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Binary Multilevel Convolutional Codes with
Unequal Error Protection Capabilities

Robert H. Morelos-Zaragoza,Senior Member, IEEE, and Hideki Imai,Fellow, IEEE

Abstract—Binary multilevel convolutional codes (CC’s) with
unequal error protection (UEP) capabilities are studied. These
codes belong to the class of generalized concatenated (GC) codes
[1]. Binary CC’s are used as outer codes. Binary linear block
codes of short length, and selected subcodes in their two-way
subcode partition chain, are used as inner codes. Multistage
decodings are presented that use Viterbi decoders operating on
trellises with similar structure to that of the constituent binary
CC’s. Simulation results of example binary two-level CC’s are
also reported.

Index Terms—Multilevel codes, multistage decoding, punctured
convolutional codes, unequal error protection.

I. INTRODUCTION

GENERALIZED concatenated (GC) codes [1] are a pow-
erful family of error correcting codes based on multiple

outer codes, and an inner code and its partition into subcodes.
Due to their multilevel structure [2], GC codes can be designed
as unequal error protection (UEP) codes. The need for UEP
arises in communications systems where part of the source
messages are more important, or error sensitive, than others.
Specific examples include practically all digital speech and
image transmission systems.

Convolutional UEP codes based on the GC code construc-
tion are generalizations of the two-level convolutional codes
(CC’s) introduced independently by Pellizzoni and Spalvieri
[3] and by Hattori and Saitoh [4], and then studied in [5] and
[6]. Moreover, multistage decoding procedures can be devised
for convolutional UEP codes as a natural generalization of the
two-stage decoding of CC’s [3]–[6].

In [3] and [4] multilevel coset (or “superimposed”) codes
with outer CC’s are presented. In [3] two-level CC’s were
constructed and shown to offer improved error performance,
with reduced decoding complexity, compared to previously
known codes with the same number of states. A construction
using punctured convolutional (PC) codes as component codes
in the construction was proposed in [4].

In this letter it is shown that two-level CC’s based on the
construction are special cases of GC codes. This

gives binary multilevel CC’s a rich algebraic structure that
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is useful in explaining their UEP capabilities and in devising
low-complexity multistage decoding algorithms.

II. BINARY MULTILEVEL CONVOLUTIONAL CODES

As usual, let denote a binary linear block code
of length , dimension , and minimum distance The
construction of a binary multilevel CC starts with a binary

code and its two-way partition as a chain of
subcodes such that

, where, for convenience, we define

and Let denote
an binary subcode of , which is a set of coset
representatives of in , of dimension

and minimum Hamming distance Then
is the direct sum For

, let denote a rate- memory- binary
CC with minimum distance Then a binary multilevel CC

is defined as the direct sum

(1)

where denotes a product (or concatenated) code
with as outer code and as inner code, .

is a binary -level CC of rate , memory
, and minimum distance, where is

given by and

A. UEP Capabilities

Because of their structure, multilevel CC’s can be designed
as UEP CC’s. The UEP capability of a linear CC follows
from a necessary and sufficient condition for a linear code
to be a UEP code [7]:the set of minimum-weight codewords
does not span a linear UEP code. From this condition and the
definitions above, it follows that if

(2)

then those coded sequences in correspondence within-
formation bits have a Hamming distance between them of at
least In the language of UEP codes we
say that a binary multilevel CC is an -level UEP code with
separation vector

and message space

For simplicity, in this letter onlytwo-level UEP CC’s are
dealt with. It is assumed that the -component concatenated

0090–6778/98$10.00 1998 IEEE
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codes are chosen in such a way that the separation vector
is , where

,
with and

III. T WO CONSTRUCTIONS OFBINARY

MULTILEVEL CONVOLUTIONAL CODES

In this section two specific constructions of binary UEP
CC’s, based on generalized concatenation, are presented. For
simplicity, we only consider the cases where the inner block
code is of length or , and two or three binary
CC’s are used as outer codes, although other choices of
and number of component codes are possible.

A. Construction I

For , let be a rate- , memory- , and
minimum distance CC. Let be a binary block (2, 2,
1) code with generator matrix

(3)

so that and Then it follows
from the results of Section II that the code

is a two-level CC of rate , memory
, and minimum distance

Suppose that Then it follows from (2) that
is a two-level UEP CCwith separation vector
and message space

Note that two-level CC’s constructed in this fashion are, in
fact, equivalent to -constructed codes.

Example 1: Let be a CC of rate 1/4, memory 2, and
minimum distance 10 (from [9, Table A.5]). Let be a PC
code of rate 3/4, memory 3, and minimum distance 4 (from [9,
Table A.8]). Construction I results in a two-level CC of
rate 4/8, memory 5, and minimum distance 8. From condition
(2), it follows that is a two-level UEP CCwith separation
vector and message space Also,
note that the minimum distance of the best rate-1/2 memory-3
CC is equal to 8.

A Two-Stage Decoding Procedure:For practical applica-
tions, in order to reduce the complexity of Viterbi decoding
(at the expense of an increased error coefficient or degradation
in coding gain [3], [6]), suboptimal two-stage decoding
(TSD) may be adopted. Coded bits are Binary phase-shift
keying (BPSK)-modulated and transmitted over an additive
white Gaussian noise (AWGN) channel. The following TSD
procedure is considered.

Stage 1: A decoder for a CC is used in this
stage, where

The trellis structure of code is isomorphic (up to
connections between states) to that of the trellisof the first-
level code The only difference between
and is that contains two parallel subbranches per original
two-bit symbol in a branch of That is, {00, 11} (resp. {01,
10}) for 00 (resp. 01). Once an information sequence is
decoded in this first stage, the most important bits (MIB’s)
are recovered. Sequence is then reencoded by to obtain
a coded sequence From this sequence, a modified received
sequence is obtained, where , and passed on
to the second stage.

Stage 2: Using a trellis for the second component code
, the modified received sequenceis decoded and the

less important bits (LIB’s) extracted.
Note that iterative decoding may be used, as proposed in [8].

Also, it is possible to use two-stage decoding with interleaving
[6].

B. Construction II

In this section a new construction method that combines
three CC’s is presented. For , let be a rate-

, memory- , and minimum distance CC. Let
be a binary block (3, 3, 1) code with generator matrix

(4)

and subcodes , , and
Then it follows from the results of Section

II that the code

is a CC of rate , memory
, and minimum distance

This construction is a permuted version of a “
construction.”

Suppose that and Then, from
condition (2), is a two-level UEP CCwith separation
vector and message space

A Three-Stage Decoding Procedure:A decoding procedure
for codes obtained from Contruction II is similar to the two-
stage decoder in the previous section—decoding proceeds in
three stages, passing decoded information from one stage
to the next, with Viterbi decoders for codes , , and

, where
with , and

with

IV. TABLES OF CODES

By means of a computer search, good binary two-level
CC’s were found based on the construction methods presented
in the previous section. The goal of the search was to find
codes with minimum multistage decoding complexity (number
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TABLE I
PARAMETERS OF THECOMPONENT CODES OFBEST TWO-LEVEL CC’S OBTAINED

IN THE COMPUTER SEARCH. EACH ROW LISTS THE PARAMETERS OF A

MEMORY-m, RATE-k=n, AND FREE DISTANCE df CC. LABELS Gi:j REFER TO

PC CODES.Ci AND Di REFER TORATE-1/3 AND RATE-1/4 CODES, RESPECTIVELY

TABLE II
TWO-LEVEL CC’S OBTAINED FROM CONSTRUCTION I

of additions and comparisons in a Viterbi decoder). The
search was performed using the parameters (rate, memory, and
minimum distance) of codes from tables of best convolutional
and PC codes [9].

Table I shows the parameters of memory-rate- CC’s
found in the search to be components of the best codes.
The notation used in Table I is as follows: denotes the
free distance, is the path multiplicity, or number of code
sequences at distance, is the polynomial generator matrix
of the code, with polynomials represented as octal numbers,
and is the puncturing matrix, in the case of a PC code.

Tables II and III list the parameters of codes found in
the search. For simplicity, in the three-level constructions the
component first- and second-level CC’s were chosen such
that in order to obtaintwo-level UEP codes.
In addition, all of the binary component codes were selected
to have equal number of output bits, i.e., or

TABLE III
TWO-LEVEL CC’S OBTAINED FROM CONSTRUCTION II

Fig. 1. Error performance of code S1: MLD and TSD of the MIB’s and
LIB’s.

Fig. 2. Error performance of code S3: MLD and TSD of the MIB’s and
LIB’s.

V. COMPUTER SIMULATION RESULTS

To illustrate the error performance of binary multilevel
CC’s, two codes from Construction I were simulated. In Figs.
1 and 2, MIB-MLD and LIB-MLD are used to denote the bit-
error rates of the MIB’s and LIB’s, with maximum-likelihood
decoding (MLD), respectively. Similarly, MIB-TSD and LIB-
TSD refer to the bit-error rates with TSD.

The label S1 denotes the example code presented in Section
III-A. The code labeled S3 is obtained from code S1 by
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replacing the rate-1/4 component code D1 of Table I by a
more powerful rate-1/4 code D3. It can be seen from Figs. 1
and 2 that the performance of the MIB with MLD improves
drastically when increasing the number of states from code S1
to code S3 (component code D3 needs 16 states as opposed
to four states of D1). The improvement in performance for
the MIB is gained by, in addition to increasing the number of
states, reducing the coding gain for the LIB. A discussion of
the effect of error coefficients in two-stage decoding can be
found in [6] and is not addressed here.
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