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Abstract 

Let G and H be two graphs. A proper vertex coloring of G is called 

a dynamic coloring, if for every vertex v with degree at least 2, the 

neighbors of v receive at least two different colors. The smallest 

integer k such that G has a dynamic coloring with k colors denoted 

by X2(G). We denote the cartesian product of G and H by GDH. In 

this paper, we prove that if G and H are two graphs and 8(G) 2: 2, 

then X2(GDH) max(X2(G), X(H)). We show that for every two 

natural numbers m and n, m, n 2: 2, X2(PmDPn) = 4. Also, among 

other results it is shown that if 3lmn, then X2(CmDCn) = 3 and 

otherwise X2 (Cm DCn) = 4. 

1. Introduction 

Let G be a graph. We denote the edge set and the vertex set of G, by 

* Key Words: Dynamic coloring, Cartesian product of graphs. 
t2000 Mathematics Subject Classification: 05C15, 05C38. 
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E(G) and V(G), respectively. The number of vertices of G is called the 

order of G. A proper vertex coloring of G is a function c : V(G) --t L, 
with this property: if u, v E V (G) are adjacent, then c( u) and c( v) are 

different. A vertex k-coloring is a proper vertex coloring with ILl = k. The 
smallest integer k such that G has a vertex k-coloring is called the chromatic 

number of G and denoted by X( G). A proper vertex k-coloring of a graph G 
is called dynamic if for every vertex v with degree at least 2, the neighbors 

of v receive at least two different colors. The smallest integer k such that 
G has a dynamic k-coloring is called the dynamic chromatic number of 

G and denoted by X2 (G). Recently, the dynamic coloring of graphs has 

been studied by several authors, see [1], [2], [3]. For any v E V(G), Nc(v) 

denotes the neighbor set of v in G. Let c be a proper vertex coloring of G. 

For any v E V (G), we mean c( N c (v)) the set of all colors appearing in the 

neighbors of v in G. In this article, Pn and en denote the path and cycle 
of order n, respectively. In the proof of our results we need the following 
lemma. 

Lemma 1. [4, p.5] Let n 3 be a natural number. Then we have, 

(i) X2(Pn ) = 3 

(ii) X,(Cn ) {: 

31n 

3 f n, n:j:. 5 

n=5 

Let G and H be two graphs. We recall that the cartesian product of G 
and H, GDH, is a graph with the vertex set V(G) x V(H) such that two 

vertices (u, v) and (u', v') are adjacent if and only if u = u' and vv' E E(H) 

or v = v' and uu' E E(G). Clearly, = + For any 

(u, v) E V(GDH), NCDH((U, v)) denotes the neighbor set of (u, v) in GDH. 

In the next theorem, we provide an upper bound for the dynamic chro-

matic number of cartesian product of two graphs. 

Theorem 1. Let G and H be two graphs. If 8(G) 2, then X2(GDH) :::; 
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max(X2(G),X(H)). 

Proof. Suppose that there are dynamic coloring CI : V(G) --t {I, ... , X2 (G)} 
and the vertex coloring C2 : V(H) --t {I, ... , X(H)}. Assume that k = 

max(X2(G), X(H)). For every U E V(G) and v E V(H), define a vertex 

coloring C : V(GOH) --t {l, ... ,k}, c((u,v)) == cdu) + C2(V) (mod k). 

Now, we claim that C is a dynamic coloring of GOH. Clearly, C is a proper 

coloring. Moreover, for every vertex U E V(G), ICI(Na(u))1 2: 2. Thus 

for every vertex (u, v) E V(GOH), Ic(NaDH((U, v)))1 2: 2 and the proof is 

complete. 0 

Theorem 2. For every two natural numbers m and n, m, n 2: 2, we have 

X2(PmOPn) = 4. 

Proof. Let V(Pm) = {UI, ... ,Um}, V(Pn) = {VI,'" ,vn} and G = PmOPn. 
First note that since 2: 2, X2(G) 2: 3. We claim that X2(G) 2: 4. To 

the contrary, assume that X2 (G) = 3. Consider a dynamic 3-coloring C 

of G. With no loss of generality we can assume that c( (UI , vd) = 1 and 

c((u2,vd) = 2. Also, since Na((UI,vd) = {(UI,V2), (U2,VI)} and C is a 

dynamic coloring of G, C((UI, V2)) = 3. Now, {2, 3} c(Na ((U2' V2))) and 

so C((U2,V2)) = 1. Also, since Na ((U2,VI)) = {(uI,vd,(U2,V2),(U3,vd} 
and the dynamic property holds for (U2, VI), C((U3, vd) = 3. Now, {I, 3} 

c(Na((U3, V2))) and so C((U3, V2)) = 2. By repeating this procedure, we con-

clude that the colors of the vertices (UI, vd, ... , (um, vd are 1,2,3,1,2,3, ... , 

and the colors of the vertices (UI, V2), ... , (um, V2) are 3,1,2,3,1,2, ... , re-

spectively. Since Na((um, VI)) = {(Um-I, VI), (Um, V2)} and also C(Um-l, VI) = 

C(Um,V2) we have Ic(Na((um,vd))1 = 1, a contradiction. So X2(G) 2: 4. 

Now, we claim that the function C : V(G) --t {1,2,3,4}, C((Ui,Vj)) == 
i + 2j (mod 4) is a dynamic 4-coloring of G. Since a pair of adjacent ver-

tices is as (Ui,Vj) and (Ui+I,Vj) or (Ui,Vj) and (ui,vi+d for some i,j, C 

is a proper coloring of G. In order to see that C is a dynamic coloring, it 

suffices to show that in the vertices of each subgraph isomorphic to C4 of G, 
four different colors are appeared. Clearly, the vertices of each subgraph 
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isomorphic to C4 of G, are (Ui,Vj), (Ui,Vj+1), (ui+l,vj+d and (Ui+l,Vj), 

for some i,j. We have C((Ui, Vj)) == i + 2j, C((Ui, vj+d) == i + 2j + 2, 

C((Ui+l, Vj)) == i + 2j + 1 and C((Ui+l, vHd) == i + 2j + 3, mod 4. Obvi-

ously, these four colors are different and so C is a dynamic 4-coloring of G 

and the claim is proved. Thus for every two natural numbers m and n, 

m, n 2: 2, X2(PmDPn) = 4. 0 

In the following theorem, we obtain the dynamic chromatic number of 

the cartesian product of Cm and Pn . 

Theorem 3. For every two natural numbers m and n (m 2: 3), 

n=1 

31 m 

otherwise 

Proof. Let V(Cm) = {Ul, ... , um}, V(Pn) = {Vl, ... , vn} and G = CmDPn. 
If n = 1, then G c:: Cm and the assertion is trivial. So we can assume that 

n =I- 1. Since 2: 2, X2(G) 3. If 31m, then by Lemma 1 and Theorem 

1, we conclude that in this case, X2(G) = 3. Now, suppose that 3 f m and 

m =I- 5. By Theorem 1, X2(G) :::; 4. We claim that in this case, X2(G) = 4. 

To the contrary, assume that X2(G) = 3. Consider a dynamic 3-coloring C 

of G. Since 3 f m, by Lemma 1, X2(Cm) 2: 4. Thus, there exists a vertex 

in the first copy of Cm in G, say (Ul, vd, for which the dynamic property 

does not hold. With no loss of generality assume that c( (Ul, vd) = 1 and 

C((U2,Vl)) = c((um,vd) = 2. Since the dynamic property holds for (ul,vd 

in G, C((Ul,V2)) = 3. Also, since {(u2,vd,(Ul,V2)} NC ((U2,V2)) and 

{(um,vd, (Ul,V2)) Nc((Um,V2)), C((U2,V2)) = c((Um,V2)) = 1. More-

over, since C is a dynamic coloring of G, c( (Ul, V3)) = 2. By repeating this 

procedure, we conclude that Ic(Nc((ul,vn)))1 = 1, a contradiction. So, 

in this case X2(G) = 4. Now, suppose that m = 5. Since n =I- 1, then 

for every odd number j, 1 :::; j :::; n, define C((Ul, Vj)) = 1, C((U2, Vj)) = 
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2, C((U3,Vj)) = 3, C((U4,Vj)) = 4, c((us,Vj)) = 2 and for every even num-

ber j, 1 j n, define C((Ul,Vj)) = 3, C((U2,Vj)) = 1, C((U3,Vj)) = 
2, C((U4,Vj)) = 1, c((us,Vj)) = 4. Clearly, this provides a dynamic 4-

coloring of CsDPn and so X2(CsDPn) 4. By a similar argument, as we 

did before, we have X2(CsDPn) 4. Hence, X2(CsDPn) = 4 and the proof 

is complete. 0 

Theorem 4. Let G be a graph and m 3 be a natural number. Then the 

following hold: 

(i) If31 m, then X2(CmDG) = max{3,x(G)}. 

{
3 c5(G) 2 

(ii) If 3 t m and X2(G) = 3, then X2(CmDG) = 4 
c5(G) = 1 

(iii) If 3 t m and X2(G) > 3, then X2(CmDG) 4. Moreover, if G is a 

bipartite graph with no isolated vertex, then X2(CmDG) = 4. 

Proof. Let V(Cm) = {Ui, ... ,um}, V(G) = {Vi, ... ,Vn} and H = CmDG. 

For every i, 1 i m, call the i-th copy of Gin H, by G i . 

(i) Note that by Theorem 1, X2(H) max(3,x(G)). Moreover, since 

tl.(H) 2 and G is a subgraph of H, X2(H) max(3, X(G)). So X2(H) = 
max(3, X( G)). 

(ii) If c5(G) 2, then using Theorem 1, X2(H) = 3. Now, assume that 

c5(G) = 1. First we prove that X2(H) 4. If m :f. 5, then by Theorem 

1, X2(H) 4. Now, suppose that m = 5. We can assume that G is a 
connected graph. Let Cl : V(G) --t {I, 2, 3} be a dynamic 3-coloring of 

G. For every vertex (Ui, Vj), 1 i 5 and 1 j n, define the vertex 
3-coloring C of H as follows: 

C((Ui,Vj)) = Cl(Vj) + i (mod 3). Since Cl is a dynamic coloring of G, for 

every vertex (u, v) in H with da(v) 2, the dynamic property holds for 

this vertex in H. Also, clearly for every 2 i 4 and 1 j n, 
Ic(NH((ui,Vj)))! 2. Now, for every j, 1 j n, if da(vj) = 1, then 

we change the colors of vertices (U2,Vj) and (U4,Vj) to 4. Since G has 
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no two adjacent vertices of degree one, the new coloring is still a proper 

coloring, moreover the dynamic property holds for every vertex of Hand 

so X2(H) :::; 4. Now, it suffices to prove that X2(H) 2': 4. To the contrary, 

suppose that e is a dynamic 3-coloring of H with colors {1, 2, 3}. With no 

loss of generality let VI E V (G) be a vertex of G such that N c (VI) = {V2}, 

e( (UI, vd) = 1 and e( (UI, V2)) = 2. Since the dynamic property holds for 

(UI , VI) in H, with no loss of generality we may assume that e( (U2, VI)) = 3. 

Now, {2,3} e(NH((u2,V2))) and so e((u2,v2)) = 1. Similarly, since the 

dynamic property holds for (U2, vd in H, e((u3, vd) = 2. Now, {1, 2} 

e(NH((u3,V2))) and so e((u3,v2)) = 3. By repeating this procedure, we 

conclude that e((u4,vI)) = 1,e((u5,vI)) = 3,e((u6,vI)) = 2, .... Now, 

if c((um,vd) = 3, then e(NH((um,vI))) = {1}, a contradiction. Thus, 

e( (U m , VI)) = 2. This implies that 3 I m, a contradiction. Thus, X2 (H) = 4. 

(iii) To the contrary, suppose that e is a dynamic 3-coloring of H with 

colors {1, 2, 3}. Note that X2(G) > 3 and so there exists a vertex, say 

(UI, vd, such that e((uI, vI)) = 1 and for every Vi E Nc(vd, e((UI, Vi)) = 2. 

Since the dynamic property holds for (UI, VI) in H, with no loss of gener-

ality we may assume that e((u2, VI)) = 3. Hence for every Vi E NC(VI), 
e((U2, Vi)) = 1. Thus e((u3, vI)) = 2. By repeating this procedure, we 

conclude that e((u4,vd) = 1,e((u5,vd) = 3,e((u6,vI)) = 2, .... Now, 

if e((um,vI)) = 3, then e(NH((um,VI))) = {1}, a contradiction. Thus, 

e( (um, vI)) = 2. This implies that 3 I m, a contradiction. Thus, X2 (H) 2': 4. 

Now, assume that G = (X, Y) is a bipartite graph such that X = 

{Xl, ... , xs} and Y = {YI, ... , yt}. If m = 5, then consider two vertex 

4-colorings e and e' of C5, e(ud = 1, e(u2) = 2, e(u3) = 3, e(u4) = 4, 

e(u5) = 2 and e'(ud = 3, e'(u2) = 4, e'(u3) = 1, e'(u4) = 2, e'(u5) = 1. 

Now, define the dynamic 4-coloring e" of H as follows: 

For 1 :::; i :::; 5 and 1 :::; j :::; s, let e"((ui,Xj)) = e(ui) and for 1 :::; i :::; 5 

and 1 :::; k :::; t, let e"((ui,Yk)) = e'(ui). This shows that in this case 

X2(H) :::; 4 and so X2(H) = 4. Now, suppose that m :j:. 5. Since 3 f m, then 

X2 (Cm ) = 4. Consider a dynamic 4-coloring e' of Cm . Then for every vertex 

(Ui,Xj), 1:::; i:::; m and 1:::; j:::; s, define e((ui,Xj)) = e'(ui) and also for 
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every vertex (Ui, Yk), 1 :::; i :::; m and 1 :::; k :::; t, define C((Ui, Yk)) == C/(Ui)+ 1 
(mod 4). Clearly, C is a dynamic 4-coloring of H. Thus, we conclude that 

X2(H) :::; 4. So, X2(H) = 4. D 

Theorem 5. Let m, n 3 be two natural numbers. Then 

Proof. Let V(Cm) = {Ul, ... ,um}, V(Cn) = {Vl, ... ,Vn} and G = 
CmDCn. Since 2, X2(G) 3. First suppose that 3 I mn. By 

Theorem 1, X2(G) = 3. Now, suppose that 3 f mn. By Lemma 1 and 

Theorem 4, Part (iii), X2(G) 4. If one of the m and n is not 5, then 

by Theorem 1, X2(G) :::; 4 and we are done. So, suppose that m = n = 5. 

Now, we define the dynamic 4-coloring C of C5DC5 as follows: 

Consider the following 5 x 5 matrix A, A = [aij] and define C((Ui, Vj)) = aij, 
for every i and j, 1 :::; i,j :::; 5. 

1 2 1 2 3 

2 3 2 3 1 

A= 3 1 3 1 2 

2 4 2 4 1 

4 1 4 1 2 
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