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Abstract: Musicianship confers enhancements to hearing at nearly all
levels of the auditory system from periphery to percept. Musicians’
superior psychophysical abilities are particularly evident in spectral dis-
crimination and noise-degraded listening tasks, achieving higher percep-
tual sensitivity than their nonmusician peers. Greater spectral acuity
implies that musicianship may increase auditory filter selectivity. This
hypothesis was directly tested by measuring both forward- and simulta-
neous-masked psychophysical tuning curves. Sharper filter tuning (i.e.,
higher Q;¢) was observed in musicians compared to nonmusicians.
Findings suggest musicians’ pervasive listening benefits may be facili-
tated, in part, by superior spectral processing/decomposition as early as
the auditory periphery.

© 2014 Acoustical Society of America
PACS numbers: 43.75.St, 43.66.Dc, 43.66.Mk, 43.66.Hg [DD]
Date Received: April 26, 2014 Date Accepted: June 16, 2014

1. Introduction

Musicianship is linked to enhanced spectrotemporal acuity' including the identifica-
tion and discrimination of speech.>* These pervasive benefits extend to real-world per-
ception and auditory scene analysis, as musicians are better able to extract speech cues
within noisy listening environments than their nonmusician peers.>* The current study
investigated whether behavioral estimates of frequency selectivity are consistent with
musicians’ well-documented advantages in spectral processing.

It is widely believed that auditory spectral acuity is limited by peripheral filter-
ing at the level of the cochlea.”’ Basilar membrane processing is typically conceived
as a bank of overlapping bandpass filters that performs a spectral decomposition of
the sound input. Cochlear filter bandwidth (BW) contributes to the frequency resolu-
tion of the system, and thus, the perceptual acuity for detecting changes in the spectral

YAuthor to whom correspondence should be addressed. Also at: School of Communication Sciences &
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J. Acoust. Soc. Am. 136 (1), July 2014 © 2014 Acoustical Society of America EL33


http://dx.doi.org/10.1121/1.4885484
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4885484&domain=pdf&date_stamp=2014-06-25

Bidelman et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4885484] Published Online 25 June 2014

soundscape. Behaviorally, auditory filters can be estimated via the measurement of
psychophysical tuning curves (PTCs).>” ' In this approach, the detection of a low-
level probe tone is used to infer auditory filter shape at a given location along the basi-
lar membrane by examining the effectiveness of various narrowband signals to mask
the target probe. PTCs can be measured using either simultaneous or forward masking
paradigms; both approaches provide a means to measure auditorly filter shapes behav-
jorally and estimate cochlear tuning noninvasively in humans.>'*!

Greater spectral sensitivity in musically trained ears suggests that musicianship
may increase auditory filter selectivity. Increased cochlear tuning gi.e., auditory filter
resolution) in musicians would help explain their enhanced pitch!!>* and timbre>?
discrimination abilities and spectral acuity observed in countless behavioral studies.
The possibility of musicians having sharper auditory filters has been suggested' but
not validated empirically (cf. Ref. 16). In the current study, we directly tested this hy-
pothesis by comparing auditory filters in musician and nonmusician listeners. We
measured both forward- and simultaneous-masked PTCs to obtain complementary
measures of cochlear tuning using two widely accepted approaches. Results reveal
increased filter tuning (i.e., higher Q;¢) in musicians suggesting that their pervasive au-
ditory benefits may be facilitated by physiological mechanisms as early as the cochlea.

2. Methods
2.1 Participants

Nineteen young adults (age range: 18-35 yrs) participated in the experiment: Ten musi-
cians (Ms) (7 female) and 9 nonmusicians (NMs) (6 female). All participants were
native speakers of English, right-handed, had normal hearing (i.e., audiometric thresh-
olds <25dB hearing level; 500-4000 Hz), and reported no previous history of neuro-
psychiatric illnesses. Ms were amateur instrumentalists who had received >5 yrs of
continuous private instruction on their principal instrument (mean * standard devia-
tion; 10.4 = 4.0 yrs), beginning prior to age 12 (9.6 = 2.3 yrs), and were currently active
in music practice or ensemble engagement. This definition of “musician” is consistent
with previous reports.>!*!* NMs had <3 vyears of self-directed music training
(1.6 = 1.2 yrs) with no instruction within the past 5 years. The two groups were other-
wise closely matched in age (Ms: 24.6 = 3.5 yrs, NMs: 24.8 £ 1.4 yrs) and formal edu-
cation (Ms: 18.9 = 2.8 yrs, NMs: 18.8 = 1.2 yrs). Participants were paid and gave writ-
ten informed consent in compliance with a protocol approved by the Institutional
Review Board of The University of Memphis.

2.2 PTCs
2.2.1 Procedure

PTCs were measured for each listener at two characteristic frequencies (CFs), 1 and
4kHz, using both simultaneous and forward masking approaches.'®!! These relatively
high CFs were selected to circumvent difficulties in measuring auditory filters with short
duration tones at lower frequencies where signal BW can exceed that of the filter.'
Listeners sat comfortably in a sound attenuating chamber in front of a computer monitor.
Auditory stimuli were generated through custom built graphical user interfaces (GUISs)
coded in MaTLAB (The MathWorks, Natick, MA). The output signal was routed through
a LynxTWO soundcard (Lynx Studio Technology, Inc., Costa Mesa, CA) and delivered
monaurally to the right ear through insert earphones (ER-3 A; Etymotic Research, Elk
Grove Village, IL). The contralateral ear was occluded with a foam plug. Stimulus inten-
sity was calibrated using a sound pressure level (SPL) meter (Model LxT, Larson-Davis,
Depew, NY) measured in a 2-cc coupler (IEC 60126, G.R.A.S., Twinsburg, OH).

2.2.2 Forward masked PTCs

PTCs were measured in each listener using a standard forward masking paradigm pre-
sented in a three-interval, forced-choice task.'’ The masker was a 300ms pure tone
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gated with 5ms cos” ramps. Tonal maskers had normalized frequencies of 0.12, 0.25,
0.50, 0.62, 0.75, 0.87, 1.00, 1.05, 1.12, 1.25, and 1.50 relative to the probe’s CF. The
masker was followed immediately by a contiguous probe tone (0-ms masker-probe oft-
set). Probe signals were brief (35ms, 10 ms ramps) sinusoidal tones (1 or 4 kHz), pre-
sented at a fixed low-level intensity (20 dB sensation level (SL) re listeners’ threshold at
CF). Absolute sound intensity was roughly 22 and 15dB SPL for the 1 and 4kHz
probes, respectively. The two CF conditions and masker frequency order were random-
ized both within and between participants.

Each trial consisted of a given masker-probe tone combination. A high-pass
noise (cutoff frequency: 1.2*CF Hz) was presented at a low intensity (—50dB spectrum
level re probe) concurrent with the masker-probe stimuli to limit off-frequency listening
effects.'” Masked thresholds were measured adaptively by varying the level of the
masker with the probe fixed at a low presentation level. A fixed-signal method is prefera-
ble to a fixed-masker level (i.e., adaptively varying probe level) as it provides a more
accurate depiction of auditory filter shape.!! The masker was initially set at a level
—10dB below that of the probe. On each trial, participants heard three sequential inter-
vals, two which contained only the masker and one which contained the masker and
probe (assigned randomly). Listeners were required to identify the interval containing
the probe. Intervals were indicated in the GUI presented on the computer screen;
responses were made via the computer keyboard or mouse and visual feedback was pro-
vided after each trial. Each interval was separated by a 400 ms interstimulus interval
(ISI). Masked thresholds were measured using a 2-down, 1-up adaptive procedure (71%
performance). Following two correct responses, masker level was increased for the subse-
quent trial and decreased following a single incorrect response. The geometric mean of
the last 8/12 reversals were used to compute each listener’s masked threshold. A single
masked threshold was obtained for each of the 11 masker-probe combinations and used
to construct a listener’s PTC at a given CF. Intense training can improve NMs’ perform-
ance on perceptual pitch tasks to the level of Ms.! Thus, only brief task familiarization
was provided to obtain forward-masked PTCs with minimal learning effects.

Filter “sharpness” was quantified from PTCs by measuring the quality (Q;0)
factor of the auditory filter. Q¢ is a normalized measure of filter sharpness and was
used to quantify frequency selectivity (i.e., tuning) for each listener. PTCs were interpo-
lated (i.e., up-sampled x 1000) and Qo computed as Qo =/./BW, where f, is the filter’s
center frequency and BW is its+ 10 dB BW.

2.2.3 Simultaneous masked PTCs

Simultaneous masked PTCs were mapped using the “Fast PTC” method.® In this pro-
cedure, listeners monitored a low intensity probe tone (1 and 4 kHz; 20dB SL) concur-
rent with a masking noise. A narrowband noise masker (1 kHz probe: 200 Hz BW;
4kHz probe: 320 Hz)® was used to reduce the detection of beats between the masker
and probe. Probes were 500 ms pure tones (20-ms ramps), continuously pulsed on/off
at a regular rate (ISI: 200ms) to help subjects maintain attention to the target. The
center frequency of the masker swept upward from f,;, to fi.x over a time span of
4 min, where fiin/fmax are frequencies 1.5 and 0.6 octaves below and above the CF,
respectively. Masker level was continuously varied according to a Békésy track at a
rate of 2dB/s. The run began with the masker set at 50 dB SPL. Subjects were asked
to press and hold a button so long as the probe tone remained audible and release it
when it became inaudible. Using this procedure, the masker level needed to just mask
the probe frequency was obtained as a function of masker center frequency. Fast PTCs
were measured twice for each listener at each CF (i.e., 1 and 4 kHz). Only the second
PTC was analyzed to ensure subjects had acclimatized to the task. As in forward
masked PTCs, filter sharpness was quantified from simultaneous masked PTCs by
measuring Qjo of the auditory filters. A 2-point moving average was applied to raw
fast PTCs prior to quantification to smooth the continuous threshold obtained in the
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Fig. 1. (Color online) PTCs for Ms and NMs. (A) Forward masked PTCs (group average). Shading==* 1
standard error of the mean (s.e.m.). (B) Simultaneous masked PTCs (Ref. 8). Thin lines: Raw Békésy tracked
thresholds; thick lines: 2-point moving average.

Békésy track® [see Fig. 1(B)]. From smoothed PTCs, Q)9 was then quantified at each
probe CF for each listener.

3. Results

Raw forward and simultaneous masked behavioral PTCs are shown in Fig. 1. PTCs
showed a typical “V-shape” with a low-frequency tail, highly selective tip, and steep
high-frequencg skirt characteristic of auditory filters measured via psychophysical
paradigms.”!

Auditory filter sharpness, quantified by filter Qjq, is shown for Ms and NMs
in Fig. 2. A repeated measures (rm)analysis of variance (ANOVA) conducted on for-
ward masked PTC @, values revealed a significant main effect of group [F 17=4.90,
p=0.04] and probe CF [F;,7=6.22, p=0.023] with a marginal group*CF interaction
[F1, 17=3.35, p=0.08]. The main effect of group indicates that Ms had sharper tuning
across the board. Nevertheless, given the marginal interaction, we used post hoc
Tukey-Kramer adjusted multiple comparisons to further investigate group differences
in tuning at each CF. Results revealed that Ms had higher filter O, (i.e., more selec-
tive tuning) at 4 kHz relative to their NM peers. As with forward masked PTCs, audi-
tory filters were sharper in Ms when measured via simultaneous masking. An
rmANOVA conducted on simultaneous masked Q;(’s revealed a significant group*CF
interaction [F; 1;=4.19, p=0.05]. Follow-up contrasts revealed this was again attribut-
able to Ms having larger Q;y at 4kHz relative to NMs. No group differences were
observed at 1 kHz for PTCs derived either by simultaneous or forward masking.

Correlational analyses tested whether an individual’s degree of musical train-
ing, as measured in years of engagement, predicted their auditory filter sharpness.
Years of formal music training was positively correlated with filter Q;y at 4 kHz when
measured via simultanecous masking [r=0.44, p =0.02] [Fig. 2(B)] in that longer train-
ing predicted sharper cochlear tuning. Correlations with forward masked PTC Q;y and
results at 1 kHz were insignificant.

Q) values provide a normalized measure of frequency selectivity and a means
to directly compare filter tuning estimates obtained under the two disparate masking
paradigms. Pooling across musician and nonmusician listeners, a rmANOVA con-
ducted on filter Qj¢’s revealed significant main effects of probe CF [Fj3=6.98,
p=0.017] and masking paradigm [F};5=47.73, p <0.0001] with no interaction [F},
18=0.26, p=0.62]. The simple main effect of masking type suggests that forward
masking provides higher estimates of filter tuning, i.e., larger PTC Q values, relative to
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Fig. 2. (Color online) Group comparison of auditory filter tuning (Q-factor) in Ms and NMs. (A) Estimates of
tuning are 2 times sharper for forward compared to simultaneous masking. Relative to NMs, Ms demonstrate
more selective (i.e., narrower) auditory filters, particularly at higher CFs (4 kHz). (B) Years of formal musical
training predict increased filter sharpness at 4 kHz measured via simultaneous masking; longer music experience
is associated with higher Q. Error bars = = 1s.e.m.; *p < 0.05.

simultaneous masking across the board. Similarly, the main effect of CF indicates that
tuning was better at the higher (4 kHz) relative to the lower CF (1 kHz).

4. Discussion

Previous studies have demonstrated superior spectral acuity in musicians relative to
nonmusician listeners'>'*'* implying that musical training shapes cochlear processing
and increases the resolutlon of peripheral auditory filters. By measuring PTCs in musi-
cians and nonmusicians—a measure widely believed to reflect peripheral cochlear filter-
ing>®1%!"__our results provide strong evidence for sharper auditory filtering in musi-
cally trained listeners (cf. Ref. 16). Importantly, this effect was predicted by an
individual’s years of musical training [Fig. 2(B)]. These findings are consistent with the
notion that muSlClanShlp 1rnproves peripheral cochlear ﬁlterlng, increasing per1phera1
spectral resolution in an experience-dependent manner.' Superlor cochlear tuning in
musicians may account for their enhanced auditory performance in a w1de Varlety of
auditory behavioral studies, including speech/language and musical tasks. "

In the current study, PTCs were obtained via both forward and smmltaneous
masking. Pooled across listeners, estimates of tuning were generally sharper (i.e., higher
Q) by nearly a factor of 2 under forward compared to simultaneous masking This is
consistent with previous psychoacoustlc studies and the notion that suppressmn plays a
stronger role in the latter approach.'®!!'® Nevertheless, larger Qo in musicians
derived under both methods suggests increased peripheral auditory filter selectivity
than musically naive listeners even in the presence of strong cochlear nonlinearities
(e.g., suppression).

Interestingly, we found that group differences in tuning were more pronounced
at higher (4 kHz) relative to lower CFs (1 kHz). Additionally, musical training was cor-
related with filter Q¢ sharpness at 4- but not 1-kHz (under simultaneous masking).
These ﬁndings imply that the experience-dependent effects of musicianship on cochlear
processing might act more strongly at hlgher- relative to lower- frequen01es along the
cochlear partition. Both psychophys1cal and neurophysiological'® data indicate that
nonlinearities including suppresswn and cochlear amplification are larger at higher rel-
ative to lower CFs. Indeed, musicians are highly sensmve to manipulations in spectral
timbre” and show benefits in noise-degraded hstenlng, tasks that rely heavﬂy on high
frequency spectral coding.?® We infer that musicians’ superiority in exploiting
high-frequency spectral cues in these tasks may arise due to their sharper tuning in
more basal cochlear channels (e.g., Fig. 1). Such differential effects could arise based
on the well-known neuroanatomical configuration and putative physiological effects of
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the medial olivocochlear (MOC) efferent system, whose innervation density is greater
at higher- relative to lower-frequencies.>! Given these inherent structural asymmetries,
the modulatory gain supplied by MOC fibers to the cochlea is likely to be larger at
more basal portions of the basilar membrane,*? consistent with our observations.

It is possible that musicians’ tuning benefits might be at least partially driven by
enhanced attention or efficiency in explomng auditory cues.'*** However, if this were the
case, we would have expected musicians to show superior performance across the board,
whereas group differences were observed only at higher CFs. A more likely possibility
involves converging evidence from otoacoustic emissions, which suggests that musical
trdlnmg can strengthen cochlear processing and MOC modulatory activity.?* These stud-
ies pr0V1de evidence for music-induced plasticity at initial stages of auditory sensory proc-
essing mediated by strengthened “top-down” feedback from the caudal brainstem to the
cochlea. While the functional role of the MOC in human hearing is still debated,? it is
speculated that it may provide an “antimasking” effect, helping to improve 51gna1 detec-
tion in noise’ and/or discrimination sensmVlty 22 Musicians excel at both of these
skills.>!>!3 By this account then, musicians’ stronger MOC activity may prov1de more
antimasking at the probe signal frequency, enhancing its contrast from the noise masker,
and consequently providing sharper estimates of ﬁlterlng 1n that cochlear channel.
Alternatively, stronger top-down efferent control in musicians®* may allow them to pre-
emptively inhibit MOC gain reduction (which can alter neural tunmg curves®?) and thus
maintain a higher degree of frequency resolution compared to nonmusicians. Therefore, it
is possible that at least some of musicians’ behavioral auditory advantages observed previ-
ously, as well as the sharper auditory tuning observed in the current study, might result
from enhancements to the MOC cochlear efferent pathway tuned through rigorous, long-
term musical engagement.*

Acknowledgments

This work was supported in part by a grant from the GRAMMY Foundation® awarded
to G.M.B. and S.P.B.

References and links

Ic. Micheyl, K. Delhommeau, X. Perrot, and A. J. Oxenham, “Influence of musical and psychoacoustical
training on pitch discrimination,” Hear. Res. 219, 36-47 (2000).

2G. M. Bidelman and A. Krishnan, “Effects of reverberation on brainstem representation of speech in
musicians and non-musicians,” Brain Res. 1355, 112-125 (2010).

3G. M. Bidelman, M. W. Weiss, S. Moreno, and C. Alain, “Coordinated plasticity in brainstem and
auditory cortex contributes to enhanced categorical speech perception in musicians,” Eur. J. Neurosci.
1-12 (in press).

‘A, Parberry-Clark, E. Skoe, C. Lam, and N. Kraus, “Musician enhancement for speech-in-noise,” Ear
Hear. 30, 653-661 (2009).

5C. A. Shera, J. J. Guinan, Jr., and A. J. Oxenham, “Revised estimates of human cochlear tuning from
otoacoustic and behavioral measurements,” Proc. Natl. Acad. Sci. U. S. A. 99, 3318-3323 (2002).

°E. F. Evans, “Auditory processing of complex sounds: An overview,” Philos.Trans. R. Soc., B 336,
295-306 (1992).

’G. M. Bidelman and A. Syed Khaja, “Spectrotemporal resolution tradeoff in auditory processing as revealed
by human auditory brainstem responses and psychophysical indices,” Neurosci. Lett. 572, 53-57 (2014).

8A. Sek, J. Alcantara, B. C. Moore, K. Kluk, and A. Wicher, “Development of a fast method for
determining psychophysical tuning curves,” Int. J. Audiol. 44, 408-420 (2005).

°S. G. Jennings and E. A. Strickland, “Auditory filter tuning inferred with short sinusoidal and notched-
noise maskers,” J. Acoust. Soc. Am. 134, 2497-2513 (2012).

10B. C. I. Moore, “Psychophysical tuning curves measured in simultaneous and forward masking,”
J. Acoust. Soc. Am. 63, 524-532 (1978).

"TA. J. Oxenham and C. A. Shera, “Estimates of human cochlear tuning at low levels using forward and
simultaneous masking,” J. Assoc. Res. Oto. 4, 541-554 (2003).

12G. M. Bidelman, S. Hutka, and S. Moreno, “Tone language speakers and musicians share enhanced
perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of
language and music,” PloS One 8, 60676 (2013).

EL38 J.Acoust. Soc. Am. 136 (1), July 2014 Bidelman et al.: Auditory filtering in musicians


http://dx.doi.org/10.1121/1.4885484

Bidelman et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4885484] Published Online 25 June 2014

13G. M. Bidelman, J. T. Gandour, and A. Krishnan, “Musicians and tone-language speakers share
enhanced brainstem encoding but not perceptual benefits for musical pitch,” Brain Cogn. 77, 1-10
(2011).

D, L. Strait, N. Kraus, A. Parberry-Clark, and R. Ashley, “Musical experience shapes top-down auditory
mechanisms: Evidence from masking and auditory attention performance,” Hear. Res. 261, 22-29
(2010).

5D, R. Soderquist, “Frequency analysis and the critical band,” Psych. Sci. 21, 117-119 (1970).

1P A. Fine and B. C. J. Moore, “Frequency analysis and musical ability,” Music Percept. 11, 39-53
(1993).

17B. J. O’Loughlin and B. C. J. Moore, “Off-frequency listening: Effects on psychoacoustical tuning curves
obtained in simultaneous and forward masking,” J. Acoust. Soc. Am. 69, 1119-1125 (1981).

18p_J. Abbas and M. B. Sachs, “Two-tone suppression in auditory-nerve fibers: Extension of a stimulus-
response relationship,” J. Acoust. Soc. Am. 59, 112-122 (1976).

YR. V. Shannon, “Two-tone unmasking and suppression in a forward-masking situation,” J. Acoust. Soc.
Am. 59, 1460-1470 (1976).

*N. Amos and L. E. Humes, “Contribution of high frequencies to speech recognition in quiet and noise in
listeners with varying degrees of high-frequency sensorineural hearing loss,” J. Speech Lang. Hear. Res.
50, 819-834 (2007).

2IM. C. Liberman, L. W. Dodds, and S. Pierce, “Afferent and efferent innervation of the cat cochlea:
Quantitative analysis with light and electron microscopy,” J. Comp. Neurol. 301, 443-460 (1990).

22).J. Guinan, Jr., “Olivocochlear efferents: Anatomy, physiology, function, and the measurement of
efferent effects in humans,” Ear Hear. 27, 589-607 (2006).

2A. J. Oxenham, B. J. Fligor, C. R. Mason, and G. Kidd, Jr., “Informational masking and musical
training,” J. Acoust. Soc. Am. 114, 1543-1549 (2003).

24X Perrot and L. Collet, “Function and plasticity of the medial olivocochlear system in musicians: A
review,” Hear. Res. 308, 27-40 (2014).

237, de Boer, A. R. Thornton, and K. Krumbholz, “What is the role of the medial olivocochlear system in
speech-in-noise processing?,” J. Neurophysiol. 107, 1301-1312 (2012).

J. Acoust. Soc. Am. 136 (1), July 2014 Bidelman et al.: Auditory filtering in musicians EL39


http://dx.doi.org/10.1121/1.4885484

	Psychophysical auditory filter estimates reveal sharper cochlear tuning in musicians
	Recommended Citation

	s1
	n1
	s2
	s2A
	s2B
	s2B1
	s2B2
	s2B3
	s3
	f1B
	f1
	s4
	f2B
	f2
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25

