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This paper discusses the creation of a genetic algorithm to locate and optimize interplanetary trajectories using gravity assist
maneuvers to improve fuel efficiency of the mission. The algorithm is implemented on two cases: (i) a Centaur-class target close to
the ecliptic plane and (ii) a Centaur-class target with a high inclination to the ecliptic plane. Cases for multiple numbers of flybys (up
to three) are discussed and compared. It is shown that, for the targets considered here, a single flyby of Jupiter is the most efficient
trajectory to either target with the conditions and limitations discussed in this paper. In this paper, we also iterate on possible
reasons for certain results seen in the analysis and show how these previously observed behaviors could be present in any trajectory
found. The parameters and methods used in the algorithm are explained and justified over multiple real-life interplanetary missions

to provide deeper insights into the development choices.

1. Introduction

On satellites, or generally speaking any type of deep-space
exploration spacecraft, every kilogram of mass becomes a
crucial component of overall mission design. Controlling
the mass of the spacecraft throughout the design process
is vital to the success of the assigned task. Getting to a
target in space requires fuel to be expended, and every
kilogram of fuel that must be launched is a kilogram of
scientific equipment that must be sacrificed in order for the
mission to remain feasible. The ability to optimize the deep-
space exploration trajectories in a way that minimizes the
fuel requirement (i.e., AV) is key to greater scientific return
(such as maximized life time of the spacecraft and maximum
distance traveled). In some cases, this becomes the only way
for the desired mission to succeed. In that sense, by limiting
the number of maneuvers (or AV') that are needed to reach the
target of interest, a mission’s effectiveness can be maximized
through more equipment and/or an extended life at the target,
if the mission is propellant-limited.

From this perspective, this paper aims to explore the
use of a class of nondeterministic optimization algorithms
in finding indirect trajectories to interplanetary targets and
minimize the associated fuel consumption throughout the
mission. This class of algorithms, namely, genetic algorithms,
have been studied before as means of improving interplane-
tary trajectories. In Xu et al. [1], a genetic algorithm was used
to optimize launch and deep-space maneuver parameters
to enable closer approaches to two opportunistic asteroids
en route to their main target. In another study, a genetic
algorithm tool (GALOMUSIT) for finding trajectories to
predetermined targets has been developed (in FORTRAN 77)
and improved upon by many parties, which was then used
by Molenaar [2] to determine an optimized trajectory for an
Uranus orbiter. This tool is rather sophisticated in a sense
that it allows for multimodal optimization and was improved
later on allowing for deep-space maneuver optimization as
well. The trajectories found make use of planetary flybys
in an attempt to reduce the fuel consumption over a direct
target trajectory. Solorzano et al. [3] discuss the planning
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of trajectories to Neptune using a variety of gravity assist
maneuver schemes, highlighting the difficulty in finding an
optimized solution with so many combinations of the planets
considered. In another valuable study, Izzo et al. [4] discuss
a deterministic search space pruning algorithm for multiple
gravity assist problem. Vasile and Pascale [5] investigates a
preliminary design of multiple gravity assist maneuvers as
a global optimization method based on a hybrid genetic
algorithm methodology. Gad and Abdelkhalik [6] concen-
trated their efforts on implementation of genetic algorithms
on free number of deep-space maneuvers. Petropoulos and
Longuski [7] provided results for the gravity assists which
are modeled as discontinuities in velocity arising from an
instantaneous turning of the spacecraft. Lee et al. [8] used a
genetic algorithm to adjust optimization parameters used to
search for Pareto fronts of low-thrust orbit transfers.

The genetic algorithm based trajectory mission design
presented herein, completing the existing studies, is used
to optimize increasingly difficult optimization problems
starting with simple Hohmann transfer timing problems.
This methodology then progresses to target rendezvous with
intermediate flyby of a chosen planet, finally progressing to
multiple planet flybys in which the specific planets, and their
order, are determined as part of the optimization process.
This constitutes one of the major novelties introduced by this
methodology. In this study, we also show genetic algorithm
based on methodology’s ability to find optimized trajectories
to both targets whose trajectories lend themselves to easy
rendezvous, such as Main Belt Asteroids or planets, as well as
targets that would not be accessible to our current spacecraft
technology without the aid of at least one planetary flyby,
such as Trans-Neptunian Asteroids or comets, as discussed
in Wen et al. [9] and refined further in Wen et al. [10].
This constitutes the second major novelty introduced by this
paper. The ultimate goal of such an endeavor is to be capable
of finding nonintuitive trajectories that could take advantage
of gravitational anomalies (if possible multiple times) that are
sensitive to position, velocity and timing.

This paper looks at the following trajectory problems
with origins at Earth: (i) an optimal (min. fuel) transfer to a
Centaur-class object with multiple flybys and (ii) an optimal
(min. fuel) transfer to a Centaur-class object with higher
inclination and eccentricity via multiple flybys.

By having the algorithm take on increasingly difficult
problems in trajectory optimization, this paper aims to
demonstrate the value of such methods in determining
interplanetary trajectories that might be hard to find but easy
to verify once the trajectory is obtained. It is also the aim of
this paper to show the capabilities of such algorithm when
deployed on hardware accessible to the common consumer
and thus to any institution that seeks to do research at this
juncture between computing science and astrodynamics.

The paper is organized as follows: in Section 2.1 through
Section 2.3, a high level discussion of genetic algorithms,
Lambert’s solution, and gravity assist maneuvers is presented.
In Section 4, the genetic algorithm is used to find various
trajectories to the target asteroid Hylonome. Section 5 is
devoted to the interception of an asteroid of high inclination
to the ecliptic plane. Finally, there is a revisit of work done to
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FIGURE 1: An example of a gravity assist maneuver as seen in a
reference frame fixed to the planet (a) and fixed inertially (b).

examine nonintuitive results and the analysis if presented in
Section 6. The study is finalized with conclusions and future
work in Section 7.

2. Preliminaries

In this section, for the sake of completeness, we review some
of the fundamental concepts that will play a role in the
development and/or use of the genetic algorithm (as further
discussed in Section 2.3).

2.1. Gravity Assist Maneuvers. Generally speaking, gravity
assist maneuver is a technique by which a probe (and/or
spacecraft) can change its orbital energy (and/or momentum)
with respect to a primary body by flying past a large
secondary body with the utilization of the gravitational force
of that specific body (as depicted in Figure 1).

The close flyby of the secondary body will allow its gravity
to affect the probe and affect a momentum exchange. Because
the secondary body will typically be much larger than the
probe, this will result in a large effect on the probe’s trajectory
with respect to the primary body. In addition to the natural
momentum exchange, an opportunity exists to perform a
trajectory correction maneuver at the periapse of the flyby.
The periapse is preferred to take advantage of the Oberth
Effect, as further defined in Oberth [11]. The Oberth Effect
arises from the fact that a change in energy is equal to a force
applied over a distance (as shown in (1); assuming that all
vector quantities are parallel):

AE = FAd. )

Here, since the distance over which the force is applied
is equal to the velocity of the spacecraft multiplied by the
duration of the burn,

Ad = %At = vAt, 2)
ot

and since the fuel usage is proportional to the duration of the
burn (assuming a fixed force),

mfuel o< At, (3)
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it is easy to find that, for a desired change in orbital energy,
the fuel used can be minimized by using the engines when the
spacecraft is at a maximum velocity of the trajectory.

Mg XV (4)

By using a number of flybys, the possibility exists of being
able to send instrument-laden probes to targets that might
otherwise be outside the reach of our current launch vehicle
capability. The key is to know what trajectory to be on in order
to intercept the next planet or the target itself. This is where
the solution to Lambert’s problem comes into play which is
revisited next.

2.2. Lambert’s Equation. According to this fundamental prin-
ciple, it is well known that the transfer time between two
points on an orbit is independent of the eccentricity and
depends on a small number of factors: the magnitudes of the
two position vectors, the semimajor axis, and the length of
the chord connecting the two points, where further details
could be investigated in many classical references including
Prussing and Conway [12] and Curtis [13]. The solution to
Lambert’s problem in which the two positions and the time
of flight are known is found with the following technique as
derived in Curtis [13]:

(1) Calculate the magnitudes of the two position vectors
— —
riand 7,.

(2) Calculate the angle A0 between the two position
vectors taking the direction of travel in to account.

(3) Calculate A, where

{ T
A=sinAQ+|—L12 5
s 1 - cosA@ ®)

(4) Solve the following equation by iterating the value of
z, where S(z) and C(z) are the Stumpff equations:

@

3/2
6
C(z)] S(2) + Ay (2), (6)

=]

where
zS(z) -1

co (7)

(5) Use the resulting value of z to calculate the Lagrange

y()=r+rn+A

coefficients:
le_yr(lz)
g=A4 %
- (8)
f':ﬁ\j%[zﬂz)—l]
g- 2@

(6) Finally, use the Lagrange coefficients and 7, and 7,
to obtain v, and V,:

71: ! (72_f?1)

g ©)
_V)z = f71 "’971-

This leads to the fact that, in order to calculate a trajectory
between two planets in the solar system, we only need to
specify the departure time and the travel time. A series of
flight stages can be strung together to allow for any number
of gravity assists along the way to the target. This suggests that
a possible solution vector would take the following form:

[Jo, Py, Aty, Py, ALy, ..., Py, At,, At ], (10)

where J, is launch date from Earth, P, is target planet, and At ,
is time of flight to next planet/target.

This vector provides the complete set of inputs to specify
a particular solution. Given J;, we have the position of Earth
at launch from a vector table covering the entire allowable
time within which the mission can occur. With At,, we have
the time of arrival at P, and its position from its vector table.
This chain of time spans continues until we have the final time
span, At,, that determines the arrival time of the space craft
and the position of the target. By altering these parameters,
different trajectories can be created and these trajectories can
be evaluated for their fuel usage.

2.3. Genetic Algorithms. Genetic algorithms (GAs) attempt
to harness the strength of natural evolution in an attempt
to solve problems that do not lend themselves to finding
solutions in an analytical manner, as presented in Eiben and
Smith [14]. Some of the terminology common to discussions
of GAs is given in Table 1.

One concept used extensively in GA is that of crossover.
It is well known from literature that this process takes
two solutions and mixes them together to generate two
new solutions. This is the primary method of exploring the
available search space in the outset of the simulation.

The solution to this problem with crossover leads to
another concept named mutation. Mutation changes the
value of a given value within a solution by a chosen method.
This generates a new value that was not present among any of
the solutions prior to its alteration. This plays a critical role in
optimizing the solutions in the final generations. Towards the
end of the simulation most of the solutions will be very similar
and there will be very little variety in the values on each of the
search axes. Mutation allows for each value to be varied by a
small amount that will hopefully yield an improvement in the
best fitness.

Embedded within the mutation concept is the idea of
cooling. Cooling is a process in which the possible range
by which the mutation process can alter a value is slowly
diminished as the simulation proceeds. This allows the
simulation to “dial in” on the minimum value that it has
found by minimizing the overshoot caused by the mutation
of any single gene. This also allows for a large mutation range
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TABLE 1: Genetic algorithm terminology.

Terminology Definition

Gene A single value representing a parameter of a potential solution

Chromosome A vector representation of the parameters of a potential solution

Population A collection of chromosomes

Crossover A process by which two or more existing chromosomes are recombined to yield two different chromosomes

Mutation A process by which gene values are changed yielding a new chromosome

Selection A process that determines which chromosomes from the population to use for the crossover process

Fitness function .
maximized

Algorithm that assigns a value or “fitness” to each chromosome This value being typically minimized or

at the beginning of the simulation to create as many unique
points as possible in the next generation without suffering the
large range for the entire simulation.

Selection is the process by which the two parent chromo-
somes on which to apply the above concepts are chosen. The
GA created for this work relies on an unbalanced mapping of
the chromosomes to a uniformly distributed random number
to favor the selection of solutions with better fitness. Here,
unbalanced mapping defines the situation where more chro-
mosomes are represented by a smaller range of the random
number domain and thus have a smaller chance of being
selected. This aims to maintain the capability of selecting
any solution from the current generation, even if it was the
worst solution tested. The mapping chosen in this study is
shown in Figure 2 for a population of 300 chromosomes. As
is also seen in Figure 2, solutions that rank above the median
fitness (i.e., have AV lower than that of half the population
and thus are ranked at position 150 or higher in this example)
value have a cumulative 69% chance of being selected to
seed the next generation, while solutions below the median
fitness value have a cumulative 31% chance of being selected
as seen on the x-axis which corresponds to the value of a
uniformly distributed random number for selection. With the
disassociation of the test value from the actual calculation
result, a situation in which “lucky” few chromosome are
dominating a selection round is avoided. This preserves
diversity in solutions while a thorough exploration of the
search space is made and prevents rapid convergence to a
solution that starts strongly but is too distant from a better
minimum location in the search space.

If Figure 2 is compared to Figure 3, it can be seen that
the mapping used by the GA is one that favors solutions with
higher fitness which in this problem are solutions that will
have lower AV.

Finally if Figure 2 is compared to Figure 4, it can be seen
that the selection pressure applied to the GA is not so extreme
to run into the issue discussed earlier of squeezing out weaker
solutions before their genes can be used to explore the search
space over a few generations. Again, this preserves diversity
in the solution parameters while the search space is explored
via crossover.

Another critical concept utilized was that of survivorship.
The two solutions with the best fitness score were carried
into the next generation without any changes made to their

300 Value mapping to ranked chromosomes

250 -

200

150 +

100 +

50 +

Worse « chromosomes — better

0 1 1 1 1 1 1
04 05 06 07 08 09 1
Value

0 01 02 03

FIGURE 2: The mapping of the selection value to the ranked chromo-
somes. When testing from bottom to top, the first chromosome to
have a higher value than a randomly generated number in the range
(0, 1) is selected.

100 - Selection favorability schemes

90

80 |

60
50 |

40

Solution fitness value

30

20 +

0 L L L L L L L L L J

0 01 02 03 04 05 06 07 08 09 1
Randomized selection value

—— Neutral
—— Favors high fitness
—— Favors low fitness

FIGURE 3: Three selection schemes for choosing parent chromo-
somes. A randomized value in the range (0, 1) is chosen on the x-
axis and solution associated with the corresponding fitness value is
used as a parent.
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TABLE 2: Gene specific parameters.

Parameter Maximum Minimum Standard deviation
Jo (Julian Date) 2462489.5 2451545 100 (days)
P, (planet number) 8 1 1
At (seconds) 00 0 28512000
100 Variable selection bias A linear interpolation method was used to calculate

Solution fitness value

0 1 1 1 1 1 1 1 1 1 )
o 01 02 03 04 05 06 07 08 09 1

Randomized selection value

—— Neutral
—— High fitness bias

- -~ Large high fitness bias
- - Extreme high fitness bias

FIGURE 4: Four selection schemes for choosing parent chromo-
somes. A randomized value in the range (0, 1) is chosen on the x-axis
and solution associated with the corresponding fitness value is used
as a parent. The most extreme bias gives solutions in the bottom half
of the ranking a combined chance of less than 10% of being selected.

chromosomes. Without this technique, the best solution
found thus far would be lost with no improvement in the next
generation.

3. Parameter Limits and Design

In the following, we discuss the limits that were applied to
each of the conducted studies. Section 3.1 through Section 3.2
discusses input limits, while Section 3.3 through Section 3.5
discusses limits used directly by the GA.

3.1 Date Range. The GA was given as inputs of the position
and velocity data for the planets and the targets for dates rang-
ing from 01 Jan 2000 to 28 Dec 2029 in five-day increments.
This date range was chosen because it seemed a reasonable
range over which to look for mission planning purposes.
A mission that would have to occur more than 30 years
from the conception time would likely not be considered in
the real world. Thus the ability of the GA to find solutions
even if the perfect launch time was not available would be
important. The date range used was to enable the possibility of
converging to known trajectories during testing of the fitness
function and GA while also providing enough time range to
explore future trajectories to distant targets.

positions and velocities in between the data points provided.
Five-day increments were chosen to minimize the error in
linear interpolation of planetary position and velocity data
should, for an inner planet like Mercury, be chosen for
evaluation of a gravity assist.

3.2. Gene Specific Parameters and Limits. The genes had
several parameters in common that were used by the GA,
although the values of these parameters were altered depend-
ing on the gene that they were being applied to. All genes
have a maximum value, a minimum value, and a standard
deviation value used to scale the randomization of any
mutation that the gene undergoes. The values for the used
ones for these parameters are shown in Table 2. J; is the
Julian Date of launch and has units of days for the standard
deviation. At, is transfer time in seconds with its standard
deviation in the same units. P, is the next planet around
which a flyby will occur. When this gene is mutated, it still
utilizes a normally distributed random value, but it is then
truncated to an integer value subject to the minimum and
maximum limits. It should be noted that the lack or constraint
on the At, parameters had no adverse effect on the converged
solutions, though they may have contributed to the long
convergence times that will be seen later. If the total flight
time duration was a constraint, it would be possible to make
an educated guess on the allowable transfer times.

3.3. Population Size. The GA utilized in this paper uses a
fixed population of 300 for finding trajectories to Hylonome
and Hidalgo. This specific number was the result of trying to
optimize between the time needed to converge on a solution
and providing sufficient density of initial test points in the
search space. Increasing the population to a higher value was
found to quickly increase the run time for a single simulation
especially for the triple flyby algorithm.

Being run on a personal Windows computer, the oper-
ating system was known to occasionally suffer instabilities
and reboot. Long runtimes risked losing work prior to
convergence under these conditions. On the other hand,
small population sizes were found to be at risk of converging
too quickly to solutions that were not optimal based on
subsequent simulations. This is because they did not have
sufficient diversity to explore the search space and the
variance in the final AV solutions left doubt as to whether the
algorithm was working properly.

3.4. Crossover and Mutation Rates. The crossover rate was set
to a 30% chance of crossover per gene in the chromosome
to ensure a high probability that crossover would occur
somewhere within the chromosome. This means that the
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TaBLE 3: Convergence times for various simulation types for trajectories to Hylonome.
Hylonome Direct Single Double Triple
Minimum 0:42:00 2:26:00 9:08:00 3:14:00
Maximum 1:35:00 6:06:00 50:18:00 28:12:00
Average 1:07:23 3:43:44 26:41:20 8:21:13
Median 1:08:00 3:41:00 20:38:00 6:33:00
Standard deviation 0:13:45 0:58:46 21:14:27 7:35:12
Total runs 19 12 4 10
TaBLE 4: Convergence times for various simulation types for trajectories to Hidalgo.
Hidalgo Direct Single Double Triple
Minimum 0:41:00 1:59:00 1:46:00 1:05:00
Maximum 1:34:00 15:48:00 8:33:00 9:08:00
Average 0:59:13 4:32:00 5:47:22 4:37:32
Median 0:50:00 2:42:30 6:13:30 5:30:00
Standard deviation 0:17:31 4:38:25 1:58:57 2:51:15
Total runs 19 11 10 15

chance of failing to perform a crossover at any one particular
gene is 70%. Since the next gene in the chromosome is
tested only after the previous one fails, the chance of n-gene
chromosomes failing to perform a crossover is given in (12).
The likelihood of the crossover point being after the nth gene
is shown in (13):

F(1) =07
F(2) = 0.7 x 0.70
F(3)=07x07x%0.7 (11)
F(x) = 07" 12)
C(x)=1-(0.7" rrl R (13)

where 7 is the number of genes in the chromosomes, x is
the current gene, and C(x) is the cumulative likelihood of
a crossover occurring after gene x as x increases from 1 to
n — 1. the upper limit is # — 1 since a crossover after the last
gene results in no genes swapping between the two chosen
chromosomes and thus no crossover.

The mutation rate is specified per gene in the chromo-
somes to allow for certain genes to mutate more often than
others if desired. Mutation is a very powerful modifier, Eiben
and Smith [14], and so the chance of it occurring should be
kept low so as not to obscure the effects of crossover. In the
GA discussed in this paper, every gene was given a 5% chance
of modification via mutation. Whereas the crossover check
is performed until it succeeds once on the chromosome, the
mutation check is performed on each gene, regardless of the
outcome of previous checks on prior genes. While the chance
of any individual gene to mutate is 5% (i.e., a 95% chance of

failure), the likelihood of the entire chromosome remaining
unchanged is given

F(x) = (0.95)[} (14)

where F(x) is the likelihood of the chromosome not mutat-
ing on any gene, and the rest of the symbology is as
in (13). For a single flyby solution with four parameters
([Jy> Py Aty, At,]), the possibility of no changes due to muta-
tion is approximately 80% while a flyby solution with 8
parameters ([J,, P;, Aty, P,, At,, P, At;, At,]) has a probabil-
ity of no change due to mutation closer to 66%. Increasing the
mutation rate to 10% would make the 8-parameter solution be
affected by mutation more than half of the time, while a 1%
rate would make the 4-parameter solution nearly immune to
mutation effects.

3.5. Simulation Termination Criteria. In this study, the sim-
ulations conducted had two conditions under which they
could be terminated. The first condition was a simple maxi-
mum generation count. If a solution was not found after 2000
generations, the simulation would terminate and complete as
though it had converged. No flag was implemented to indicate
that these termination criteria were the one used, but the
number of generations needed to converge is in the output of
the simulation and was therefore easy to verify whether or not
this was the criteria used to terminate the simulation. In no
simulation was this maximum generation count encountered.

The second termination criteria were reached if the sim-
ulation converged on a solution. Convergence was defined as
seeing no improvement of more than 1 m/s of AV for a certain
number of generations. Thirty generations were the range of
a priori information used in this GA.

With the parameters discussed above, the time
(hh:mm:ss) to converge for each simulation type is shown in
Tables 3 and 4, where the computational platform is a laptop
PC with i3 Intel core processor and 8 Gb RAM.
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3.6. Fitness Function. 'The fitness function is the workhorse
of the designed GA. This algorithm is the part of the GA
that evaluates the potential solutions and assigns a fitness
value to each chromosome based on AV calculated for the
trajectory specified by the chromosome. Any quantitative
measurement that is primarily affected by the genes present
in the chromosome can be used by the GA as an operator to
create the next generation. The fitness function in this paper
focused on calculating AV of the proposed trajectory in an
attempt to find a trajectory that used the minimum amount
of fuel and had the specified number of planetary flybys.

The fitness function starts by determining the dates of
each planetary encounter based on the launch date and the
time of flight of each leg of the trajectory. It then acquires
the position and velocity of Earth at the time of launch
and the specified planet(s) as well as the target at the dates
calculated. This provides all the information needed to use
Lambert’s problem solution to determine the velocities at the
endpoints of the trajectory that connects the two positions
in the travel time given. In some cases, the algorithm to
determine the velocities is unable to converge. Should this
happen, an infinite amount of AV is applied to the mission
total to penalize the solution.

At this point, the arrival and departure velocities at each
flyby are known as well as the departure velocity from Earth
and the arrival velocity at the target. The algorithm assumes
that the spacecraft starts in a 300 km altitude circular orbit
around Earth and includes the propellant used to depart
Earth in the total mission cost. Given the departure velocity
dictated by Lamberts problem, AV needed to leave Earth
is calculated. Since our target is so small compared to any
planet, the arrival AV is simply the AV needed to match
velocity with the target.

All that is left at this point is to calculate AV consumed
at each flyby. An ideal flyby would not require any AV as
the approach and departure speeds would be the same and
the planet’s gravity would suffice to perform any required
velocity turn without having to approach too close. In reality,
the speeds will likely not match, requiring a maneuver to
change orbital energy and the periapse will be dictated by
the velocity turn required. If the speeds are too high and the
required turn too great, the only mathematical solutions may
have the periapse within the planet itself which in reality is a
null solution.

To calculate the flyby maneuver, the algorithm treats the
problem as the patching of two hyperbolic orbits that meet at
the periapse and with V_ speeds determined by the solution
to Lambert’s problem. This is illustrated in Figure 5. The
algorithm iterates on the periapse to find an altitude at which
the combined half-turns from the two hyperbolas equal the
required turn. From the difference in orbital energy of the
two planet-centric trajectories at the final altitude, AV is
calculated and added to the mission total. If the required
periapse falls below the planet’s surface, an infinite amount
of AV is added to the mission total to penalize the solution.

4. Trajectory Planning to Hylonome

4.1. Hylonome’s Orbit. Hylonome is classed as a Centaur
object, having a semimajor axis that is between that of Jupiter

7
x10* Mars perifocal view
3F T T T T T T T ™
2+ i
1+ i
Total flyby dV magnitude: 2.074 km/s
E ok Q Maneuver dV: 1.420 km/s (retrograde) | |
= Gravity assist benefit: 0.653 km/s
1k 4
2L i
-3} N N N N N N N =
-1 0 1 2 3 4 5 6
(Km) x10*

FIGURE 5: Illustration of the periapse patching of the planet-centric
inbound and outbound hyperbolic orbits. Inbound is the blue
(bottom) and outbound is the red (top).

May 1,2016

FIGURE 6: Hylonome’s orbit in relation to the orbits of the planets as
referenced on 1 May 2016.

and Neptune, Jet Propulsion Laboratory [15]. Its orbit is
shown in Figure 6. Its orbital characteristics are shown in
Table 5, Jet Propulsion Laboratory [15].

4.2. Simulation Results. Hylonome was chosen as a target
due to its large orbit relative to all other asteroids and small
bodies that have been investigated to date. A direct launch
to this target would be very difficult if not impossible with
today’s rocket technology due to tremendous AV that would
be required to travel out to the target and then to match
speed with it. For this reason, a flyby of an intervening planet
would be necessary to reach the target with a reasonable fuel
allocation. The genetic algorithm was run as before for a
direct trajectory, a single flyby, two flybys, and three flybys.
Table 6 shows the best AV from all simulation types.

The best result occurred with a single flyby of Jupiter
and is discussed here in more detail. Table 7 shows the
chromosome from the single flyby case that yielded the
best results of all simulations run. It was obtained from
performing 12 runs of the algorithm. The results in Table 8
were obtained for the trajectory to Hylonome with a flyby
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TABLE 5: Orbital characteristics of Hylonome.
Element Value Uncer.talnty Units
(1 — sigma)
e .2482 3.8913e - 05
a 25.1017 0.0016667 au
q 18.8690 0.00028158 au
i 4.1442 8.9499¢ - 05 deg
Node 178.0727 0.00055742 deg
Peri 6.5554 0.0045953 deg
M 60.5576 0.0086221 deg
2449873.32
t (1995-Jun-04.82286853) 033896 JED
Period 45936.0887346103 4.575 d
125.77 0.01253 yr
n .007836 7.8052e — 07 deg/d
31.3343 0.0020805 au
TABLE 6: Mission AV to Hylonome for multiple flyby scenarios.
Direct Single Double Triple
Total AV [km/sec] 13.452 9.420 10.714 93.611
Orbiter AV [km/sec] 3.823 2.543 3.799 89.866
TABLE 7: Optimized chromosome for single planet flyby to x10° Top view of Jupiter flyby to Hylonome
Hylonome. 0.5}
;
Parameter Value 0F :‘ Earth
To November 16, 2003 00:46:14.6 UTC _05 Jupiter
n Jupiter )
dt, 679 days, 8 hours
dt, 8720 days, 7 hours E -ls
-2t .
-25¢ \\\
TaBLE 8: Single planet flyby results from Earth to Hylonome. _3 . - Hylonome
Result Value 35| el P
V, from Earth [-6.706 6.666 1.961] km/s '2 '1 (') i é -
V. to p, (~8.356 1.634 —0.093] km/s on) «10°
V., from p, [-6.492 —5.393 1.129] km/s

V., to Target [-1.913 -1.497 0.152] km/s

Total Flyby AV at p, [1.864 ~7.027 1.222] km/s
Total Flyby AV

Magnitude at p; 7.372 km/s
Maneuver AV at p, 0.000 km/s
Gravity assist benefit 7.372 km/s
Maneuver AV at Earth 6.856 km/s
Maneuver AV at target 2.434 km/s

Total AV 9.290 km/s

Total AV of orbiter 2.434 km/s

FIGURE 7: Single flyby trajectory simulation results.

gravity assist from Jupiter. Figure 7 shows the trajectory
computed.

5. Trajectory Planning to Hidalgo

5.1. Hidalgos Orbit. Like Hylonome, Hidalgo is classed as a
Centaur object, having a semimajor axis that is between that
of Jupiter and Neptune. Its orbit is shown in Figure 8. Its
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TABLE 9: Orbital characteristics of Hidalgo.
Element Value Uncer.talnty Units
(1 — sigma)
e .6611 8.6408e — 08
a 5.7388 6.3347¢ — 08 au
q 1.9451 4.9074e - 07 au
i 42.5231 2.2714e - 05 deg
Node 21.4255 1.4532e — 05 deg
Peri 56.7263 2.1274e - 05 deg
M 301.3931 8.0923¢ - 06 deg
2458417.9712
tp (2015.0ct-26) 0.0001236 JED
Period 5021.4195 8.3142¢ - 05 d
13.75 2.276e - 07 yr
n .07169 1.1871e - 09 deg/d
9.5324 1.0522e - 07 au
TaBLE 10: Mission AV to Hidalgo for multiple flyby scenarios.
Direct Single Double Triple
Total AV 13.889 8.043 11.187 29.255
Orbiter AV 7.055 0.574 7.485 25.580

944 Hidalgo

May 1,2016

FIGURE 8: Hidalgo's orbit in relation to the orbits of the planets as
referenced on 1 May 2016.

orbital characteristics are shown in Table 9, Jet Propulsion
Laboratory [15].

5.2. Results. Hidalgo was chosen as a target due to the large
inclination of its orbit to the ecliptic plane. A direct launch
to this target would be very difficult if not impossible with
today’s rocket technology. For this reason, a flyby of an
intervening planet would be necessary to reach the target with
a reasonable fuel allocation. The genetic algorithm was run
as before for a direct trajectory, a single flyby, two flybys, and
three flybys. Table 10 shows the best AV from all simulation
types.

The best result occurred with a single flyby of Jupiter
and is discussed here in more detail. Table 11 shows the
chromosome from the single flyby case that yielded the
best results of all simulations run. It was obtained from

TaBLE 11: Optimized chromosome for single planet flyby to Hidalgo.

Parameter Value

Jo November 16, 2003 00:41:08.7 UTC
A Jupiter

dt, 539 days, 4 hours

dt, 4045 days, 16 hours

TABLE 12: Single planet flyby results from Earth to Hidalgo.

Result Value
V _oco from Earth [-8.211 6.459 1.539] km/s
V_ooto p, [-12.1311.683 0.059] km/s

[-10.010 2.206 —6.700] km/s
[0.211 0.105 0.522] km/s

V_co from p,

V _oo to Target

Total flyby AV at p, [2.121 0.523 —6.759] km/s
Total flyby AV 7103 kmn/s
Magnitude at p_1

Maneuver AV at p, 0.001 km/s
Gravity assist benefit 7101 km/s
Maneuver AV at Earth 7.469 km/s
Maneuver AV at target 0.573 km/s

Total AV 8.043 km/s

Total AV of orbiter 0.574 km/s

performing 10 runs of the algorithm. The results in Table 12
were obtained for the trajectory to Hidalgo with a flyby
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FIGURE 9: Single flyby trajectory simulation results.

gravity assist from Jupiter. Figure 9 shows the trajectory
computed.

6. Trajectory Planning to Ceres: A Revisit

Finally, we revisit analysis done previously on planning a
trajectory to Ceres and provide an extension to the study of
Fritz and Turkoglu [16]. In previous work, it was noted that
the mission AV was not decreasing for every flyby added
to the trajectory. Rather, although there was a decrease in
mission AV from the direct trajectory to the single flyby
trajectory, the mission AV then increased for two flybys and
again for three flybys. This may seem counterintuitive given
that flybys are used to increase mission fuel efficiency and/or
perform maneuvers (such as change inclination) that would
be impossible to do with propulsion alone. There are two
main reasons for seeing this behavior where two or more
flybys are less efficient than a single flyby.

First, the fitness function is not presently capable of
handling all possible combinations of values in the chro-
mosomes. Examples of situations that the fitness function
cannot correctly calculate include (a) performing multiple
flybys of a single planet in a row; (b) completing more than
a single orbit prior to encountering the next target; and (c)
performing deep-space maneuvers that would optimize the
approach to flyby encounters. These limitations preclude a
number of known trajectory optimization techniques. The
first limitation in particular is a technique commonly used
to reach the outer solar system by receiving a gravity assist
from Earth one or more times after launch with no other
encounters in between.

Second, the limited date range used means that system
level synodic periods may not complete even a single cycle in
the time allowed for trajectories involving more than two or
three bodies. Figure 10 shows the angular misalignment from
an optimum configuration over time. Systems involving three

Angular misalignment of Earth-Mars-Ceres system
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Angular misalignment of Earth-Venus-Mars-Ceres system
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0 1 1 1
0 50 100 150 200

Years since optimum alignment

FIGURE 10: Illustration of the system misalignment from a presumed
optimum at year 0.

planets and the target Ceres have a synodic period greater
than even 200 years. If the system presented to the GA should
look like the time period after the 100-year mark in the third
plot of Figure 10, the GA will likely not find a solution better
than the single flyby option which has a much shorter cycle if
one is willing to approximate.

To test the second statement, the GA was set to find
trajectories to Ceres with a greatly expanded time range.
Launch dates starting as early as 1904 were included with
arrival dates ending in 2099. The GA had its parameters and
limits modified slightly to account for the reduced travel time
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TABLE 13: Mission total and orbiter AV to Ceres for 30-year time span and 200-year time span.
Single Double Triple
30 years
Total 10.971 Km/s 10.021 Km/s 16.203 Km/s
Orbiter 5.277 Km/s 6.118 Km/s 10.101 Km/s
200 years
Total 10.340 Km/s 10.365 Km/s 13.229 Km/s
Orbiter 5.457 Km/s 5.934 Km/s 8.796 Km/s

needed to reach Ceres over the Centaur asteroids discussed
earlier. All At, genes were given a minimum of one month
and a maximum of 16 months and the date range was also
widened to accommodate the new data set. The single flyby,
double flyby, and triple flyby were reexamined and compared
to the trajectories obtained with the thirty-year data. The
results are tabulated in Table 13. It is immediately obvious that
trajectories involving multiple flybys suffer from a reduced
time span in which to find a solution. For this reason, any
future work on this project should focus on removing the
shortcomings listed earlier from the fitness function. The
ability to return to the same planet two or more times in a
row alone would alleviate the time span problem by providing
many more solutions.

7. Conclusions

This paper has discussed the development and application
of a genetic algorithm to the optimization of interplanetary
trajectories to distant and unusual targets. The algorithm is
capable of converging on a physically viable solution on every
simulation, and only a very small number of simulation runs
are required to obtain confidence in the strength of the best
solution. The algorithm proved capable of reaching targets
located in the inner solar system and the outer solar system, as
well as targets whose orbits are highly inclined to the ecliptic
plane. This level of robustness was obtained with just the
most basic of genetic algorithm capabilities and with severe
limitations on the capabilities of the fitness function to assess
a valuable class of trajectories.

The algorithm, though working, could use some improve-
ments to enable better searching and refinement of results. It
has been proposed that occasional repopulating of a portion
of certain generations could aid in potentially avoiding local
minimums while minimizing the number of low population
simulations required. Improvements in the fitness function
could yield much better solutions if the capability to assess
resonant gravity assists could be added.
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