.  

To address the excessive altitude, the LRE crew 
performed two descending spirals, which likely imposed 
further stresses on the ailerons. Upon final approach, the right 
aileron moved again, uncommanded, to a higher trailing edge 
up position, and the resulting right roll was countered by the 
left aileron. Two minutes before landing, the accumulated 
stresses reached a breaking point and precipitated the accident: 
the right servo, which had been drawing excessive current for 
about 40 minutes, failed and could no longer hold the right 
aileron up. As a result, the right aileron dropped to a trailing 
edge down position.   

At this point, the software contribution to the accident 
emerges: to counter this drop of the right aileron and the left 
roll that ensued, the drone operator attempted to command a 
right roll. This required a left aileron down position. However, 
the “MQ-1B software prohibits the […] aileron from moving 
to a position below level” [8]. In other words, while the 
hardware allows the deflection of ailerons from trailing edge 
up to trailing edge down positions, the software restricts this 
degree of freedom from trailing edge up to the level position. 
The presence of this hard software constraint is surprising, and 
the rationale for its existence was not examined in the report. 
We encourage a reevaluation of this software constraint, and if 
needed, an examination of a different implementation (for 
instance, more gradual and possibly with force feedback). 

   Due to the inability to symmetrically match the right 
aileron down position, the drone continued its left roll until it 
impacted the water.  

 
2.2.3 Software Contributions and Additional Concerns 



As noted earlier, software became an issue in this mishap 
late downstream in the accident sequence, and its contribution 
to the accident was of a different causal nature than in the 
previous case.    

While electrical problems and operational factors were the 
main causal factors in this accident, as indicated earlier, 
software played a particular causal role by preventing the 
prevention of the accident. An operational solution to 
preventing the accident was hardware-available, and the crew 
attempted to execute it; the software-imposed limitation 
prevented this execution and led directly to the loss of the 
drone. Said differently, despite the significant electrical 
problems with this drone, the unresponsive right aileron, and 
the ill-advised operational decisions (e.g. the handover at 
16,000 feet and subsequent spiral descent), these adverse 
conditions would not have resulted in an accident had it not 
been for the software contribution and the limitation it 
imposed on the ailerons deflection.    

We recognize this software contribution reflects a 
particular shade or primitive of causality [11], probably of 
lesser familiarity and significance than the traditional causal 
factors in accidents. It is, however, worth examining in 
accident investigations, after the traditional causes have been 
identified. The implications of such contributions to software 
developers and testers constitute a fruitful venue for future 
research.   

Additional concerns with this drone, not software-related, 
are worth mentioning as well, as they are distinctive and offer 
an opportunity for further reflection and lessons learned for 
preventing future mishaps. Several maintenance issues with 
this drone were logged within a short period of time prior to 
the accident. For example, in the 60 days prior to the mishap, 
electrical problems occurred repeatedly, and the Right Wing 
Control Module (RWCM) experienced partial failure on three 
occasions [8]. Within this same time period, the drone 
experienced problems with all exhaust temperature sensors on 
two occasions. Pressure sensors were also found deficient and 
replaced on three occasions. The Secondary Control Module 
(SCM) was replaced six times, and the Primary Control 
Module was removed twice within the same time period (once 
for a software upgrade).    

For an independent observer, these repeated occurrences 
might reflect a deficient safety culture and lax attitude toward 
safety in operating and maintaining the drones. This however 
need not be the case, and a more useful conclusion can be 
reached by further reflecting on these occurrences. The AIB 
report notes that “maintenance correctly followed the fault 
analysis guidance and performed the required operational 
checks”, and the AIB President noted in his statement of 
opinion: “since maintenance performed all tasks correctly […] 
I do not find any maintenance procedures, supervision, or 
actions of any individual as causal or contributory to this 
mishap” [8]. Fault analysis guidance as well as maintenance 
policies and guidelines were clearly deficient in this case, and 
if these apply to other military systems, we strongly 
recommend that they be revised and upgraded, to account for 
repeated failures in the same item for example, and trigger a 

different response than the band-aid solution of replacing 
faulty elements without proper analysis and understanding.    

Finally, we note that a non-military version of this drone 
is already in use in the continental U.S., by Border Patrol for 
example. In light of the discussion in this subsection, we hope 
these non-military drones are subject to much more stringent 
safety testing, certification, and regulations than their military 
counterparts.  

3 CONCLUSIONS  

Software has wiggled its way into our daily lives to an 
extent we may not have taken the full measure of yet. Modern 
life in the developed and developing world is inconceivable 
without software. But with this increasing reliance on software 
come new and increasing vulnerabilities. Software is playing a 
growing role in adverse events, and our present understanding 
of its failure mechanisms and contributions to system 
accidents is significantly lacking. There is a widening safety 
gap between the software-intensive capabilities we create and 
our understanding of the ways they can fail or contribute to 
accidents, and hence our ability to prevent accidents. 

To advance the thinking about these issues and expand 
the intellectual toolkit of safety professional and researchers, 
we adopted a pragmatic approach in this work and examined 
two case studies of software contributions to military aviation 
and drone accidents. This choice was motivated by several 
considerations, some are military (Air Force) centric, and 
some are broadly relevant to the safety community.  

First, military aviation mishaps rarely get attention from 
the media, or the academic and research community, yet they 
offer significantly rich learning opportunities that extend far 
beyond their particular context, especially when software is 
involved. As noted in the Introduction, the operational 
environment and flight parameters of military aviation offer 
distinctive flight conditions, which can act as triggers of 
(deeply buried) software pathogens or lurking software 
defects. As such, military aviation can be thought of as an 
accelerated, and high stress, testing environment and regime 
for all aviation software.   

Second, the military is an early adopter of drones and has 
extensive operational experience with these systems. Given 
the recent push to integrate drones in the U.S. National 
Airspace, this military experience is particularly rich for 
probing and analysis, and making better-informed decisions. 
The drone mishaps here examined was included as the 
proverbial tip of the iceberg, and it highlighted a number of 
safety issues in the design, operation, and maintenance of 
drones. We recommended these systems be subject to much 
more stringent and informed safety testing, certification, and 
regulation than their military counterparts before they are 
allowed to share the same resource, the National Airspace, 
with commercial airliners. We hope our work helps inform a 
richer public debate on this subject beyond, or in addition to, 
the privacy issues that drones raise, and that this subject 
attracts more scrutiny by academics and safety professionals. 

Third, in the past five years the Air Force reported 
mishaps in aviation resulting in $5 billion in lost equipment 
and injuries (excluding ground-related mishaps) and over 



9,000 lost workdays. Within this time frame, the Air Force lost 
787 lives to all safety mishaps [1]. Any contribution for 
improvements in this area can help save lives, preserve 
military capabilities, and reduce costs associated with 
mishaps. The case studies here examined led to a number of 
recommendations, some software-centric and broadly relevant, 
and some specific to the systems studied, and others were 
procedural or organizational in nature and specific to the Air 
Force and the AIB reports. We hope this work encourages and 
invites more academic interest and research in this area. Doing 
so would bring some public scrutiny and provide thought-
partnership to the various military safety centers in their 
efforts to improve safety, and help better capture and 
disseminate lessons learned. 
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