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Spanning the Complexity Chasm: A Research Approach to Move from Simple to 

Complex Engineering Systems 

Abstract 

This paper presents a multi-study approach that allows design thinking of complex systems to be 

studied by triangulating causal controlled lab findings with coded data from more complex products. A 

case-study illustration of this approach is presented here. During the conceptual design of engineering 

systems, designers face many cognitive challenges including design fixation, errors in their mental 

models and the Sunk Cost Effect. These factors need to be mitigated for the generation of effective ideas. 

Understanding the effects of these challenges in a realistic and complex engineering system is especially 

difficult due to a variety of factors influencing the results. Studying the design of such systems in a 

controlled environment is extremely challenging due to the scale and complexity of such systems and the 

time needed to design the systems. Considering said challenges, this paper presents a mixed method 

approach for studying the design thinking of complex engineering systems. This approach includes a 

controlled experiment with a simple system and a qualitative cognitive-artifacts study on more complex 

engineering systems followed by the triangulation of results. The triangulated results provide more 

generalizable information for complex system design thinking. This method combines the advantages of 

quantitative and qualitative study methods, making them more powerful while studying complex 

engineering systems. This paper illustrates the proposed method further using an illustrative study on the 

cognitive effects of physical models during the design of engineering systems. 

Keywords: Cognitive-artifact Study, Complex Systems, Conceptual Design, Physical Models, Mixed 

Methods 

 

 



Viswanathan & Linsey  3 

Introduction 

Ultimately, engineering design science must provide new knowledge applicable to the highly 

complex problems faced by practicing engineers. Research methods to effectively address this need must 

be developed.  Much work has been completed with lab experiments and simple design problems 

requiring at most a few hours (Jansson & Smith, 1991; Linsey et al., 2011; Purcell & Gero, 1992; 

Viswanathan & Linsey, 2013a; Viswanathan & Linsey, 2012).  These studies are highly effective for 

studying cognitive mechanism and showing causality, but may not fully address effects with greater 

complexity and longer time scales.  This paper illustrates an approach which leverages highly controlled 

lab experiments to demonstrate causality and then demonstrates that the results also describe more 

complex systems by triangulating said results with those from a qualitative cognitive-artifacts study. 

Engineering design involves many steps beginning with customer needs understanding and 

ending with the actual production or manufacturing of the system (Otto & Wood, 2001; Pahl & Beitz, 

2003). This process plays a crucial role in the development of innovative and creative products. Highly 

innovative products are more likely to succeed in the current competitive market (Saunders et al., 2009). 

Thus, generation of novel and creative concepts for design problems during the conceptual design phase 

is very important. There are many factors influencing the generation of novel ideas in conceptual design. 

Some of the cognitive factors affecting this process are the errors in designers’ mental models, design 

fixation and Sunk Cost Effect. In order to improve the design of any engineering system, it is essential to 

understand and mitigate these challenges.  

 As engineering systems become more complex and large, studying their designs using traditional 

methods become increasingly difficult (Collaborations, 2005). During the conceptual design of such 

systems, designers need to consider a variety of factors simultaneously. This complexity increases if the 

system is multi-disciplinary, as its design requires knowledge from multiple domains. Studying the effects 

of individual factors in a laboratory setting is extremely difficult due to the presence of other influencing 
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factors in the system. Even if many factors are controlled in a laboratory experiment to study the effects 

of a few, these effects may be different in a realistic setting due to the interaction of various factors. This 

makes it necessary to study the design of such systems in realistic settings. This paper presents a 

qualitative cognitive-artifacts analysis approach to study the design cognition of complex engineering 

systems and map those results to a controlled experiment (Viswanathan & Linsey, 2013b) outcomes 

obtaining more robust insights. 

In the subsequent sections of this paper, the authors discuss the proposed mixed method approach 

along with an illustrative study. Said study deals with physical prototypes as tools of design cognition. An 

overview of the controlled study exploring the cognitive effects of physical prototypes is included 

followed by the details of the qualitative protocol study on realistic and complicated engineering systems. 

The study dataset includes award-winning innovative products and the designs by graduate design teams. 

Finally, the results from the qualitative protocol are discussed in triangulation with those from the 

controlled study to generalize them across various levels of complexity. 

Background 

Design researchers employ a variety of methods to understand the design process and develop 

new tools to aid the process. Overall, these methods can be classified into two: real-time data collection 

methods and retrospective data collection methods. The real-time data collection methods include 

controlled experiments (e.g., Chrysikou & Weisberg, 2005; e.g., Jansson & Smith, 1991; Purcell & Gero, 

1996; Shah et al., 2000; Tseng et al., 2008; Youmans, 2011), protocol studies (e.g., Atman et al., 2007; 

Chakrabarti et al., 2004; Dorst & Cross, 2001; Gero & Mc Neill, 1998), interviews of designers (e.g., 

Paton & Dorst, 2011; Petre, 2004) and observational studies (e.g., Christensen & Schunn, 2005; Horton & 

Radcliffe, 1995; Kiriyama & Yamamoto, 1998; Ward et al., 1995).  In retrospective data collection 

methods, data are not specifically collected for the purpose of investigation. Cognitive-historical analysis 

(e.g., Altshuller et al., 1997; Altshuller, 1984; Aurigemma et al., 2013; Kurtoglu et al., 2009; Nersessian, 

1995) is an example for a retrospective data collection method. Depending on the research question and 
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the type of data available, the same method can be real-time or retrospective (e.g., interview data 

collected previously for one purpose can be analyzed later for an entirely different purpose). While each 

method possesses its own advantages and disadvantages, mixed method approaches present an 

opportunity to combine these advantages and offset some of the disadvantages of individual methods. In 

this paper, a mixed method approach combining controlled and cognitive-artifacts analysis methods is 

introduced that can be very powerful in studying designs of complex systems. The following subsections 

explain the advantages of individual methods and the proposed mixed methods approach. 

Controlled Experiments 

Controlled experiments are generally carefully designed to minimize the effects of variables other 

than the ones under consideration (Ott & Longnecker, 2008; Tabachnick & Fidell, 2007). Typically, a 

controlled experiment is conducted to investigate the effect of the manipulation of one or more variable(s) 

(independent) on another (dependent). They are generally characterized by the manipulation of one or 

more factors while controlling others and careful data collection on the manipulated factors (Kirk, 1982). 

Carefully designed controlled experiments are very powerful in understanding the factors influencing the 

design of engineering systems. The generally provide causal explanations and the results from them are 

often generalizable (Cagan et al., 2013). Controlled design experiments have been  extensively and 

successfully used to study cognitive design thinking (Chrysikou & Weisberg, 2005; Jansson & Smith, 

1991; Purcell & Gero, 1996; Shah et al., 2000; Tseng et al., 2008; Yang, 2005; Youmans, 2011). 

However, when the systems become more complex, it becomes difficult to study them in a controlled 

environment. This is essentially due to the scale of such systems and the longer time required for 

designing such systems. In addition, such systems include many interacting components that require their 

own design process. Studying the designs of such smaller individual components is not sufficient either, 

as they may behave differently while interacting with other components. Thus a more powerful way is 

required to study the factors influencing the designs of such systems. 
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Cognitive-Artifacts Analysis Method 

A very interesting way to study the design process retrospectively is the cognitive-historical 

analysis method (Aurigemma et al., 2013; Nersessian, 1995) that studies the cognitive history.  Cognitive 

history can be any artifacts that the designers create during the design process. These artifacts can include 

prototypes, end products, design reports, publications, grant proposals, laboratory notebooks, patents and 

a variety of other sources that record or communicate the design process. Often, such studies are 

explorative in nature and they help to generate hypotheses that can be investigated further.  Sometimes, 

researchers have specific research questions in mind and they create specific data collection tools 

beforehand to obtain information during the design process. Often, these tools (such as templates, 

surveys, questionnaires etc. which target some specific aspects of the whole design process) are 

purposefully created before the study in order to collect specific data. In this paper, we call the approach 

of studying cognitive-history and other (often purposefully pre-created) design artifacts as “cognitive-

artifacts analysis.” Pre-created cognitive artifacts often provide very valuable and targeted information in 

addition to the data available from cognitive history, which makes it a very powerful research method. In 

addition to being explorative (as in cognitive-historical analysis), cognitive artifacts studies can be helpful 

in investigating specific hypotheses with carefully designed artifacts. The qualitative study of cognitive 

artifacts often leads to useful insights and sometimes powerful design methods, though many of them do 

not follow a structured study approach. For example, the Theory of Inventive Problem Solving 

(TIPS/TRIZ) was developed by Altshuller (Altshuller, 1984; Sushkov et al., 1995) based on the patterns 

that exist in patent claims. The creation of component basis was done by the dissection and analysis of a 

variety of products (Kurtoglu et al., 2009). Hannah et al. (2008) developed a taxonomy for classifying 

prototypes based on the analysis of literature in design and product development. Recently, analyzing 

text-based reports on risk issues archived in a large engineering design organization, Hsiao et al. (2013) 

developed a quantitative understanding on the project risk and risk mitigating actions. In summary, 

cognitive history provides a very rich data source for studying the design process. While none of these 
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authors directly reference formal qualitative analysis techniques such as the one prescribed by Auerbach 

and Silverstein (2003), the scientific approaches followed by these studies are also consistent with that 

structured approach. 

Mixed Method Approach 

Mixed method approaches combine qualitative and quantitative methodologies for the purpose of 

a broader understanding (Creswell & Clark, 2007).  Both quantitative and qualitative research methods 

possess their own advantages and disadvantages. Mixed method approaches combine the strengths and 

offset the drawbacks of each (Creswell & Clark, 2007; Tashakkori & Teddlie, 1998). Due to this, mixed 

method approaches are very powerful in understanding the design process in a greater and broader sense.  

Though these kinds of approaches are very popular in educational research (e.g., Abildso et al., 2010; 

Creamer & Ghoston, 2013; Crede & Borrego, 2013), very few researchers utilize them for understanding 

the design process. A very recent study by Aurigemma et al. (2013) uses a novel combination of 

ethnographic studies and cognitive-historical analysis to study various representations and artifacts 

employed in the iterative development of a lab-on-a-chip device. In a similar way, Westmoreland (2012) 

uses a mixed method approach to understand cognitive patterns in the design process by examining 

design journals by students. 

While controlled experiments are powerful for demonstrating causality, the complexity of an 

engineering system can force researchers to think of alternate approaches. Cognitive-artifacts analysis is 

one of  the effective methods for studying the design of such systems. However, since the cognitive 

history artifacts contain information recorded by subjects, the results from these types of studies can be 

biased. In addition, observational approaches like this cannot determine causality. These issues 

necessitate a better method to study design of complex engineering systems. In the next section, a mixed 

method approach combining the benefits of both controlled and cognitive-artifacts studies is proposed. 

Further, this method is elaborated with an illustrative study. 
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Method to Understand Design Thinking in Complex Engineering Systems 

Though controlled experiments provide unique opportunities to understand causality, the time and 

resource investment required for their design of complex engineering systems is very large, making them 

impossible to study in a laboratory setting. Again, it is not easy to control different parameters in the 

design of a complex system, typically. Hence, the effect of a particular treatment may be influenced by a 

number of factors, making the interpretation of the results difficult. In this scenario, qualitative studies on 

artifacts produced during the design process are more useful. However, many times such studies include 

self-reported data and historical accounts, making their results less reliable, especially while dealing with 

systems that have already been designed. Considering all these factors, the authors propose a mixed 

method approach to derive accurate insights about the design thinking of complex engineering systems. 

The proposed method involves one or more controlled experiment(s) with relatively simple 

system(s), a cognitive-artifacts analysis with more complex systems and then the triangulation of the 

results. Figure 1 shows the steps to be followed in this approach. In both types of studies, the same set of 

hypotheses is investigated. The formulation of these hypotheses based on background literature is the first 

step in the mixed-method approach. Once this step is complete, the design of simple systems can be 

studied effectively using a controlled approach whereas the cognitive-artifacts method is more effective in 

studying the complex systems. By conducting these two simultaneously and triangulating the results from 

both, useful insights can be generalized across various levels of complexity. 

Approximate position of Figure 1. 

In the controlled experiment design, the first step is the identification of simple system(s) to be 

studied. These systems need to be selected carefully such that the variables under consideration can be 

varied effectively without being affected by other noise variables. Once the system is selected, in order to 

investigate the hypotheses, the metrics that can be measured on the system, need to be chosen. In a 

controlled experiment, often these metrics can be independent of each other. In many cases, it is required 
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to restate the same hypotheses in terms of the metrics for evaluation. The availability of discrete measures 

for controlled experiments often makes this step necessary. Once the hypotheses are finalized, the 

experimental conditions need to be designed and conducted. This is followed by the interpretation of the 

results for the simple system(s). 

In the case of cognitive-artifacts study, the determination of aspects to be measured is not very 

straight-forward. In practical situations, the metrics are often inter-related and difficult to measure 

separately.  Hence they need to be measured and interpreted simultaneously. The next step involves the 

identification of sources of data. In order to measure the metrics consistently, it may be necessary to 

formulate some inclusion/exclusion criteria and filter the sources using those. The sources of data can be 

any of the design artifacts produced during the design process including reports, patents, other technical 

documents or audio/video recordings. Once the data set is finalized, a coding scheme needs to be 

specified based on the metrics for measurement. In order to reduce any subjectivity in these coding 

schemes, inter-rater reliability measures can be employed. This involves formulation of coding schemes 

by multiple raters and calculating measures of inter-rater reliability between them (Clark-Carter, 1997). 

Once the coding scheme is finalized, the data can be classified using that scheme to various categories. 

This step also requires inter-rater reliability measures. The final step is the quantification of the data from 

the qualitative studies. In general, qualitative studies are employed as hypothesis-forming explorative 

studies. However, in this mixed methods approach, these studies are used for the investigation of pre-

formed hypotheses. To facilitate this investigation and the further triangulation with the quantitative 

study, it is essential to quantify and interpret the results of the qualitative study.  

The results from controlled and cognitive-artifacts analysis studies provide insights about the 

influence of factors being investigated at the respective levels of complexity. In order to obtain more 

robust results that are applicable across various levels of complexity, it is necessary to triangulate and 

interpret these results. Often, these two types of studies use different metrics to investigate the 

hypotheses. In such cases, the hypotheses need to be interpreted in terms of these metrics before the 
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triangulation. If the results for the hypotheses agree across the two levels of complexity, it can be argued 

that the same are likely to be true for other levels of complexity too. If they do not agree, then the reason 

for disagreement needs to be deducted based on the results and explored with further work. 

In summary, the approach proposed in this paper combines the advantages of controlled 

experiments and qualitative studies to form a mixed method approach. Typically mixed method 

approaches involve qualitative and quantitative studies along with the mixing of the results from those to 

infer common trends revealed by both (Creswell & Clark, 2007; Johnson & Onwuegbuzie, 2004; 

McMillan & Schumacher, 2014). Mixed method approaches have been successfully implemented by 

engineering design researchers before  (Design learning: Atman et al., 2008; e.g., Design optimization: Fu 

et al., 1991). While the concept of applying mixed methods for research in engineering design is not 

novel, this paper provides a systematic framework to apply such an approach to study complex 

engineering systems. 

This mixed method approach is illustrated in detail using a study in the further sections of the 

paper. Case studies are used widely in various fields including design as a research method (Sheldon, 

2006; Teegavarapu & Summers, 2008). It is a very useful method for systematically illustrating the 

procedures to be followed in a new research method. The presented study follows the procedure 

illustrated in Figure 1. While dealing with a different problem, steps can be added or skipped from this 

procedure. The procedure outlined in Figure 1 is intended to act as a general guideline for conducting 

studies comparing systems with varying levels of complexity. 

Illustration of the Approach 

The study employed in this paper deals with the cognitive effects of physical models. Physical 

models refer to prototypes of varying scales and complexity that are created by designers at the various 

stages of engineering design process (Lidwell et al., 2003).  In engineering design, such models serve a 

variety of roles. They help designers in externalizing ideas thereby reducing their cognitive load (McKim, 
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1972). Since designers possess very limited internal representation capacity (Fish, 2004), this function of 

physical models is of great importance, especially while dealing with complex engineering systems. In a 

team setting, physical models act as mediums of shared cognition and help enhance communication 

between the team members (Lemons et al., 2010). They also act as boundary objects that help 

communication across the boundaries of multi-disciplinary teams (Carlile, 2002). In an industry setting, 

physical models assist in the detection of critical errors before too many resources are put into the 

production (Kelley, 2001; Ward et al., 1995). 

Background: Cognitive Effects of Physical Models 

From a cognitive view point, physical models have the power to reduce the faults in ideas 

generated by designers. Often, these faults arise from the incomplete and erroneous mental models of the 

designers, where a mental model refers to the internal representation of a designer about a physical 

system (Gentner & Stevens, 1983). Psychology literature shows that  designers’ mental models can be 

surprisingly erroneous, unless they have extensive training on such systems (Hutchins & Lintern, 1995; 

Kempton, 1986). For example, Kempton (1986) points out that many people operate home heating 

thermostat similar to a car’s accelerator: the higher the temperature, the faster the rate of heating. In 

actuality, the rate of heating is constant regardless of the temperature setting. The errors in the mental 

models of designers are often reflect in their sketched ideas, as sketching is the easiest medium of 

externalizing mental models (Goldschmidt, 2007). However, when they build and test the physical 

models of such ideas, they recognize the faults and gradually get rid of them, leading to ideas with 

improved functionality (Viswanathan et al., 2012; Viswanathan & Linsey, 2012). This argument is 

investigated further in this study. 

An important argument in design cognition research is that the use of physical models in early 

conceptual design may lead to design fixation. Cognitive psychology and engineering design literature 

show that while generating ideas for design problems, designers tend to copy features from a presented 
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example or systems they are familiar with (Chrysikou & Weisberg, 2005; Jansson & Smith, 1991; Linsey 

et al., 2010; Purcell & Gero, 1996; Viswanathan & Linsey, 2013a). This phenomenon is referred to as 

"design fixation" (Jansson & Smith, 1991). In a concept generation task, where a wide variety of novel 

ideas are sought, design fixation limits the searchable solution space and causes a major disadvantage. 

Based on the observational studies of student projects on complex engineering and architectural systems, 

Kiriyama and Yamamoto argue that building physical models can cause design fixation (Kiriyama & 

Yamamoto, 1998). However, a recent controlled study with a very simple design task fails to demonstrate 

fixation while building (Youmans, 2011). Based on these conflicting results, it may be argued that design 

fixation while building physical models is influenced by some other factors such as the complexity of the 

design problem.  

These differences in the results for the observational and controlled studies can be potentially 

explained using the theory of Sunk Cost Effect (SCE) from behavioral economics (Arkes & Blumer, 

1985; Kahneman & Tversky, 1979). According to this theory, once significant resources are put into a 

path of action, one tends to stick to that path in spite of understanding the benefits of choosing an 

alternate path (Arkes & Blumer, 1985). This type of irrational approach is not advisable in economic 

decision making where decisions need to be based on the future benefits rather than the cost sunk 

(Holcomb & Evans, 1987; Keeney & Raiffa, 1993). In engineering design, the resources can be money, 

time or effort. If this theory is true in design cognition with physical models, once designers invest 

significant resources into one idea, they will hesitate to move on to another one. In case of simple designs, 

the amount of resources put in will be less. As the complexity of the system increases, the resources 

required to build physical models increases, increasing the SCE. This will constrain designers from 

thinking about radically different ideas, affecting the novelty and variety of ideas. According to this 

argument, the design fixation observed in the prior studies with physical models is not necessarily 

inherent in the building process; but is caused by the SCE. This argument is also investigated further in 

this illustrative study. 



Viswanathan & Linsey  13 

Hypotheses 

Based on the arguments presented above, the following general hypotheses are investigated in 

this paper.  

Mental Models Hypothesis: Physical models supplement designers’ erroneous mental models leading 

them to more functional ideas 

Sunk Cost Hypothesis: As the sunk cost associated with the design of a system increases, the chances of 

design fixation also increases. 

Corresponding to the above mentioned hypotheses, the counter-hypotheses/patterns are also 

derived. These represent the trends the data shows when the hypotheses are not true. If the Mental Model 

Hypothesis is not true, physical models do not provide any additional advantage to designer, since they do 

not supplement designers’ erroneous mental models. In that scenario, designers create the same number of 

functional ideas regardless of the building process. Similarly, if the Sunk Cost Hypothesis is not true, the 

amount of fixation remains the same regardless of the sunk cost associated with the materials for building. 

In other words, the amount of fixation does not depend on the resources that the designers spend on a 

particular design. 

Controlled Study (Viswanathan & Linsey, 2013b) 

In order to understand the design thinking while building and testing physical models, the first 

step is to conduct controlled studies with simple systems. In general, controlled studies have time and 

space constraints. Hence it is essential for one to carefully choose the simple system for the study. In this 

illustrative study, the authors chose a paperclip design problem. A paperclip is a very simple system that 

can be easily built in a laboratory using very simple materials and tools; yet it can have many variations 

allowing suitable amount of time for concept generation. The specific problem instructed participants to 

generate as many ideas as possible to bind ten sheets of paper together without damaging them. This 
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section provides a summary of the controlled study conducted with the paperclip design problem. A more 

detailed discussion and the results of this study are available elsewhere (Viswanathan & Linsey, 2013b).  

In a controlled experiment setting, it is possible to separate out variables and study those using 

measures that are independent of each other. In this controlled experiment, the effects of physical models 

on designers’ mental models are studied using the percentage of functional ideas, where a functional idea 

is the one satisfying all the problem requirements and constraints. It is assumed that many errors in 

paperclip designs are caused by the participants’ erroneous mental models. As physical prototypes 

supplement these mental models, participants rectify said errors which lead them to a higher percentage of 

functional ideas. The percentage of functional ideas is calculated as the ratio of number of functional 

ideas to the total number of ideas generated by a participant. The extent of design fixation is measured 

using novelty and variety metrics (Linsey et al., 2011; Nelson et al., 2009; Shah et al., 2003a). Novelty 

measures the uniqueness of an idea compared to the previous ideas whereas variety measures the span of 

the total solution space covered by the participant’s ideas. For this controlled study, the hypotheses are 

modified using the outcome measures and are stated below: 

Mental Models Hypothesis (for the controlled experiment): Physical models supplement designers’ 

erroneous mental models leading them to more functional ideas measured as a higher percentage of 

functional models. 

Sunk Cost Hypothesis (for the controlled experiment): As the sunk cost associated with physical modeling 

increases, the chances of design fixation also increases indicated by the novelty and variety of generated 

ideas decreasing. 

In order to investigate the hypotheses, the controlled experiment utilized five experimental 

conditions: (1) Sketching Only: In this condition, participants only sketched their ideas; (2) Metal 

Building: In this, participants sketched their ideas and built them using steel wire before sketching the 

next idea. The participants were provided with steel wire and tools necessary to work with steel wire in 
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this condition. They were required to sketch one idea, build its prototype and then proceed to the sketch of 

the next idea; (3) Plastic Building: This condition was similar to the Metal Building, except that the 

participants built their ideas out of plastic. The participants were given with easily formable plastic with 

necessary arrangements to create molds and shape plastic. The plastic building took significantly more 

time than metal building and effectively the sunk cost associated with plastic building was significantly 

higher; (4) Metal Constrained Sketching: In this condition, the participants were given a training to build 

their ideas out of metal wire and with the knowledge of associated constraints, they were asked to sketch 

their ideas; (5) Plastic Constrained Sketching: This condition was similar to the Metal Constrained 

Sketching, except that the participants were given the training on building with plastic. The last two 

conditions were aiming to identify any effects of implicit constraints imposed by the building materials 

and tools on participants’ design cognition.  

The results showed that when designers built physical models of their ideas, they generated a 

higher percentage of functional ideas whereas the Plastic Building Condition had ideas with less novelty 

and variety compared to the Metal Building. The increase in the percentage of functional ideas while 

using physical models provided support for the Mental Models Hypothesis (for the controlled 

experiment). This showed that the use of physical models provided the designers instant feedbacks about 

their designs and supplemented their erroneous mental models, leading them to a higher percentage of 

functional ideas. At the same time, the reduced novelty and variety in Plastic Building compared to the 

Metal Building supported the Sunk Cost Hypothesis (for the controlled experiment). Building paperclips 

with plastic required a larger investment of time, increasing the sunk cost associated with that process. 

This led the participants in the plastic building groups to experience more fixation compared to those in 

the metal building groups where the sunk costs were lower.  For a more detailed discussion of the results, 

please refer to (Viswanathan & Linsey, 2013b). These results also indicate that while studying design 

cognition in more complex systems with higher associated cost, sunk cost is an important factor to 

consider. 
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Qualitative Cognitive-Artifacts Study 

Determining Aspects to be measured 

To evaluate the hypotheses in more realistic and complex design situations, a qualitative 

cognitive-artifacts study approach is used. Unlike a controlled experiment setting, the effects of physical 

models on designers’ mental models and design fixation on the outcome cannot be measured 

independently, in realistic situations. Therefore, it is difficult to find metrics that can capture these effects 

independently. To address this issue, two metrics are developed to infer these effects. The hypotheses are 

then evaluated by measuring the two metrics simultaneously. The two metrics used in this study are: (1) 

the number of changes during the modeling stage which result in improvements to the ideas, measured as 

a fraction of total number of changes and (2) frequency of changes to the features that are being tested. 

Table 1 provides the relation between the outcomes of these metrics and the hypotheses being 

investigated in this study.  In general, the errors in designers’ mental models are reflected in their first 

prototype. However, according to the Mental Models Hypothesis, during the testing of these preliminary 

prototypes, they recognize said errors and make design changes to avoid the errors further in their model. 

Effectively, such changes improve the idea. On the other hand, many productive changes during building 

of prototypes are resulting from the correction of errors in designers’ mental models. Hence the frequency 

of these productive changes can show if physical prototypes can supplement designers’ mental models.  

Similarly, when design fixation is present, designers tend to stick with a concept until a test reveals an 

error with the concept. Otherwise, if they are not fixated, they frequently make changes to their concepts 

without making a strong commitment to a single concept. Hence the relative frequency of changes 

originating from tests and occurring randomly can indicate the presence of fixation in the design process. 

However, these effects are not independent of each other. For example, if the changes at the preliminary 

stages of a design concept do not improve the idea, the designers may be reluctant to make further 
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changes. This dependency between the measures makes it difficult to measure them independently. An 

illustration showing the factors leading to the expected results in each case is shown in Table 2.   

Approximate position of Tables 1 and 2. 

For example, consider case 1 in the table. In this case, the changes in the ideas cause 

improvement in a significantly higher number of cases and the features being tested change more 

frequently than those not being tested. This case indicates that physical models supplement designers’ 

mental models and lead to design fixation. Similarly, if most changes result in improvements and the 

frequencies of both tested and not tested changes are similar, design fixation is absent and designers’ 

mental models are supplemented (Case 3). Only these two cases are of interest in light of the presented 

hypotheses and the results from the controlled study (Viswanathan & Linsey, 2009; Viswanathan & 

Linsey, 2010). Cases 2 and 4 are indistinguishable using the current metrics, but they are not of interest. 

In the cases presented, case 1 represents the trend shown by data when both the hypotheses are true. The 

other cases represent possible counter-patterns in the data.  

To clarify the coding procedure, consider the example shown in Figure 2 (this is not a data point 

from the actual data reported in this paper). The image on the left hand side shows a proof-of-concept 

model for a human-powered cocoa grinding machine. This machine uses a ball-mill concept as shown in 

the figure. The cocoa nibs are mixed with steel ball and placed inside a rotating drum. As the drum 

rotates, the balls are carried by the friction with the inner surface of the drum and falls down from a 

certain height, powdering the cocoa nibs on impact. During the building of the proof-of-concept model, 

the designers observe that the balls are not carried to a height sufficient to grind cocoa nibs. In order to 

solve this issue, steel fins are added to the inner surface of the drum. These fins carry balls to the required 

height and allow them to fall afterwards. However, designers think that holes on the fins can be useful to 

allow the already powdered nibs to escape; hence holes are added to the fins. Figure 2 shows the design 

changes. The coded changes are shown in Table 3. 
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Approximate position of Figure 2 & Table 3. 

Identification of Data Sources 

Two data sources are used for this qualitative cognitive-artifacts study: data reported in books 

about the development of award winning novel products and the data from industry-sponsored projects. 

All the products studied here are much more complex than the paperclip design. The industry-sponsored 

projects featured many products for oil and gas industry and presented complicated design challenges to 

the student designers. More details about these data sources and the procedure followed are given in the 

sections below. 

Award-winning Products Data 

Books reporting the development stages of award-winning novel products acted as a data source 

for this qualitative study (Haller & Cullen, 2004; IDSA, 2003) . The books considered for this study 

reported the development cases of such products based on the experiences of original developers and thus 

served as good sources of cognitive history. Award-winning products were considered for this study as 

they represented highly innovative and successful market products. The selection of such products 

enabled the identification of the similarities in the design thinking behind capstone design projects and 

successful market products. Over 30 award winning products were identified at the beginning of this 

study and ten were selected after filtration through study criteria. Figure 3 shows the procedure followed 

for the selection of final products used. The major criteria for the selection were that the developers used 

physical or virtual modeling as a tool for their design and they reported the changes they made during the 

modeling stage. Most of the products selected were honored by the Industrial Design Excellence (IDEA) 

award by Business Week magazine, showing that they are very innovative ones. The products used for 

analysis were the OJex Manual Citrus Juicer, the BMW StreetCarver, Cachet Chair, Ekco Clip ‘n’ Stay, 

Watercone, Water Gate, OXO Bottle Stopper/Opener, Scorpio 270, Over Flowing Bath, and Burton Ion 

Snowboard Boot. 
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Approximate position of Figure 3. 

 

Industry-Sponsored Projects Data 

The industry-sponsored project data were collected from graduate design teams generating 

concepts for their design projects as a part of the Advanced Product Design course taught by one of the 

authors at Texas A&M University. This course covered the basic product design procedure with a focus 

on creativity and innovation. The students in this course were divided into teams of one to four and each 

team was assigned a project. The majority of those were industry-sponsored or humanitarian design 

projects. The human-powered cocoa grinding machine is an example of a typical humanitarian design 

project (this project is not included in the current analysis as one of the authors was involved in the 

project). Details of the specific problems are not reported in this paper. The teams completed all parts of 

preliminary design including customer needs collection, technical specifications, functional modeling, 

concept generation and down-selection of concepts. Towards the end of the semester, the design teams 

were required to build proof-of-concept models. These models were expected to test their concepts and 

any changes at this stage were expected to evolve the concept. So most of the changes at this stage were 

expected to evolve their final concepts, they were not expected to explore further concepts. The teams 

were required to submit three reports covering the details of their designs and process. The data were 

collected from the teams using specially designed templates and from their final reports. The teams were 

asked to report all the changes they made to their ideas in the proof-of-concept stage. The majority of the 

proof-of-concept models were physical models and the rest were virtual models done in SolidWorks.  

The data reported in this paper were collected over two semesters. There were a total of five 

design teams in the first semester and seven in the second. The data from two teams in the second 

semester were not considered for analysis because they did not use any physical or virtual modeling. For 

the first semester, the data were collected mainly from the final design reports. Specially designed 
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templates (submitted as a homework assignment) were provided to each team which required reporting of 

the features they measured, the associated physical principles, the methods they used for testing, any 

changes they made during the building and alternative changes they could think of, if any. The templates 

were designed to enable direct reporting of the changes made during the building process and are called 

Design Artifact Research Templates (DARTs) further in this paper. During the first semester of data 

collection, the teams failed to correctly fill in the DARTs provided. Hence most of the data were collected 

directly from the final reports, rather than the DARTs. These DARTs were revised based on the feedback 

from the first semester and reused in the second semester.  

The revised DARTs collected the same data, but the questions were re-arranged to make them 

clearer to students. Figure 4 shows the layout of the final DARTs. These templates had face validity as 

they collected data directly from the designers during the design process and provided very rich data on 

the changes made by the teams during prototyping. In addition, they also captured document sketches, 

pictures of prototypes and evaluation plans including experimentation as additional attachments. In the 

second semester, any data missing from the DARTs were collected from the final reports. For the purpose 

of filling these templates, any deviation from the final selected concepts of teams was considered as a 

“change” and the students were required to document all such changes in DARTs. Under “features tested” 

and “tests used” columns (Figure 5), the students were asked to report the events that led to that specific 

change. To illustrate the completion of DART templates by students, a change during the development of 

the manual cocoa-grinding machine (shown in Figure 2) and a portion of the DARTs filled with the same 

is shown in Figure 5 (only the post-testing portion is shown as the product was already designed). Since 

the quality of the template used varied across the two semesters, it could bias the data. However, any 

missing data were added from the final reports to bridge this gap.  

Approximate position of Figure 4. 
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The student teams completing their design project as a part of the course were asked to submit 

DART templates as homework assignments. The pre-testing templates were required to be submitted 

during the prototype planning stage and the post-testing templates were submitted after the final testing 

on the prototypes. When the assignments were announced in the class, the instructor showed an example 

for filling the templates (using one of the projects from the previous semester). After the pre-prototyping 

templates were submitted, the instructor provided her feedback on those plans to the teams. In addition to 

the data collection, these templates served as an efficient way of documenting the prototyping progress; 

hence the students were asked to include those in their reports too. These homework assignments were 

graded by the instructor.  

Determination of Coding Procedure 

Once the aspects to be measured were identified and the data were collected, the next step was to 

determine a relevant coding scheme. The coding scheme for this study was based on the metrics presented 

in Table 1 and is shown in Table 4. These categories were determined by the careful consideration of the 

metrics to be measured and the possible variations of those metrics in the available data. For example, if 

the designer makes a change to his/her idea while prototyping, that change can result in three outcomes – 

the idea is improved by the change, the idea is not affected or adversely affected by the change 

(considered as does not improve the idea here, as separating these two categories does not provide any 

information relevant to the hypotheses) or the designer is convinced that the idea is not worthwhile to 

pursue. Similarly, the changes can result from two sources – a test on the prototype or based on an idea of 

the designer (considered as changes not resulting from testing as these changes are not prompted by the 

prototype). After careful consideration, two types of testing on prototypes were identified – intentional 

and unintentional. If designers deliberately tested a feature with the intention of verifying or improving it, 

it was considered as intentional testing. At the same time, in many cases, tests using physical models for 

few selected features provided information regarding the possible or required improvements in the other 

associated features. The designers made changes to these features. Such tests were termed as 
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unintentional tests. These coding categories were initially developed by the authors. In order to check the 

reliability of this coding scheme, an independent reviewer who was blind to the purpose of the study was 

asked to independently derive the coding categories. The categories obtained by this independent judge 

perfectly matched the ones developed by the reviewers, showing reliability of the coding scheme. 

Approximate position of Table 4. 

Qualitative Coding & Quantification of Data 

In this step, the available data were classified into the pre-determined categories shown in Table 

4. One of the authors carefully read all the available data including the project reports, templates and case 

studies and marked all the information related to the changes during the physical or virtual modeling 

process. This relevant information was separated from the rest of the data and was organized into the 

various pre-determined categories (Table 4).  

In general, qualitative studies are performed as explorative studies. One of their main purposes is 

to formulate hypotheses that can be investigated further. In this case, the hypotheses were already known 

and the qualitative study was conducted to investigate said hypotheses. In order to interpret the results and 

triangulate those with the controlled study, quantification of the data was necessary. To quantify the 

metrics in this study, the data in each category were counted. These metrics were analyzed using a chi-

square test (Ott & Longnecker, 2008). 

Among the categories shown in Table 4, cases where designers realized the infeasibility of the 

idea during physical modeling were excluded from analysis. In such cases, designers did not attempt to 

make changes and instead interpreted that the ideas could not be made functional. Four such cases were 

identified in the industry-sponsored projects data. The metrics used for the current study relied on the 

changes made during prototyping. Since such changes were not made during these specific cases, they 

were difficult to interpret with the present metrics and were left for future work. 
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To illustrate the procedure, consider the example of a design change reported during the 

development of bread-board model of OJex Manual Citrus Juicer shown in Figure 5. The test reported 

was designed to evaluate the mechanism operation and it resulted in a change which improves the idea, as 

reported by the developers. This change was considered as a change resulting from an intentional test and 

one that improved the idea. In a similar manner, other changes in the development of this product were 

considered.  

Approximate position of Figure 5. 

To ensure reliability of this procedure, an independent judge repeated the coding procedure. This 

second judge was a graduate student in design and was blind to the hypotheses and the study procedure. 

He was given the relevant data (after filtering out the irrelevant information) and the coding categories 

and asked to sort the data into the given categories. Once the categorization was complete, each piece of 

data was checked to ensure that they were sorted into the same category as by the author. A Cohen’s 

Kappa of 0.94 (a value above 0.80 shows a satisfactory inter-rater agreement) was obtained for the sorting 

ensuring the reliability of the coding (Clark-Carter, 1997).  Further, for the number of changes in each 

category, a Pearson Correlation was calculated. The obtained correlation was 0.98, which was high 

enough to show the reliability of the coding (Clark-Carter, 1997). 

Analysis and Interpretation of Results 

The qualitatively coded data are counted to convert them into quantitative measures and then 

analyzed to address the hypotheses. The results show that most of the changes made while building 

physical models lead to the improvements in the ideas and the features tested change more frequently than 

those not tested.  In reference to Table 1, the results demonstrate that physical models support designers’ 

mental models, meanwhile leading to fixation. The complete results are detailed below. 
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It is likely that there is a reporting bias in the books and probably a hindsight bias also.  The 

books likely report successful changes quite frequently, but very rarely report unsuccessful ones. 

Hindsight bias probably also causes the award winning product cases to present what they learned during 

testing as intentional instead of accidental. Since the initial industry-sponsored data was captured before 

testing, the unintentional tests can be identified.   

As shown in Figure 6, it is observed that majority of the changes that designers make after 

making physical models of their ideas result in an improvement in the respective idea. The number of 

changes in different designs is not uniform; hence it is difficult to compare those numbers. In order to 

compare across various categories, the number of changes in each category is normalized with the total 

number of changes in that design and is reported in this paper. In case of industry-sponsored projects, 

very small fraction of changes do not result in an improvement. In case of award-winning products, this 

fraction is further less, but this can be due to the reporting bias. The states of the idea before and after 

each change are carefully considered to determine whether the change results in an improvement or not.  

A chi-square test demonstrates that in significantly higher number of cases the changes not including 

those resulting from unintentional ones result in improvements of ideas (χ2=3.60, p=0.06). This 

significance goes up as the changes from unintentional tests are included (χ2=13.50, p < 0.001).  

Approximate position of Figure 6. 

The data show that in majority of the cases, the features tested change very frequently and the 

features not tested remain the same, as depicted by Figure 7. A chi-square test shows that this is 

statistically significant without including unintentional tests (χ2=10.89, p<0.001) and with including the 

unintentional tests also (χ2=20.57, p<0.001).  Again, the award-winning product cases may be biased 

since they report even unexpected changes as results of intentional tests. Furthermore, Figure 7 is used to 

show that in award-winning product design cases also this trend is true. 

Approximate position of Figure 7. 
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Comparing the above mentioned results with the cases presented in Table 1, the data show trends 

similar to Case 1. In significantly higher number of cases the changes during physical modeling result in 

improvements in the ideas. The frequency of changes resulting from tests is significantly higher than that 

of those not resulting from tests. According to Case 1, these results indicate that physical models 

supplement designers’ mental models and also cause fixation.  

Intentional and Unintentional Testing of Features 

The data demonstrates that many of the feature changes result from unintentional testing. Figure 8 

shows the fraction of the two kinds of tests observed in the industry-sponsored project data. The award-

winning product data report all the tests as intentional, likely due to hindsight bias. Very importantly, 

physical models are capable of providing useful insights about the possible improvements in their designs 

even when the features are not intentionally tested.  

Approximate position of Figure 8. 

Triangulation of Studies 

As described above, the results from the qualitative cognitive-artifacts study show that building 

physical models of ideas during the design process leads to more changes, which results in idea 

improvements. The data also show that tested features change much more frequently than the features 

which are not tested. Comparing these results with the theory presented in Table 1, it can be interpreted 

that physical models supplement designers’ erroneous mental models and also cause design fixation.  

To clarify the role of physical models in design cognition, these results can be triangulated with 

those from the controlled study (Viswanathan & Linsey, 2013b; Viswanathan & Linsey, 2011a). The 

results from the controlled study show that physical models supplement designers’ erroneous mental 

models. This result is replicated in the qualitative study too. At the same time, the controlled study shows 

that chances of design fixation increases as the sunk cost associated with the design process increases. In 
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the qualitative protocol study, all the systems are complex in nature and are associated with higher sunk 

cost than the paperclip design. So, design fixation is expected in the design of those systems. The results 

from the cognitive-artifacts study show the presence of design fixation. Hence it can be argued that the 

triangulated results support the Sunk Cost Hypothesis. Table 5 shows the triangulated results from both 

studies.   

Approximate position of Table 5. 

The triangulated results from the controlled and cognitive-artifacts studies provide very useful 

insights about the implementation of physical prototyping in the design process. From the results, it is 

clear that physical models possess the ability to supplement designers’ erroneous mental models. The 

controlled study shows that as designers build and test physical models of simple systems, they tend to 

generate a higher fraction of feasible and effective ideas. Similarly from the qualitative study results, it is 

clear that the testing of physical models provide feedback to the designers that often result in changes of 

the system. Such changes more often result in the quality improvement of the idea. This result is 

consistent with those from prior studies that show the benefits of physical prototyping (Harrison & 

Minneman, 1997; Horton & Radcliffe, 1995; Kiriyama & Yamamoto, 1998). 

The triangulation results also support the Sunk Cost Hypothesis. This implies that building 

processes and materials that consume lower cost (in terms of money, effort and resources) are more 

beneficial in design. These results are also consistent with those from existing literature. Boujut and 

Blanco (Boujut & Blanco, 2003) argue that easily modifiable physical models are preferable in the design 

process, based on their observational studies on designs of axles of vehicles. Wong (Wong, 1992) 

explains that when designers spend more time on building prototypes, they tend to commit to their initial 

ideas that can harm the generation of a variety of other ideas. In similar lines, Yang observes that lower 

fabrication times of prototypes correlates with higher quality ideas (Yang, 2005). Overall, these results 

point out the importance of faster and cheaper prototyping techniques like rapid prototyping. 
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Conclusions from the Illustrative Study 

 The study reported here sheds light on the effects of physical models on designer’s mental models 

and design fixation. Two hypotheses are investigated in this study: (1) physical models can supplement 

designers’ erroneous mental models and (2) as sunk cost increases the chances of design fixation also 

increase.  These two hypotheses are investigated through the proposed mixed method approach involving 

a controlled study and a qualitative cognitive-artifacts study. The triangulated results from the studies 

show strong support to the presented hypotheses. From the controlled experiment (Viswanathan & 

Linsey, 2013b), it can be inferred that for a simple system like a paperclip, physical models can help 

designers generate more number of functional ideas and it is more beneficial to keep the sunk cost at a 

minimum. The protocol study shows that the same results can be effectively extended to more complex 

engineering systems including industry-sponsored graduate projects and award-winning innovative 

products. Together, these two studies provide highly robust results that can be generalized across 

engineering systems of varying complexity levels. 

The results from the qualitative cognitive-artifacts study on the award-winning products can be 

biased as the original source materials for the designs are unavailable. The data reported in the books are 

used for this study which typically may include highly biased data. In many cases, these sources report 

successful changes while ignoring unsuccessful ones. Also, mostly all the tests are reported as intentional 

ones although some may be unintentional in reality. However, said data can show some trends in the 

design changes in highly innovative products and, as shown by this study, they also follow a similar trend 

as in graduate design projects.   

General Summary 

Understanding the influential factors in the design of complex engineering systems presents 

unparalleled challenges arising from the greater scale and complexity of such systems. The ideal way to 

show causality in such systems is the controlled experiment approach. Using this technique, the effects of 
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one or more factors can be studied at a time while avoiding the presence of noise factors. Since the time 

and resources required for the design of complex engineering systems are very large, a controlled 

experiment approach becomes extremely difficult. An alternate approach is a qualitative analysis on such 

systems. However, such studies are mostly explorative in nature and do not intentionally measure 

causality and hence they are generally less reliable than controlled experiments. In this paper, the authors 

propose a mixed method approach that can be very effective while studying the design of complex 

engineering systems. The method involves a controlled evaluation of simple systems, a cognitive-artifacts 

analysis of complex systems and the triangulation of results from both to obtain robust and generalizable 

results. The method is illustrated in detail with the help of an illustrative study on cognitive effects of 

physical models during the engineering design process. 

The proposed method is one of the many available methods to study the design thinking involved 

in complex systems design. Most of the studies published previously utilize qualitative analysis 

techniques. For example, Ward et al., (1995) use observational study method for their research on the 

design methodology followed by the car manufacturer Toyota. Similarly, to study the thinking involved 

in complex architectural designs, protocol studies have been successfully implemented (Schon & 

Wiggins, 1992; Suwa & Tversky, 1996). The difficulty in controlling noise factors and manipulating an 

independent factor or two at a time leads designers to employ qualitative studies in such complex design 

situations. The method presented here provides an alternative to this by leveraging the advantages of both 

qualitative and quantitative research methods. 

The illustrative study presented here triangulates the results from a controlled study with a very 

simple design (paperclip) with those from cognitive-artifacts studies on much more complex engineering 

systems (such as cocoa grinding machine and applications in oil and gas industry). However, engineering 

systems can be much more complex than these such as railroad systems and interconnected highway 

systems. While dealing with such systems, one needs to take the characteristics such as size, connectivity, 

dimensionality, evolution, emergence, etc. into consideration. In order to understand the design thinking 



Viswanathan & Linsey  29 

behind designing all these characteristics, it may be necessary to conduct multiple quantitative and 

cognitive-artifacts studies and triangulate the results of all of them. In order to generalize the results from 

this paper to much more complex engineering systems, it is necessary to conduct case studies involving 

such systems in future work. 

The use of triangulation of multiple studies to investigate complex questions is not new in 

engineering design. Blessing and Chakrabarti (2009) have proposed the triangulation of descriptive and 

prescriptive studies to conduct design research. They argue for a preliminary descriptive (explorative) 

study to understand potential influencing factors in a research followed by a targeted prescriptive (studies 

to prove causality) study. Further, the findings from these prescriptive studies can be generalized to other 

levels using more descriptive studies. Shah et al., (2003b) use a similar triangulation approach for 

studying design cognition. They propose the triangulation of highly controlled cognitive lab experiments 

and less controlled, while realistic, design experiments to understand design cognition. They also 

demonstrate their argument using a case study on incubation. More recently, triangulation of case studies 

and interviews has been used to understand the uses of computer-aided design tools and sketching in 

engineering design (Veisz et al., 2012). Similar to said studies, this paper suggests the triangulation of 

multiple studies to investigate the design thinking behind complex engineering systems. 

The results from the illustrative case study show that this type of a mixed method approach may 

be very useful to study simple systems and subsequently map those results to more complex systems. 

However, it is very difficult to generalize these conclusions for various types of complex engineering 

systems based on a single case study. Much more future research needs to be performed to prove the 

generalizability of such a mixed method approach. 

Currently, the authors are in the process of collecting additional data on practicing designers. 

Designers, prototyping their concepts for a realistic design problem are interviewed to obtain insights 

about the process. At each prototyping stage, the designers are interviewed before they begin the building. 



Viswanathan & Linsey  30 

Later, once the testing of prototypes is completed, they are interviewed again on the changes and 

improvements to the concepts during the prototyping stage. These interviews are based on the DART 

templates shown in Figure 4. Once the data collection is completed, these data will be triangulated against 

the data reported in this paper. This triangulation can provide a richer picture of the cognitive effects of 

prototyping on designers.  

Acknowledgment 

Partial support for this work was provided by the National Science Foundation Award No. 

CMMI-1234859 and CMMI-1304383. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the authors and do not necessarily reflect the views of the National 

Science Foundation. Partial results of the illustrative study have been presented at the ASEE/IEEE 

Frontiers in Education Conference 2011 (Viswanathan & Linsey, 2011b). 

References 

Perspectives on Complex-System Engineering (2005), In Collaborations, 3(2), Available at 

http://necsi.edu/necsi/mitrecoll3.2.pdf, Accessed on 09/16/2013. 

Abildso, C., Zizzi, S., Gilleland, D., Thomas, J., & Bonner, D. (2010). A mixed methods evaluation of a 

12-week insurance-sponsored weight management program incorporating cognitive-behavioral 

counseling. Journal of Mixed Methods Research 4(4), 278-294. 

Altshuller, G., Shulyak, L., & Rodman, S. (1997). 40 principles: TRIZ keys to innovation.  Worcester, 

MA: Technical Innovation Center, Inc. 

Altshuller, G.S. (1984). Creativity as an exact science: The theory of the solution of inventive problems.  

The Netherlands: Gordon & Breach Publications. 

Arkes, H.R., & Blumer, C. (1985). The Psychology of Sunk Cost. Organizational Behavior and Human 

Decision Processes 35(1), 124-140. 

http://necsi.edu/necsi/mitrecoll3.2.pdf


Viswanathan & Linsey  31 

Atman, C.J., Adams, R.S., Cardella, M.E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering 

design processes: A comparison of students and expert practitioners. Journal of Engineering Education 

96(4), 359-379. 

Atman, C.J., Kilgore, D., & McKenna, A. (2008). Characterizing Design Learning: A Mixed‐Methods 

Study of Engineering Designers' Use of Language. Journal of Engineering Education 97(3), 309-326. 

Auerbach, C.F., & Silverstein, L.B. (2003). Qualitative data: An introduction to coding and analysis.  

NY: NYU press. 

Aurigemma, J., Chandrasekharan, S., Nersessian, N.J., & Newstetter, W. (2013). Turning Experiments 

into Objects: The Cognitive Processes Involved in the Design of a Lab‐on‐a‐Chip Device. Journal of 

Engineering Education 102(1), 117-140. 

Blessing, L.T., & Chakrabarti, A. (2009). DRM, a design research methodology.  London, UK: Springer. 

Boujut, J.F., & Blanco, E. (2003). Intermediary objects as a means to foster co-operation in engineering 

design. Computer Supported Cooperative Work (CSCW) 12(2), 205-219. 

Cagan, J., Dinar, M., Shah, J.J., Leifer, L., Linsey, J., Smith, S., & Vargas-Hernandez, N. (2013). 

Empirical Studies of Design Thinking: Past, Present, Future. Proc. of ASME International Design 

Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper 

No. DETC2013-13302, Portland, OR, Aug 4-7. 

Carlile, P.R. (2002). A pragmatic view of knowledge and boundaries: Boundary objects in new product 

development. Organization science 13(4), 442-455. 

Chakrabarti, A., Morgenstern, S., & Knaab, H. (2004). Identification and application of requirements and 

their impact on the design process: a protocol study. Research in engineering design 15(1), 22-39. 

Christensen, B.T., & Schunn, C.D. (2005). The relationship of analogical distance to analogical function 

and pre-inventive structure: The case of engineering design. Creative Cognition: Analogy and Incubation 

35(1), 29-38. 



Viswanathan & Linsey  32 

Chrysikou, E.G., & Weisberg, R.W. (2005). Following the wrong footsteps: fixation effects of pictorial 

examples in a design problem-solving task. Journal of Experimental Psychology: Learning, Memory, and 

Cognition 31(5), 1134-1148. 

Clark-Carter, D. (1997). Doing quantitative psychological research: From design to report.  UK: 

Psychology Press/Erlbaum. 

Creamer, E.G., & Ghoston, M. (2013). Using a Mixed Methods Content Analysis to Analyze Mission 

Statements From Colleges of Engineering. Journal of Mixed Methods Research 7(2), 110-120. 

Crede, E., & Borrego, M. (2013). From Ethnography to Items A Mixed Methods Approach to Developing 

a Survey to Examine Graduate Engineering Student Retention. Journal of Mixed Methods Research 7(1), 

62-80. 

Creswell, J.W., & Clark, V.L.P. (2007). Designing and conducting mixed methods research.  Thousand 

Oaks, CA: SAGE publications. 

Dorst, K., & Cross, N. (2001). Creativity in the design process: co-evolution of problem–solution. Design 

Studies 22(5), 425-437. 

Fish, J. (2004). Cognitive catalysis: Sketches for a time-lagged brain. In Design Representation, 

(Goldschmidt, G., & Porter, W., Eds.), pp. 151-184. London, UK: Springer. 

Fu, J.-F., Fenton, R.G., & Cleghorn, W.L. (1991). A mixed integer-discrete-continuous programming 

method and its application to engineering design optimization. Engineering Optimization 17(4), 263-280. 

Gentner, D., & Stevens, A. (1983). Mental models.  NJ: Lawrence Erlbaum. 

Gero, J.S., & Mc Neill, T. (1998). An approach to the analysis of design protocols. Design Studies 19(1), 

21-61. 

Goldschmidt, G. (2007). To see eye to eye: the role of visual representations in building shared mental 

models in design teams. CoDesign 3(1), 43-50. 

Haller, L., & Cullen, C. (2004). Design Secrets: Products 2: 50 Real-life Projects Uncovered.  MA: Rock 

Port Publishers. 



Viswanathan & Linsey  33 

Hannah, R., Michaelrag, A., & Summers, J. (2008). A Proposed Taxonomy for Physical Prototypes: 

Structure and Validation. Proc. of ASME International Design Engineering Technical Conferences, Paper 

No. DETC2008-49976, New York City, NY, Aug 3-6. 

Harrison, S., & Minneman, S. (1997). A bike in hand: A study of 3-D objects in design. In Analysing 

Design Activity, (Cross, N., et al., Eds.), pp. 417-436. NJ: Wiley. 

Holcomb, J.H., & Evans, D.A. (1987). The effect of sunk costs on uncertain decisions in experimental 

markets. Journal of Behavioral Economics 16(3), 59-66. 

Horton, G.I., & Radcliffe, D.F. (1995). Nature of rapid proof-of-concept prototyping. Journal of 

Engineering Design 6(1), 3-16. 

Hsiao, C., Malak, R., Tumer, I.Y., & Doolen, T. (2013). Empirical Findings about Risk and Risk 

Mitigating Actions from a Legacy Archive of a Large Design Organization. Procedia Computer Science 

16(0), 844-852. 

Hutchins, E., & Lintern, G. (1995). Cognition in the Wild.  Cambridge, MA: MIT press. 

IDSA. (2003). Design Secrets: Products.  MA: Rockport Publishers. 

Jansson, D., & Smith, S. (1991). Design fixation. Design Studies 12(1), 3-11. 

Johnson, R.B., & Onwuegbuzie, A.J. (2004). Mixed methods research: A research paradigm whose time 

has come. Educational researcher 33(7), 14-26. 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: 

Journal of the Econometric Society 47(2), 263-291. 

Keeney, R.L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value tradeoffs.  

Cambridge, UK: Cambridge University Press. 

Kelley, T. (2001). Prototyping is the shorthand of innovation. Design Management Journal 12(3), 35-42. 

Kempton, W. (1986). Two theories of home heat control. Cognitive Science 10(1), 75-90. 

Kiriyama, T., & Yamamoto, T. (1998). Strategic knowledge acquisition: a case study of learning through 

prototyping. Knowledge-based Systems 11(7-8), 399-404. 

Kirk, R.E. (1982). Experimental design.  Monterey, CA: Brooks/Cole. 



Viswanathan & Linsey  34 

Kurtoglu, T., Campbell, M.I., Arnold, C.B., Stone, R.B., & Mcadams, D.A. (2009). A component 

taxonomy as a framework for computational design synthesis. Journal of Computing and Information 

Science in Engineering 9, 011007. 

Lemons, G., Carberry, A., Swan, C., Jarvin, L., & Rogers, C. (2010). The benefits of model building in 

teaching engineering design. Design Studies 31(3), 288-309. 

Lidwell, W., Holden, K., & Butler, J. (2003). Universal principles of design.  MA: Rock Port Publishers. 

Linsey, J., Clauss, E.F., Kurtoglu, T., Murphy, J.T., Wood, K.L., & Markman, A.B. (2011). An 

Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea 

Representation and Viewing Methods. ASME Transactions: Journal of Mechanical Design 133(3), 

031008. 

Linsey, J.S., Tseng, I., Fu, K., Cagan, J., Wood, K.L., & Schunn, C. (2010). A Study of Design Fixation, 

Its Mitigation and Perception in Engineering Design Faculty. ASME Transactions: Journal of Mechanical 

Design 132(4), 041003. 

McKim, R.H. (1972). Experiences in Visual Thinking.  Boston: PWS Publishing Company. 

McMillan, J.H., & Schumacher, S. (2014). Research in education: Evidence-based inquiry. Pearson 

Higher Ed. 

Nelson, B.A., Wilson, J.O., Rosen, D., & Yen, J. (2009). Refined metrics for measuring ideation 

effectiveness. Design Studies 30(6), 737-743. 

Nersessian, N.J. (1995). Opening the black box: cognitive science and history of science. OSIRIS: 

Constructing Knowledge in the History of Science 10, 194-211. 

Ott, L., & Longnecker, M. (2008). An introduction to statistical methods and data analysis.  Belmont, 

CA: Brooks/Cole. 

Otto, K.N., & Wood, K.L. (2001). Product design: techniques in reverse engineering and new product 

development.  New York: Prentice Hall. 

Pahl, G., & Beitz, W. (2003). Engineering Design: A Systematic Approach.  London, UK: Springer. 



Viswanathan & Linsey  35 

Paton, B., & Dorst, K. (2011). Briefing and reframing: A situated practice. Design Studies 32(6), 573-

587. 

Petre, M. (2004). How expert engineering teams use disciplines of innovation. Design Studies 25(5), 477-

493. 

Purcell, A., & Gero, J. (1992). Effects of examples on the results of a design activity. Knowledge-based 

Systems 5(1), 82-91. 

Purcell, A.T., & Gero, J.S. (1996). Design and other types of fixation. Design Studies 17(4), 363-383. 

Saunders, M.N., Seepersad, C.C., & Hölttä-Otto, K. (2009). The characteristics of innovative, mechanical 

products. ASME Transactions: Journal of Mechanical Design 133(2), 021009. 

Schon, D.A., & Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design Studies 

13(2), 135-156. 

Shah, J.J., Kulkarni, S.V., & Vargas-Hernandez, N. (2000). Evaluation of Idea Generation Methods for 

Conceptual Design: Effectiveness Metrics and Design of Experiments. ASME Transactions: Journal of 

Mechanical Design 122(4), 377-384. 

Shah, J.J., Smith, S.M., & Vargas-Hernandez, N. (2003a). Metrics for measuring ideation effectiveness. 

Design Studies 24(2), 111-134. 

Shah, J.J., Smith, S.M., Vargas-Hernandez, N., Gerkens, D.R., & Wulan, M. (2003b). Empirical Studies 

of Design Ideation: Alignment of Design Experiments with Lab Experiments. Proc. of ASME 

International Design Engineering Technical Conferences, Paper No. DETC2003/DTM-48679, Chicago, 

IL, Sept 2-6. 

Sheldon, D.F. (2006). Design Review 2005/2006—The ever increasing maturity of design research papers 

and case studies. Journal of Engineering Design 17(6), 481-486. 

Sushkov, V., Mars, N.J., & Wognum, P. (1995). Introduction to TIPS: a theory for creative design. 

Artificial Intelligence in Engineering 9(3), 177-189. 



Viswanathan & Linsey  36 

Suwa, M., & Tversky, B. (1996). What architects see in their sketches: Implications for design tools. 

Proc. of Conference companion on Human factors in computing systems: common ground, New York: 

ACM, 191-192. 

Tabachnick, B.G., & Fidell, L.S. (2007). Experimental designs using ANOVA.  Belmont, CA: 

Thomson/Brooks/Cole. 

Tashakkori, A., & Teddlie, C. (1998). Mixed methodology: Combining qualitative and quantitative 

approaches. SAGE Publications, Incorporated. 

Teegavarapu, S., & Summers, J.D. (2008). Case study method for design research. Proc. of ASME 2008 

International Design Engineering Technical Conferences and Computers and Information in Engineering 

Conference, New York City, Paper No. DETC2008-49980, Aug 3-6. 

Tseng, I., Moss, J., Cagan, J., & Kotovsky, K. (2008). The role of timing and analogical similarity in the 

stimulation of idea generation in design. Design Studies 29(3), 203-221. 

Veisz, D., Joshi, S., & Summers, J.d. (2012). Computer-aided design versus sketching: An exploratory 

case study. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 26(3), 317-335. 

Viswanathan, V., & Linsey, J. (2013a). Design Fixation and its Mitigation: A Study on the Role of 

Expertise. ASME Transactions: Journal of Mechanical Design 135(5), 051008. 

Viswanathan, V., & Linsey, J. (2013b). Role of Sunk Cost in Engineering Idea Generation: An 

Experimental Investigation. ASME Transactions: Journal of Mechanical Design 135(12), 121002. 

Viswanathan, V.K., Esposito, N., & Linsey, J. (2012). Training Tomorrow’s Designers: a Study on 

Design Fixation. Proc. of ASEE Annual Conference, Paper No. 2012-4925, San Antonio, TX, Jun 10-13. 

Viswanathan, V.K., & Linsey, J. (2012). Physical Models and Design Thinking: A Study of 

Functionality, Novelty and Variety of Ideas. ASME Transactions: Journal of Mechanical Design 134(9), 

091004. 



Viswanathan & Linsey  37 

Viswanathan, V.K., & Linsey, J.S. (2009). Enhancing Student Innovation: Physical Models in the Idea 

Generation Process. Proc. of ASEE/IEEE Frontiers in Education Conference, Paper No. 978-1-4244-

4714-5/09, San Antonio, TX, Oct 18-21. 

Viswanathan, V.K., & Linsey, J.S. (2010). Physical Models in Idea Generation - Hindrance or Help? 

Proc. of International Conference on Design Theory and Methodology, Paper No. DETC2010-28327, 

Montreal, Quebec, Canada, Aug 15-18. 

Viswanathan, V.K., & Linsey, J.S. (2011a). Design Fixation in Physical Modeling: An Investigation on 

the Role of Sunk Cost. Proc. of International Conference on Design Theory and Methodology, Paper No. 

DETC2011-47862, Washington, DC, Aug 29-31. 

Viswanathan, V.K., & Linsey, J.S. (2011b). Understanding Physical Models in Design Cognition: A 

Triangulation of Qualitative and Laboratory Studies. Proc. of ASEE/IEEE Frontiers in Education 

Conference, Paper No. 978-1-61284-469-5/11, Rapid City, SD, Oct 12-16. 

Ward, A., Liker, J.K., Cristiano, J.J., & Sobek, D.K. (1995). The second Toyota paradox: How delaying 

decisions can make better cars faster. Sloan Management Review 36, 43-43. 

Westmoreland, S.N. (2012), Design Thinking: Cognitive Patterns in Engineering Design Documentation, 

Ph.D. Thesis, Mechanical Engineering, University of Maryland, College Park, MD. 

Wong, Y.Y. (1992). Rough and ready prototypes: lessons from graphic design. Proc. of Posters and Short 

Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, 1125094: ACM, 83-84. 

Yang, M.C. (2005). A study of prototypes, design activity, and design outcome. Design Studies 26(6), 

649-669. 

Youmans, R.J. (2011). The Effects of Physical Prototyping and Group Work on the Reduction of Design 

Fixation. Design Studies 32(2), 115-138. 

 

  



Viswanathan & Linsey  38 

Table 1. Metrics used for studying the effects of physical models in realistic and complex design 

situations 

 
 
Case 

Hypotheses Metrics to be measured from the data 

Design 
Fixation is 
present 

Mental Models are 
supplemented 

Did Changes 
Improve the 
Idea? 

Comparison of Frequency of 
changes in features evaluated by 
the physical model 

1 Yes Yes Yes Tested > Not Tested 

2 Yes No No Tested = Not Tested 

3 No Yes Yes  Tested = Not Tested 

4 No No No Tested = Not Tested 
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Table 2. Various factors influencing the outcomes of the metrics 

 
 
 

Case 

How often designers make 
changes? 

Do the changes improve 
their concepts? 

Interaction effect 

Designers 
make changes 
suggested by a 
test 

Designers often 
make changes 
that are not 
suggested by a 
test  

Design 
changes 
improve the 
concept 

Design 
changes do 
not improve 
the concept 

Since no improvement 
seen, designers are 
reluctant to make 
further changes 

1 Yes  Yes   
2 Yes   Yes Yes 
3  Yes Yes   
4  Yes  Yes Yes 
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Table 3. Changes in the ball mill concept for the cocoa grinding machine coded using the scheme used in 

the study 

Design Change Did the change 
improve the 
concept? 

Did the change 
result from a test? 

Was the test 
intentional? 

Use of fins Yes Yes Yes 

Use of holes on fins Yes No N/A 
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Table 4. Coding scheme used for the illustrative study 

Metrics Categories Identified 
Changes made during 
physical modeling 

Improves the idea 
Does not improve the idea 
Designer realizes the idea is 
infeasible 

Feature that change during 
the physical modeling 

Features are tested intentionally 
Features are tested 
unintentionally 
Features are not tested 
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Table 5. Triangulation of results from the controlled and qualitative studies 

Study Type of 
engineering 
system 

Amount of 
sunk cost 
involved 

Do physical models 
supplement designers’ 
mental models? 

Is design fixation 
present in the design 
with physical models? 

Controlled 
Experiment 

Simple Low & high Yes Yes – when the sunk 
cost is high 

Qualitative 
Protocol Study 

Complex High Yes Yes 

Mental Models Hypothesis Supported  
Sunk Cost Hypothesis  Supported 
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