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Adaptive Appointment Systems with
Patient Preferences

Wen-Ya Wang, Diwakar Gupta

Industrial and Systems Engineering Program, University of Minnesota, Minneapolis, Minnesota 55455 :
{wenya@ie.umn.edu, guptad@me.umn.edu} E

Patients‘ satisfaction with an appointment system when they attempt to book a nonurgent appointment is
affected by their ability to book with a doctor of choice and to book an appointment at a convenient time of ;
day. For medical conditions requiring urgent attention, patients want quick access to a familiar physician. For 1
such instances, it is important for clinics to have open slots that aliow same-day (urgent) access. A major chal-
lenge when designing outpatient appointment systems is the difficulty of matching randomly arriving patients’ '
booking requests with physicians’ available slots in a manner that maximizes patients’ satisfaction as well as 3
clinics” revenues. What makes this problem difficult is that booking preferences are not tracked, may differ from '
one patient to another, and may change over time. This paper describes a framework for the design of the
next generation of appointment systems that dynamically learn and update patients’ preferences and use this
information to improve booking decisions. Analytical results leading to a partial characterization of an opti-
mal booking policy are presented. Examples show that heuristic decision rules, based on this characterization,
perform well and reveal insights about trade-offs among a variety of performance metrics important to clinic

managers.
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1. Introduction
An outpatient appointment is a contract between a
patient and a clinic by which the latter reserves a
certain amount of service providers” time and phys-
ical assets for the exclusive use of the patient who
holds the appointment. Patients’ satisfaction with
their health-care clinic is affected not only by the per-
ceived quality of medical services that they receive
during their visit but also by their appointment book-
ing experiences. Clinic managers care about having
high scores on patient satisfaction surveys because
that helps them attract new patients and negotiate
better rates with insurers. Because the vast majority
of medical appointments are booked with physicians
working in primary care clinics, we focus in this paper
on the design of primary care appointment systems.
A detailed description of the primary care service
environment is provided in Gupta and Denton (2008).
The ensuing abbreviated description focuses on fea-
tures that are central to this study.

Patients that belong to a health system choose both
a preferred clinic and a preferred physician. The lat-
ter is commonly referred to as the preferred care
provider (PCP) for the patient. The term panel is used
to denote a group of patients that has chosen the
same PCPF. Patients usually call in advance to book an
appointment. Patients” satisfaction with an appoint-
ment system when they attempt to book a nonurgent
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appointment is affected by their ability to book with
their doctor of choice and at a convenient time of day
(Cheraghi-Sohi et al. 2008, Gerard et al. 2008). Patients
also prefer a sooner rather than a later appointment
so long as it meets their time and physician prefer-
ences. For urgent medical conditions, patients want
quick access to a physician. Clinics plan for such
appointment requests and have open slots each day
that allow same-day (urgent) access.

Because appointments are booked one at a time
without knowledge of the numbet, sequence, and ser-
vice requirements of future arrivals, many clinics use
a two-step process to design appointment systems,
which we call clinic profile setup and appointment book-
ing steps, respectively. Clinic profile setup refers to
the common practice of dividing physicians’ avail-
able time on each workday into appointment slots.
All slots need not be of the same length. For exam-
ple, whereas a standard slot may be appropriate for
the vast majority of routine appointments, physical
exams and in-office procedures may require longer
slots. In the appdintment booking (second) step, the
clinic profile is known and the decision concerns
which available appointment slot to book for each
incoming appointment request. This paper is con-
cérned with the second step. That is, we assume
that the number of appointments and the length
of each appointment slot have been determined for
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each physician. Clinic profile setup may take into
account a whole host of factors, including physicians’
willingness to work overtime, no-show rates, service
time variability, and demand for physicians” slots (see
LaGanga and Lawrence 2007, Robinson and Chen
2003, Denton and Gupta 2003, Ho and Lau 1992,
Weiss 1990).

What makes the appointment booking problem (the
focus of this paper) difficult is that booking prefer-
ences are different for each patient, and they change
over time for the same patient. For example, some
patients are willing to see any available doctor if they
can have an appointment sooner whereas others pre-
fer to wait until a slot becomes available with their
PCP. Some patients are able to visit the clinic only
within a short time window because of job-related
constraints or personal schedules (Jennings et al. 2005,
Olowokure et al. 2006), whereas others can be quite
flexible. Finally, changes in work schedule, marital
status, and family size can alter a patient’s booking
pattern.

Evidence shows that clinics benefit by accommo-
dating patients” preferences. First, matching patients
with their PCP ensures continuity (quality) of care
(Doescher et al. 2004) and allows physicians to provide
more value-added services to their patients, which
increases clinics’ revenues (O’Hare and Corlett 2004).
Second, matching patients with their PCP and offer-
ing them a convenient appointment time can decrease
the number of no-shows and thereby increase opera-
tional efficiency (Barron 1980, Carlson 2002, Smith and
Yawn 1994). The above arguments provide the moti-
vation for paying attention to patients” physician and
time preferences and adapting appointment booking
practices as these preferences change. The purpose of
this paper is to develop a framework for the design of
such adaptive appointment systems. We use patient-
PCP match rate, advance-book failure rate, and the
total number of patients served as surrogate measures
for patients’ satisfaction with the appointment book-
ing system. .

We assume a known clinic profile, which may
include overbooking, and develop algorithms for
making appointment booking decisions to maximize
clinic revenue. We model each panel as a differ-
ent revenue class and allow the revenue from each

appointment to depend on whether the appoint-,

ment is with a patient’s PCP. Patients have different

acceptance probabilities for each physician and time--

block combination, and each patient may have sev-
eral acceptable combinations when he or she attempts
to book an appointment. We also model advance-
book (nonurgent) and same-day (urgent) demand.
Inadequate capacity to serve urgent demand results
in a higher cost to the health system. If a patient’s
service-time class can be ascertained at the time of

booking an appointment, then such information can
be incorporated in the proposed system by checking
that the offered appointment slot is appropriate for
the services requested. However, in numerical exam-
ples presented in this paper, the availability of such
information is not assumed.

"Booking decisions do not depend on each patient’s
individual no-show probability because such proba-
bilities are difficult to estimate from historical data.
We comment on this issue in §2 based on an analysis
of data from a large health system that had low no-
show rates. Thus, our approach is suitable for health
systems with low no-show rates. For the problem fea-
tures mentioned above, we show that certain types of
information that may be retrieved from existing Web-
based appointment request systems can be used to
estimate patients’ preferences and improve booking
decisions. Our approach may be viewed as an appli-
cation of the Bayesian learning approach for directly
estimating empirical distributions of patient accep-
tance probabilities (e.g., see Carlin and Louis 2000).
Our booking algorithm is a two-step process based
on a partial characterization of the optimal booking
decisions.

In the remainder of this section, we compare and
contrast our approach with other approaches used
to design appointment systems. A detailed review of
relevant operations research (OR) literature can be
found in Gupta and Wang (2008). Commonly used
appointment systems can be categorized into four
main types: (1) traditional systems that accept any
booking request so long as the requested slot is open
when the booking request is made, (2) carve-out sys-
tems that reserve 'a certain amount of capacity for
specific procedures or" urgent services, (3) advanced
access (or open access) systems that accommodate
patients’” appointment requests on the day they cali,
and (4) hybrid approaches that accommodate both
advance-book and same-day appointments. The tra-
ditional system allows each open slot to be booked
by any patient who happens to be the first person to
request it. This approach usually results in large back-
logs of appointments for popular physicians as well
as a significant spoilage of slots (Savin 2006). Same-
day requests are often deflected to urgent care clinics,
sent to emergency rooms, or double booked. Because
of these shortcomings, some clinics choose a carve-
out approach in which a certain amount of capacity
is reserved for later-arriving patients. Once available
capacity drops to the reservation level, a variety of
rules are used to release this capacity for specific
procedures or urgent-need patients. The urgency of
each patient’s needs is determined by a triage nurse.
Nonurgent patients generally cannot obtain same-day
appointments (Murray and Berwick 2003).
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An advanced access system is designed fo offer
each patient an appointment with his or her PCP on
the day he or she calls. In many cases, the implemen-
tation of an advanced access system allows patients
to be seen sooner and improves clinics’ operational
efficiency (Murray and Tantau 2000). However, physi-
clans are typically unable to cover all appointment
requests that arise each day and push some demand
to future days. In addition, some patients prefer to
book appointments in advance, at a time and day of
their choice, rather than call on the day they wish to
see a doctor (Gerard et al. 2008, Parente et al. 2005,
Salisbury et al. 2007). For reasons such as these, imple-
mentations of advanced access systems are not always
successful (Murray et al. 2003).

Clinics that implement advanced access systems

usually adopt hybrid approaches that allow both -

advance and same-day bookings. Gupta and Wang
(2008) provide a model of a hybrid approach in
the presence of patients’ preferences upon assum-
ing knowledge of the conditional probability that a
patient belonging to physician I's panel, after calling
in period t and observing the state of the appoint-
ment system s, will request an appointment for slot j
of physician i, for each i, j, 5, t, and . The study
shows that the optimal policy for a single-physician
clinic is a threshold-type policy so long as patient-
choice probabilities satisfy a weak condition. The
authors also partially characterize the structure of an
optimal policy for multiple-doctor clinics. This work
provides insights into the importance of modeling
patients’ choices in the primary care setting. However,
patient-choice probabilities are not easily obtained
from appointment records, and patients generally do

not have complete knowledge of the system state
when requesting an appointment. We address both
these issues in this paper.

In Table 1, we compare this study with some recent
papers in the appointment scheduling (AS) literature
in terms of (1) the objectives of the study, (2) patient
classification scheme, (3) key model assumptions, and
(4) performance criteria that drive parameter selec-
tion. Each major attribute is further divided into
subattributes, which we describe next. Study objec-
tives may consist of one or more of the follow-
ing: clinic profile setup (1.a), booking decisions (1.b),
learning /adaptive approach for improving booking
decisions (l.c), and comparison of different system
designs (1.d). Furthermore, clinic profile setup may
be static or dynamic and include one or more of the
following decisions: number of of appointments per
slot/session/day (l.a.i), appointment intervals/start
times (l.a.ii), panel sizes (l.a.ii), and sequencing
groups of appointments (L.a.iv). The decisions at the
appointment booking stage include whether to accept
a patient’s request (1.b.v), which slot to book (1.b.vi),
which appointment day to book (Lb.vii), whether
to reserve capacity for same-day/urgent demand
(Lb.viii), and how to sequence individual appoint-
ments (1.bix).

Patient classification may be based on revenue/
costs (2.a), patient preferences (2.b), no-show
rates (2.c), service time distribution (2.d), and same-
day versus advance-book requests (2.e). Classification

typically helps improve capacity allocation decisions. .

Key modeling assumptions concern no-show pat-
terns (3.a), the decision stage at which no-shows
affect AS design (3.a"), service time randomness (3.b),
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patients’ punctuality (3.c), and patients” prefer-
ences (3.d). Patterns of no-shows may be homoge-
neous (3.a.1), patient characteristics dependent (3.2.2),
lead time dependent (3.a.3), and zero no-shows
(3.a.4). No-shows may be modeled at the clinic pro-
file setup stage (3.2".I) and/or appointment booking
stage (3.a".II). Performance criteria used to select AS
parameters are revenue/cost (4.a), patient-PCP match
(4.b), booking failure rate/utilization (4.c), patients’
wait (4.d), and physicians” idle/overtime (4.e).

Studies reported in Table 1, except Liu et al. (2010),
focus on single session/day appointment problems.
Liu et al. (2010) assume that patients have no pref-
erence for a particular appointment day and that the
clinic decides which day to book after taking into
account system state and lead time dependent no-
show probabilities. In the proposed adaptive appoint-
ment system, advance-book patients first pick a
desired appointment date. Booking decisions are
made separately for each day and depend on the com-
binations of physician and appointment time blocks
that are deemed acceptable by patients on the chosen
date. It also reserves capacity for same-day requests.
The proposed approach is novel because it learns (1.c)
and utilizes patients’ preference information (2.b) in
the booKing process and because it prioritizes patient-
PCP match (4.b).

Because our approach considers patients’ prefer-
ences and learning, discrete choice models such as
probit or logit models that have been studied exten-

. sively in economics, marketing, and OR literatures are

also relevant. These methods usually derive choice
probabilities from the assumed utility-maximizing
behavior of individual decision makers. Each deci-
sion maker, upon receiving an offer of a choice set,
selects one of the alternatives in the set. The individ-
ual choices are then aggregated to obtain group-level
measures of choice, e.g., the probability that an arbi-
trary member of the group will choose a particular
option in the choice set. McFadden (2001) and Train
(2003) present extensive surveys of discrete choice
models and Talluri and van Ryzin (2004) present
customer-choice models in revenue management. The
contrast between revenue management studies and
our approach can be explained in terms of the own-
ership of the choice set and booking decisions. In the
former, the choice set is determined by the service
provider and customers decide which product to pur-
chase, whereas in our framework each patient (cus-
tomer) reveals an acceptable set of slots and the clinic
(service provider) decides which slot to book.

The remainder of this paper is organized as follows.
In"§2, we present empirical evidence that supports
the proposed model. Model formulation is presented
in §3. Then we analyze properties of optimal book-
ing decisions and present two heuristics to help clin-
ics make real-time boeking decisions in §4. Section 5

contains an evaluation of the impact of patients’ pref-
erences on different performance metrics, including
those that are affected by no-shows and service time
variability. Section 6 concludes the paper.

2. Analysis of a Health System’s

Appointment Data

We studied appointment processes of a large health
system and obtained historical appointment data con-
cerning 37 primary care clinics that operate in urban,
suburban, and rural areas. We analyzed these data to
guide the choice of model features in §3. The data
covered appointment times with a range of 13 months
that were booked over 18 months. It contained
1,461,948 records pertaining to 377,284 patients. The
data elements were blinded medical record num-
ber (MRN), date and time of call and appointment,
blinded PCP ID and provider ID (provider was the
doctor that actually saw the patient for that appoint-
ment), age category, insurance status, five-digit zip
code for each patient’s address on file, and clinic loca-
tion. Patient ages were divided into five-year intervals
to obtain age categories.

The data reveal that both the panel size and its age
distribution are different for each physician. Although
we did not have access to revenue data, publicly
available data support a strong correlation between
patients’ age and the different types and costs of ser-
vices they need (U.S. Bureau of Labor Statistics 2008).
This jimplies that both the demand and the expected
revenue generated by patients of different panels are
different. To make our point, we show distributions of
patients” ages, loyalty (determined by the proportion
of patient-PCP matched visits among that patient’s
past visits in 10% increments) for three physicians’
panels in our data set in Figures 1(a)-1(c). Chi-square
tests showed that the distributions of age, loyalty, and
time preferences were significantly different for dif-
ferent panels (p-values were <0.0005 in each case).
Moreover, the number of unique MRNs-within the
13-month data for the three panels were 495, 719, and
1,631, respectively, which suggests that panel sizes
also differ by physician.

We recognize that realized appointment times may
not reflect true time preferences because booking suc-
cess is also affected by the availability of requested
slots. For example, it is possible that Physician 2
rarely works after 4 pM. and that patients in his
or her panel have adapted by accepting morning
appointments. However, it is also possible that service
providers respond to patients’ needs. For example,
families with teenagers and young adults often pre-
fer appointment times after school hours, so as not to
disrupt school attendance. Physician 1 may have cho-
sen his or her work pattern with more availability in
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Figure 1 Evidence from the Analysis of Data from 37 Clinics
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Notes. In Figure 1{a), group 15 includes all patients who are 70 years of age or older. Figure 1{b} shows the proportion of panel patients that belonged to a

higher foyalty class for patients with more than three encounters.

the afternoon in response to such demand. Irrespec-
tive of the underlying root causes, Figures 1(a)}-1{(c)
serve to highlight that panels provide a reasonable
means by which to define revenue classes and aggre-
gate patients’ preferences.

Next, we investigate the ability to predict patient-
specific no-show probabilities from a data set such as
ours. We first excluded canceled appointments from
our data because the vast majority of the slots freed
up in this fashion are rebooked. This resulted in a
1,171,950 encounters. Two factors that have been iden-
tified in previous studies are (1) history of no-shows
and (2) appointment lead time (i.e., the time between
the appointment request and the appointment date).
It has been suggested that patients with a history
of no-shows are more likely to be a no-show and
that longer appointment lead times increase the likeli-
hood of no-shows (see Dove and Schneider 1981, Lee
et al. 2005, Gallucci et al. 2005, Whittle et al. 2008).
Figure 1(d) shows that appointment delays are not

significantly correlated with no-show rates in our data
(Pearson correlation test shows no significant correla-
tion with p-value > 0.4). A similar conclusion is also
reached in Snow et al. (2009), Starkenburg et al. (1988),
Irwin et al. (1981), Fosarelli et al. {1985), Neinstein
(1982), and Dervin et al. (1978).

Turning to the history of no-shows, our data
contained appointment times that ranged over
13 months. Therefore, we normalized the number
of appointments per patient to a yearly basis and
found that more than 75% of the patients in our data
had fewer than four appointments per year, which
would make it difficult to estimate individuals’ no-
show probabilities reliably. We believe such estima-
tion problems could arise in many practical settings.

Finally, the overall no-show rate for the 37 clinics
is 4.06% for all appointment and 2.97% for patient-
PCP matched appointments. The overall patient-PCP
match rate was 45.7%. This implies that there may
be a substantial opportunity to reduce no-show rates
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further by increasing patient-PCP match rates, which

the adaptive appointment system is designed to do.

3. Model Formulation and

Assumptions

The vast majority of large health systems operate
call centers where patients call to book appointments.
With the adoption of electronic medical record (EMR)
systems, however, many health systems are also able
to provide a parallel Web-based option to patients
for requesting nonurgent appeintments. Patients are
instructed to call if their needs are urgent. Similar
instructions may also apply for special appointments
such as physical exams and in-office procedures that
take more time and for which physicians reserve
specific slots in their daily schedule. It is gener-
ally believed that Web based systems will become
the primary means by which patients book nonur-
gent appointments in the future. Therefore, our model
assumes the availability of real-time data from a Web-
based system. We illustrate the types of information
that can be obtained from existing Web interfaces in a
mock-up in Figure 2. This mock-up is fashioned after
existing systems familiar to the authors. However, it
is not an exact replica of any particular system.

In the mock-up, a patient indicates a preferred
appointment date and acceptable combinations of
physicians and time blocks. Clinics use time blocks
rather than individual time slots because patients
tend to have similar acceptance rates for time slots
within each half-hour or one-hour time block. Note
that our formulation allows clinics to choose arbitrary
block size and number of slots in each block. That is,
appointment lengths may not be uniform and may
depend on anticipated service-time class and no-show
rates. Upon receiving a patient’s request, the clinic
considers any checked combination of the blocks of
time and physicians to be acceptable to the patient
on the chosen day of appointment request. The clinic
either books an appointment in one of the combina-
tions indicated by the patient or responds that none
of the requested combinations are available. Patients

Figura 2 A Web-Based Patient-Clinic Interface
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are encouraged to try a different date if their request
is denied.

To increase clinics’ flexibility in scheduling patients
in a manner that maximizes patient-PCP match and
revenue, patients are asked to provide their accept-
able sets but not rank their preferences among. the
acceptable combinations. If patients were asked to
rank their preferences, clinics would be obligated
to book appointments in the most preferred and
available slots first, which would prevent them from
keeping more capacity available in more popular
combinations.

The proposed adaptive appointment system has
two components—a component that updates esti-
mates of acceptance probabilities and a component
that makes booking decisions after receiving patients’
requests. Below we describe each component in a
separate section. Each section states model assump-
tions first and then presents a formulation. We show
in §3.2 that for making booking decisions, clinics only
need to estimate panel-level acceptance probabilities.
Therefore, §3.1 deals only with panel-level probabil-
ities. Throughout the paper, we use m to denote the
number of physicians and b to denote the number of
time blocks on a workday.

3.1. Learning Acceptance Probabilities

Given that Web-based options similar to that in
Figure 2 are in existence today, our approach mod-
els each patient’s preferences in terms of acceptance
probabilities. For each physician indexed i and time-
block indexed j, the probability that the kth patient in
physician s panel w1ll find combination (i, j) accept-
able is denoted by p; ¥, Purthermore, we assume that
physician and time pneferences are mdependentlzr
captured by terms a;* and B’ ¥, with p

This is consistent with the unphed decomposmon of
physician and time preferences in Figure 2. From a
technical viewpoint, it is possible to generalize our
approach to situations where acceptance probabili-
ties do not have the multiplicative form that we
assume. However, we did not find any evidence to
suggest that the multiplicative form is an unreason-
able assumption.

We assume that each patient reveals his or her true
acceptable set in each request (prior to receiving an
appointment) and that each booking attempt is an
independent draw from a patient’s preference distri-
bution. The first assumption is based on the argument
that if a patient’s utility from booking an appointment
for a particular physician and time-block combination
is higher than the utility from not booking an appoint-
ment, then the patient will include that combination
in his or her acceptable set. The second assumption is
based on anecdotal evidence that patients’ time pref-
erences vary by calendar day.
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As shown in §3.2, booking decisions depend only
on panel—level acceptance probabilities p! ;= a8,
where af and B} are the physician  and block j aceep-
tance probabllmes for panel I. We propose direct esti-
mation of these probabilities; see §A of the online
supplement for details. This is not the only way
to estimate patients’ choices. A parallel utility-based
model can be constructed as well, and subsequently
its parameters can be estimated. It can be shown that
the strong independence of attributes assumed by
clinics (as implied by Figure 2} leads to an equiv-
alent model with similar estimation effort. We pro-
vide details of this alternative approach and compare
it to the proposed approach in §B of the online
supplement.

3.2. Making Appointment Booking Decisions

At the time of booking appointments, clinic profiles
exist for all future workdays on which appointments
may be booked. The model that is used to obtain
a partial characterization of optimal booking deci-
sions also assumes that patients and physicians are
punctual, patient no-show rates are negligibly small,
and all same-day patients call before the start of the
day. The existence of clinics with relatively low no-
show rates has been documented in the literature
(see, e.g., Cayirli and Veral 2003) and supported by
our data (see §2). However, some clinics are also
reported to have high no-show rates, and the pro-
posed adaptive appointment system design may not
be the best choice for such clinics. Clinics typically
count all requests received within 24 hours before the
start of a workday as same-day demand. This makes
it reasonable to assume that same-day demand is real-
ized just before the start of each workday.

Our model considers each workday’s appointment
booking problem separately. This is justified, in part,
by assumptions in §3.1 that patients’ preferences may
differ by calendar day and that patients are encour-
aged to try other dates if earlier booking attempts
fail. Because the clinic profile is assumed known, the
clinic’s objective function considered in this section
does not include patient wait times and physician
overtime, which are caused by service time variabil-
ity, and choices of appointment lengths and overbook-
ing. However, when evaluating different heuristics
in §5, we also compare these metrics for different
approaches.

The following information is needed to make
booking decisions: (1) patients’ acceptance proba-
biliies and arrival rates at the panel level; (2)
clinic’s average revenue, by panel, of each PCP
matched /mismatched appointment; (3) average costs
of delaying an advance-book and same-day appoint-
ment; and (4) each physician’s same-day demand
distribution. We define the inputs to the booking

Table 2 Inputs of the Booking Decision Model

X, Same-day demand for physician /
X: Total same-day demand; X = 337, X;
k= (ry): Matrix of capacity of each combination (/, /) of physician and time-
block combination
s =(s;): Matrix of number of appointments that have been baoked for (/, /)
combinaticn
. Physician i's capacity; &, = ):H Ky
: Clinic's capacity; R = Y7, & 8
: Physician i’s booked appointments; §, = X!, 15 -
: Number of booked appointments at the clinic level; § = r 5
. Average revenue of a PCP matched advance-book panel /
appointment
: Average revenue of a PCP mismatched advance-book
panel / appointment, j £/
r,: Average revenue of a PCP matched same-day appointment
1. Average revenue of a PCP mismatched same-day appointment
m,: Time-dependent average penalty induced by a failure to satisfy an
advance-book request
¢ Average cost of insufficient same-day capacity
. Number of potential advance-book appointment request epochs
for & parlicular workday
t: An arbitrary advance-book appointment request epoch
Af: The probability of having an arrival from physician /s panel at
epoch ¢
aj: The probability that an arbitrary panel / patlent’s set of acceptable
physicians is /
8%: The probability that an arbitrary panel / patient's set of acceptable
time blocks is J
pﬂl ;. The probability that a panel / patient’s acceptable combinations are
(1, J% b}, = o} B

o 1
T e x, &

-

decision model in Table 2 and explain model fea-
tures below.

In reality, patients” true acceptance probabilities are
unknown. Therefore, we propose to use the best avail-
able estimates of acceptance probabilities at each deci-
sion epoch (from the updating procedure of §3.1).
This can be justified because the updating procedure
is independent of booking decisions and converges
quickly to the true acceptance probabilities. Unit rev-
enues from each booked appointment satisfy the fol-
lowing inequalities: r{ , > #| | for each | and i #/,
and r, > r;; see O'Hare and Corlett (2004) for sup-
porting evidence. Same-day visit revenue does not
depend on panel index because these appointments
are usually for acute symptoms for which the treat-
ments offered are more likely to be independent of
panel characteristics.

The time between the start of advance-book re-
quests for each workday and that workday is divided
into 7 intervals such that the probability of obtaining
more than one arrival in each interval is infinitesi-
mally small. Time is counted backward. Specifically,
advance bookings, occur from period 7 to period 1
and all same-day bookings occur in period 0. Because
patients who try to book appointments must have at
least one acceptable combination, neither I nor | is an
empty set.
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In our model, the penalty for denying a patient’s
appointment requests # time periods before the
appointment date is assumed to be different (smaller)
from the penalty for doing so (n-d) period before the
appointment date, where d = 1. This makes sense for
two reasons. First, patients who call well in advance
are generally more particular about their time and
physician preferences. The clinic harmonizes its book-
ing practices with this behavior by setting =, <
g, ¥d > 1. Second, this assumption leads to a fair
allocation of slots as we shall show in §4.1.1. In partic-
ular, this means that if a physician ! patient’s request
for a particular combination is denied in period (n+4d)
given a particular system state, then another physi-
cian [ patient’s request for that combination will be
denied in period n as well for the same system state.

Researchers have made a variety of attempts in
recent years to estimate the cost of patient wait-
ing (terms ¢ and w, in our models). For example,
Yabroff et al. (2005) and Russell (2009) estimate the
cost of patient waiting based on wage rates whereas
Robinson and Chen (2011) provide an observation-
based method for estimating the relative cost of cus-
tomer waiting time. Clinic administrators can either
perform a study similar to those reported in the liter-
ature or use the results in these papers to guide their
choice of patient waiting costs.

We are now ready to set up the clinic’s revenue
function for the appointment booking problem. For
this purpose, it helps to conceptualize the availability
of different levels of information about the arriving
patient. Specifically, we identify three levels of infor-
mation and label them the (1) patient-level, (2) panel-
level, and (3) clinic-level. At the patient-level, known
information includes the patient label (/, k) (ie., the
arrival in period ¢ is the kth patient in physician s
panel); the system state s; and the patient’s acceptable
set (I, ]). In contrast, panel-level information consists
of the arriving patient’s panel index and the system
state, whereas the clinic-level information includes
only the system state

We use notation u;*(s), u 1(s), and u,(s) to denote
the maximum expec’ted revenue from time f onward
given patient-level, panel-level, and cliniclevel infor-
mation, respectively. With this notation in hand, the
following recursive relationship holds:

0t 6) = max (vt (5 ) ta () =l 1)
where ¢; ; is an m x b matrix with the (i, j)th entry
equal to 1 and all other entries equal to 0. The
first two terms in the curly brackets above capture
the benefit of accepting the patient’s request for the
(i, j) physician and time-block combination, whereas
the next two terms capture the benefit of reject-
ing the patient’s requests. Equation (1) suggests that

the clinic should accept a slot, say (i°%*, /"), among
the arriving patient’s requests (I, J) for which # , +
w_1(s +¢ ;) = u,_,(s) ~ m, and the clinic’s revenue is
maxmuzed That is, (i°%", j°P') € argmax; 5o, ;){rl [+
Uy (s-+ey): nytu(ste, ;) = 4y (s} —m]}. Ties may
be broken arbitrarily.

Using a logic similar to that behind Equation (1),
revenue functions with panel- and clinic-level infor-
mation can be written as follows:

u (b)— Z pi,;(

all {,))

ax {r 1,!'5‘“:“1(5‘&'5: e o (8)—m ).
2

u,(s)= ZM 15)""(1 i‘*)”f 1(8)- 3

=1

i,j)ed. )

Upon comparing (1) with (2), we observe that the
decision rule for accepting or denying a particu-
lar (i, j) request is the same for all patients in the same
panel. This arises because the arriving patient’s infor-
mation does not affect the clinic’s valuation of its ben-
efit from saving each combination for future arrivals.
Similarly, upon comparing (2) and (3), we observe that
the revenue function with clinic-level information is a
weighted sum of revenue functions with panel-level
information.

Next, we turn to the revenue function correspond-
ing to same-day requests, which has a different form
because all same-day requests are assumed to arrive
just before the start of the workday. In the model,
we assume that we can optimally match them with
available capacity. Therefore, it suffices to define the
same-day revenue function with clinic-level informa-
tion only, as shown below.

i=1

t(s) = {ame{XH(x &)

i=1 i=1

s z(,e,._g,_x,-)t):(x,-ﬁfc,-ﬂfr]

—c(éx,-—é(ﬁi~§f))+]. (4)

In Equation (4), the first term is the expected revenue
from same-day patient-PCP matched visits, the sec-
ond term is the expected revenue from mismatched
visits, and the third term is the expected cost due to
excess same-day demand.

4. Analysis

The formulation of the appointment booking decision
problem in §3.2 has a high-dimensional state space,
which precludes the use of real-time and stored solu-
tions of the stochastic dynamic program for every sys-
tem state in each period. In what follows, we show
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Table 3 An Ordering of Blocks from the Clinic’s Perspective

Case 1 Case 2
Block Block Block  Block Block Block Block  Block
t 5 i 2 3 4 t s 1 2 3 4
13 (3,0,0,0) i 1 1 2 13 (0,0,0,3) 1 ' 2 3 4
8 (3,20,4) i i NB — 8 (4203 — 1 1 NBE
1 (3,331 NB NE NB  NB 3 (1,333 NB NB NB NB

hl

with the help of an example that there is no pattern
or structure to booking decisions.

Consider a single physician clinic with four slots
each in four time blocks. We omit the physician
label for simplicity. The panel-level acceptance prob-
abilities for these blocks are 8 = (0.1,0.2,0.6,1).
Other parameters are (1], 7, c, T, A, 7) =
(6,6,10,5,0.7,5,16), where 7, = 7 and A, = A for
each i =1,...,
same-day demand, which is assumed to be Poisson
distributed. The expected total demand is 16.2,
whereas the total capacity is 16. Because this problem
has a small state space, we are able to solve the
underlying stochastic dynamic program to obtain
an ordering of slots from the clinic’s perspective for
each system state and decision epoch. If the optimal
decision is to deny the request for time-block j in
every decision epoch at and after time ¢, then we say
the system is in a no-book (NB) state for block j. In
Table 3, the best slot to book for an arriving patient
is the highest ranked available slot that is acceptable
to the patient and that is not designated NB.

We use two cases, each with three examples, to
illustrate how an optimal decision may depend on
the remaining capacity, time preferences of future
arrivals, and the acceptable set of the next appoint-
ment request (see Table 3). In the first example, t =
13, and the total remaining capacity is 13. For Case 1
(state s = (3, 0, 0, 0)), the clinic's first choice is to book
either block 1, 2, or 3, and the second choice is to book
block 4. For Case 2 (state s = (0,0, 0, 3)}, the rank
order of available time blocks is as follows: 1 > 2 = 3
> 4. That is, a patient whose acceptable set includes
blocks 1 and 3 may be booked into either block 1 or 3
in Case 1, but only in block 1 in Case 2. In the second
example, when f =8 and the total remaining capac-
ity is 7, block 3 (respectively, block 4) is a NB block
if $=(3,2,0,4) (respectively, s = (4,2,0,3)), and a
patient whose acceptable set includes blocks 1 and 3
will be booked into block 1 in Case 1 and block 3 in
Case 2. In the third example, ¢ = 3, the total remaining
capacity is 6, and the clinic is in a no-book state for
all blocks for both cases.

These examples show that the optimal decision
depends in a nontrivial fashion on the vector of
remaining capacities, the index of the decision epoch,
and acceptable sets. In addition, certain blocks are

7, and u is the arrival rate for the -

designated NB, which means that they are reserved
for future same-day demand. The complexity of deci-
sions increases when there are multiple physicians.
Therefore in the next section, we characterize certain
properties of optimal booking decisions, which are
subsequently used to construct heuristic sclutions.

4.1. Properties 6f Optimal Booking Decisions

For modeling convenience, we may think of the book-
ing decision as a two-step process. Given that a
panel I patient makes a booking request in period ¢

. with acceptable set (I, ), the clinic in the first step

identifies sets of mo-book states S' for each i € I,
i.e., states in which a panel ! patient’s request for an
appointment with physician 7 is denied irrespective
of . If the current state is in the set of no-book states
for all physicians in I, then the requesting patient is
asked to try another date. However, if the process
proceeds to the second step, then the clinic decides
which of the acceptable and available appointments to
book. That is, in stage two, the clinic ranks available
(i, /) combinations in (I, J). It is also possible at this
stage to deny a patient’s request. Denials may happen
either when the intersection set of patients’ requested
appointments and available appointments is empty
or when the clinic earns a greater expected rev-
enue by protecting specific appointments requested
by the patient for future arrivals. This two-step pro-
cess can be operationalized by developing procedures
for identifying no-book states and procedures for rank
ordering requested appointments (from the clinic’s
viewpoint) when the system state is not in the no-
book set. We obtain partial solutions for these two
tasks in §84.1.1 and 4.1.2, which form the basis for the
heuristics proposed in §4.2.

4.1.1. No-Book States. In this section, we obtain
Si' for t =1, and for + > 1 we identify a set of
states 5}’ such that §}' c 5"’ We also show that for
t>2, when T > My (wl'uch we assume), §i*' € 841
That is, patients who call earlier encounter smaller
sets of no-book states.

Consider a time f decision epoch when the kth
panel [ patient makes a booking request, and assume
that there will be no more future advance-book
requests after this decision epoch. Let (I, ]) denote
this patient’s acceptable set of appointments. Then the

e e e e
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clinic’s decision problem is encapsulated in the fol-
lowing revenue function:

“i'k(s) & (f,%’;"%f”{ﬁ],r +uy(s + f—’i,j)r ty(s) — m}

The above revenue function is identical to (1) when
t=1. For { > 1, the difference is that the right-hand
side contains u, instead of u, , because we assume
no advance-book arrivals after period t. The clinic
should consider booking an appointment for a panel !
patient if there is at least one (i, j) combination such
that ug(s) —ug(s+e; ;) <7j ;+ 7.

Let F(-) and F(-) denote the CDF of physician
i’s and clinic’s same-day demand, respectively. Upon
rearranging the terms in Equation (4), we obtain
ug(s) = 1E(X) — 1, 370 E(X) — &y +8)" + 15 311 E(ky —
§=X)t —nE(k -5-X)* —cE(X —x+35)*. Let 5
be the total number of slots booked for all physicians
except physician 7. After a few more steps of algebra,
the marginal benefit for reserving a physician i's slot
in the last period can be further simplified to

A5 5.5) = ug(s) —up(s+e;,5)
=rntec—(n—n)EK ~5-1)

— (b +c)F(k—5 -3 ;—1).

Same-day patients do not have time preferences.
Therefore, the value of A(5;, 5_;) does not depend on
which block j is being considered.

_ Let 4; and 4_;, respectively, be the number of avail-
able slots of physician i and the clinic not including i.
Because CDF is a nondecreasing function, for any
fixed value of §_;, A(§;, 5_;) increases in §;. Therefore,
there exists a protection level al(s) = min{d; A(k; —
a8 ;) > r{',, + m, given 4; > 0 and fixed §_;] such
that no physician i slot should be booked for a
panel | patient if k; — 5 is less than al(s). Similarly,
for any fixed value of §,, A(5;, 5. ;) increases in §5_,,
which implies that there exists a protection level
ay(s) =min{a_;: A(§;, k_;—a_;) > 11 4+ givend_; >0
and fixed 5;} such that no physicién i slot should be
booked for a panel [ patient if the remaining clinic
capacity, not counting physician i, is less than ' ,(s).
Similar protection levels also exist with convex cost of
unmet same-day demand (see §C of the online sup-
plement fer details).

ProrosiTioN 1. Given a panel 1 patient’s booking
request for an appointment with physician i at decision-
epoch t and no more advance-book requests after t, the set
of no-book states is St ={s: &, — § < al(s)}.

An immediate’ corollary of Proposition 1 is that
St = 5 forweach (i, I) pair because after t = 1, there
are indeed no more advance-book requests. Also, the
booking decision for a type [.arrival regarding a

physician i's slot depends on the current state of the
clinic only through ai(s) and a',(s), which leads to
a two-dimensional booking profile. Gupta and Wang
(2008) obtain a similar result when advance-book rev-
enue is independent of panel index. However, in their
paper, all open slots of a physician are equally val-
ued and are made available to the arriving patient so
long as the remaining capacity is higher than the pro-
tection level. In our framework the protection level
serves only as an availability check in the first step
of the booking process. We refer the reader to §D of
the online supplement for an example that identifies
no-book states for a two-physician clinic.

ProrosrrioN 2. The set of no-book states assuming no
more advance-book requests is a subset of the true set of
no-book states, i.e. S’ € S}'*, and if m, is nondecreasing in
t, then S¥' c §i-!.

A formal proof of Proposition 2 is included in §E of
the online supplement. On an intuitive level, the first
part of this proposition holds because when there are
no more advance-book requests, there are no compet-
ing advance-book requests for the same slot. The only
demand for a slot is from same-day requests. There-
fore, the protection level after making the assumption
of no more advance-book requests is never greater
than the true protection level when advance-book
requests do occur. The second result follows because
higher cost of denying a patient’s request leads to
lower protection levels.

4.1.2. Rank Order of Appointment Slots. Con-
sider a single-physician clinic with block j capacity «;
and state s;. In this section, a block is deemed avail-
able when 3; < k; and the current state s is not in the
set of no-book states. We analyze this simpler prob-
lem instance because in this case an advance-book
patient’s request is denied only when it is optimal
to reserve capacity for same-day patients. This hap-
pens because each advance-book appointment results
in the same revenue. This means that when there is a
single physician labeled /, 5} =5, for each t. A formal
argument is provided in §F of the online supplement.

The clinic faces the problem of deciding which of
the requested appointments in the acceptable set | to
book. We consider only those instances in which for
at least one j € ], s; < ;. If there is at least one block
j €] such that x; —s; > 7 — t and state s is not a no-
book state, then it is straightforward to show that the
clinic can book the patient in block j without affect-
ing its ability to book future patients because all those
patients still have a chance to book block j. Similarly,
if the system is not in a no-book state and there is -
only one j € | such that k; —s; > 0, then a slot in
block j should be booked. This means that a clinic
needs guidance only when Kij—§ <T—t for all §, and
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there is more than one acceptable block with remain-
ing capacity. We focus on such cases in the remainder
of this section.

Let ¢(s) =1 — [T}, «,(1 — B;) be the probability
that at least one time block is acceptable to an arriv-
ing patient and has remaining capacity when system
state is s and consider a decision epoch after which
the clinic expects at most one additional advance-
book arrival. Suppose that the patient’s acceptable
set includes blocks j and k, both of which have at
least one open slot. The clinic may then base its
decision on the value of ¢(s). The higher the value
of ¢(s), the higher the chance of satisfying a future
arrival’s request. The clinic may consider the relative
magnitudes of ¢(s +¢;) and ¢(s + ) when decid-
ing which block to book. When both j and k have
exactly one remaining slot, it may also consider the
relative magnitudes of 8; and B;. The above informal
arguments are formalized in Proposition 3; a proof
of Proposition 3 can be found in §G of the online
supplement.

Prorosrmion 3. When choosing  between blocks
and k, the clinic prefers to book in block j so long as B; <
Bi and §(s +¢;) > ¢(s + ). Mathematically, if B; < B
and ¢(s+e;) > P(s +e,), then u,(s+e;) = u (s +¢) for
all t = 1.

Proposition 3 gives a partial ordering of accept-
able time blocks of a single physician. It suggests
that among the available and acceptable combina-
tions, a particular block is more likely to be a clinie’s
top choice if it has greater remaining capacity and if
assigning a slot in that block has a smaller effect on
the clinic’s ability to meet future demand. It is difficult
to show a similar result when multiple physician’s
slots are being compared because of different time-
preference patterns of patients belonging to different
panels and because of different revenue rates. How-
ever, we use insights from Proposition 3 to develop
a metric, ¢q; ;, to rank order available and accept-
able blocks from the clinic’s viewpoint. This metric is

used in heuristic rules for making booking'decisions

(see §4.2).
We define ¢ ; as a measure of popularity of each
(i, j) combination when «; ; —s; ; > 0 in period ¢ as

follows: &

q; ; EAZPI i i —8,5) {5)

The numerator of (5) is the expected number of times
that (i, j) combination will be included in the accept-
able set by panel i patients in the remaining advance-
book periods, and the denominator is the remaining
capacity of the (i, j) combination. The popularity mea-
sure does not account for anticipated demand from

nonpanel patients because both heuristics proposed
in the next section glve priority to achieving high
patient-PCP match.

4.2, Heuristic Approaches

We present two heuristics (H1 and H2) that utilize the
popularity index in (5) and give priority to matching
patients with their PCP. In describing the heuristics
below, we assume that a panel ! patient has tendered
an appointment request with acceptable set (I, f) and
that the system state is s. The booking decisions gen-
erated by H1 and H2 are appealing on an intuitive
level for two reasons. First, because 7{ > rfori#l,
and there are a variety of other benefits of matching
patients with their PCP, it is reasonable to strive for
a high patient-PCP match. Second, because any com-
bination in (I, J) is acceptable to the patient who ten-
dered that request it can be beneficial to reserve slots
with higher q, values for future patients.

H1 books an appointment so long as the intersec-
tion set of open slots and (I, J) is not empty. That is,
H1 assumes that the set of no-book states is empty.
It attempts to first book a patient with his or her
PCP. If multiple PCP slots are open and included in
/, then H1 books a slot with the smallest value of g .
If none of the acceptable PCP slots are avmlable, then
H1 books the slot with the smallest value of 4] ;, i # I,
among all non-PCP slots in the acceptable set.

H2 calculates S’ and only considers physicians i
included in I for which s g §". Upon ascertaining that
s¢ S, H2 attempts to first book a patient with his or
her PCP. If multiple PCP slots are open and included
in ]’, then H2 books a slot with the smallest value
of g ;. If none of the acceptable PCP slots are avail-
able, then H2 books the slot with the smallest value
of g; , i#1, among all non-PCP slots in the acceptable

set for which s ¢ 5§/, The key difference between H1
and H2 is that H1 does not protect slots for same-day
demand.

4.3. Tests of Performance of H1 and H2

For the single physician example presented at the
beginning of §4, the expected daily revenue evalu-
ated at the beginning of the advance-book period,
when the system starts empty and we use H1 and
H2 to make booking decisions, turns out to be 99.76%
and 99.81%, respectively, of the optimal expected rev-
enue. This suggests that the performance of H1 and
H2 is reasonable in problem instances with a single
physician.

However, problems with multiple physicians are
not tractable and the corresponding optimal expected
revenue cannot’be determined exactly. Therefore, we
compare. the expected revenues obtained from the
two heuristics to the expected maximum attainable
revenue, which is an upper bound. To calculate this

+ % weeme wr we Teee
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: bound, we simulate sequences of advance-book and Table4  Time Dominant

. same-day arrivals and then use an integer program, | o g e 8 5
shown in §4.3.1, to calculate the maximum attainable ! ' : : ¢

: revenue for each sample path. 1 1 02 04 06 1

) s . 2 1 1 0.5 0.5 05

: I 4.3.1. Maximum Attalrlable Revenue. Let K 0dd />3 1 1 0.5 05 0.3

| i (respectively, K;) be the set of decision epochs with Even / > 4 1 03 0.5 05 1

- an arrival from an arbitrflry panel (respectively,

* panel ). I addifion, el bij = 1% (1'} ) physmlan Table5  Physician Daminant

3

and time-block combination is acceptable to the
advance—book patient who arrives in period ¢ and !

at ,j =0 otherwise. Let x; denote the realized same—day
demand from panel I. The decision variables are yl
and o; ;, where vl ; is the number of slots that belong
« to the (i,j) combination and that are assigned to
same-day panel ! patients. Furthermore, of ; =1 if the
clinic assigns a slot of the (i, j) combination to the
patient who arrives in period £, and o ; =0 otherwise.
Let M(I) be the set of physicians excluding I. Then
the maximum attainable revenue of a sequence of
arrivals can be obtained by solving the following
integer program.

! ! f
Qodg oyen ﬁ ]

Odd / 1 03 1
Even / 0.3 1 1

Table 6 Moterate

- PONCIT T

Prip <t

/ / i
/ Xod Tovon Blas aven

Odd / 1 04 1 0.4
Even { 04 1 04 1

fea: w -

[N —— L

demand/average capacity = 85%, 90%, 100%, 110%,
and 115%); (3} two types of panel loads (homoge-

m b i b
i maXZZZT{,rUiﬁZ X erll,rof,;

I=1 j=1tek; I=1ieM(l) j=1tek]
m m b m b
!
Yy a(1-X%d,) + X2,
=1tk i=1j=1 1=1j=1
m b y m m om b
i
+Z E Zréyf,f—C(ZxJ—ZZEys.;)
i=1 ieM(D) j=1 =1 I=1 i=1 j=1
subject to
011,5:1” Yi=l, im; j= b tek,
m
ZEO,J<1 vtek,
i=1 j=1
ZOL -I—Zyu__rc-f- Yie ]y B ] ST vup
tek .
m b
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Using CPLEX 8.1 solver, the maximum attainable rev-
enue for each sequence of advance-book and same-
day arrivals in the examples reported in §4.3.2 was

obtained in less than a second.

4.3.2. Results of Performance Tests. We tested
H1 and H2 with the help of a five-factor design
of experiments. The factors were (1) four clinic
. sizes (m=2, 4, 6, and 8); (2) five clinic loads (expected

neous or heterogeneous); (4) four preference types
(time dominant in Table 4, physician dominant in
Table 5, moderate in Table 6, and no preferences);
and (5) two levels of information accuracy (perfect
or biased)—for a total of 320 different scenarios. We
repeated the evaluation of the 320 scenarios under
two cost structures: ¢/m =2 and ¢/7 = 8. A higher
¢/ ratio is appropriate for clinics that place a high
priority on meeting same-day appointment requests.
Results are summarized in Table 7 and Figure 3. They
confirm that H1 and H2 are robust under a variety
of different clinic environments. However, before dis-
cussing the results, we first describe the experimental
setup in more detail below.

A cdlinic may set up time blocks with different
lengths and/or different number of appointment slots
within a time block. For example, a clinic may divide
physicians” morning sessions into three one-hour
blocks, each with two 30-minute slots, and afternoon
sessions into two two-hour blocks, each with three 20-
minute appointments. On any given day, a particular
physician’s slots in each block may vary on account
of staff meetings, training, variable work schedules,
and differences in the number of work-in/overbook
slots. To capture this variability, we assume that clin-
ics have on average five slots within each of four daily
blocks for each physician, but the actual number of
slots within each block for each physician is indepen-
dently sampled from a uniform [4, 6] distribution.

Each physician’s same-day demand is assumed to
be independent and Poisson distributed with mean 6
(30% of the average capacity). Different levels of
clinic load are simulated by choosing 7 = 0.7x
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Table 7 Aggregate Performance
Advance-book
Relativa revenue PCP match failure Spoilage

c/m Clinic load (%) Mean SD Mean SD Mean SD Mean SD
2 H1 85 0.992 {0.017) 0.958 {0.040) 0.007 (0.018) 0123 {0.088)
50 0.989 {0.021) 0952  (0.041)  0.009 {0.022) 0.094  (0.083)
100 0.981 (0.026) 0.943 (0.042) 0.013 (0.027) 0.047 (0.068)
110 0.965 (0.033) 0.942 (0.041) 0.022 (0.033) 0.022 (0.055)
115 0.958 (0.036) 0.943 (0.040) 0.027 {0.038) 0.013 (0.048)
H2 85 0.992 (0.017) 0.958 {0.040)  0.010 (0.024) 0.124 (0.088)
90 0.989 (0.020} 0.952 (0.041) 0.016 (0.035) 0.095 (0.082)
100 0.983 (0.024) 0.942 (0.042) 0.037 (0.054) 0.050 (0.068)
110 0.974 {0.028) 0.940 (0.039) 0.083 (0.077) 0.028 (0.057)
115 0.971 (0.028) 0.939 (0.039) 0.108 (0.083) 0.021 (0.051)
8 H1 85 0.968 (0.100) 0.957 (0.040) 0.008 (0.020) 0.119 (0.085)
a0 0.955 (0.106) 0.950 (0.042) 0.010 (0.024) 0.093 (0.084)
100 0.902 (0.161) 0.943 (0,041} 0.014 (0.026) 0.051 (0.071)
110 0.807 (0.212) 0.941 (0.040) 0.022 (0.034) 0.021 (0.053)
115 0.728 (0.250) 0.944 (0.038) 0.027 (0.037) 0.014 {0.047)
H2 85 0.977 (0.083) 0.957  (0.040) 00186 (0.037) 0121 {0.084)
90 0.969 (0.069) 0.949 (0.042) 0.022 (0.044) 0.095 {0.083)
100 0.947 (0.081} 0.941 (0.041) 0.049 {0.063) 0.058 (0.071)
110 0.923 (0.085) 0.936 {0.040) 0.101 {0.083) 0.035 (0.059)
115 0.909 (0.102) 0.936 (0.039) 0.135 (0.090) 0.031 (0.055)

(20 slots/physician) x m x (clinic load)/} "], Al, where
YAl = 0.1, In the homogeneous panel load sce-
nario, the arrival probability for each panel equals

7, Aljm , whereas in the heterogeneous panel load
scenario, A} = 0.8 7%, Al/m, A2 = 1.23° 12, Ai/m, and
A =0. SEH Alfm for I' = 3. We also varied the clinic
load by keeping 7 fixed and changing each decision
epoch’s arrival rate. The performance of H1 and H2
was similar to what we report in Table 7. Therefore
those results are not presented in the interest of brevity.

We assume that information bias results in inaccu-
rate estimates of B! Let }31‘( be panel I's acceptance
probability for time-block j, where (d) indicates that
block j has the dth highest probability among the b
time blocks for panel /. In the biased case, the clinic’s
estimate is assumed to be sufficiently inaccurate that
it reverses the ordering for each panel’s time-block
acceptance probabilities. That is, the clinic uses ﬁj( 5=
B(b 2+1) when making booking decisions. For exam-

ple, the clinic would use 8! = (1,0.6,0.4,0.2) as the
clinic’s biased estimates for B! in Table 4.

To focus attention on the impact of patient prefer-
ences and to not confound this effect with the effect
of different revenue classes, we assumed that all pan-
els had the same expected revetie. In particular,
(r] 1,7, 1y, 13) = (100,35,100,85), 1} , =85 for i #1,
and m, = for all . We generated 50 samiple paths
for each scenario and tracked the performance of H1
and H2 by average relative revenue (as compared
to the bound discussed in §4.3.1), average patient-
PCP match rate, average advance-book failure rate as
a percentage of nonurgent requests for a particular

appointment date, and average spoilage rate as a per-
centage of slots unused. -

We first compared H1’s and H2's performance
with accurate and biased acceptance probabilities for
each sample path. Neither Hl's nor H2's average
performance is affected much by using inaccurate
acceptance probabilities—relative revenue on average
increased by 0.53% for H1 and decreased by 0.49%
for H2; all other metrics were on average affected less
than 1.8% and 0.7% for H1 and H2, respectively. Note
that the improvement in H1’s performance is because
of the higher advance-book failure rate induced by
biased estimates of acceptance probabilities, which
increases availability of slots for same-day demand.

Table 7 reports average performance measures
sorted by ¢/ ratio and elinic load. For each combina-
tion, the reported performance metrics are aggregated
over all possible scenarios of panel load, preference
type, and information accuracy. Both H1 and H2 have
high average patient-PCP match rates (94.7% and
94.5%), low average advance-book failure rates (1.6%
and 5.7%), and low average spoilage rates (6.0% and
6.6%). The relative revenue performance of H1 and
H2 is respectable with low variability when ¢/m =2—
the relative revenue is on average 97.7% and 98.2%
of the bound for H1 and H2, respectively. When
¢/ =28, the relative revenue performance is worse
(on average 87.2% and 94.5% of the bound for H1
and H2, respectively), but H2 performs better. This
suggests that when a health system has other options
for taking care of urgent requests {e.g., urgent clinics),
its cost of turning away same-day requests is smaller

-
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Figure 3 Average Relative Revenue and 95% Conlfidence Intervals
Whenc/m=8
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{(low ¢/mr) and it may be justified in using H1, which
is much simpler to implement.

Next, we report more detailed results in Figure 3
for the case when ¢/@ = 8. As seen in Figure 3(a),
for each clinic load, the relative revenue performance
of Hl and H2 is robust across preference types.
Similar results were also observed for panel loads,
which are not reported here in the interest of brevity.
Note that the means and confidence intervals are
based on all sample paths generated across different
clinic environments conditioned on the levels of fac-
tors presented in each subgraph. The relative perfor-
mance of H1 and H2 deteriorates when clinic load
exceeds capacity (Figure 3(b)) but improves as the
clinic sizeincreases (Figure 3(b}). The latter happens
because each panel’s same-day demand is assumed
to be independent, and clinics with more physicians

benefit from pooling available capacity to take care
of same-day demand. The size effect may disap-
pear when same-day demand patterns are correlated
across physician panels. '

5. Insights

In this section, we first compare the performance of
H1 and H2 to a straw policy that does not utilize
patients’ preference information when making book-
ing decisions. The straw policy attempts to book each
arriving patient with the earliest available and accept-
able patient-PCP matched slot. If none of the matched
acceptable slots is available, the straw policy then
books an appointment in the earliest available non-
PCP slot, paying no attention to remaining capacity
and time preferences. Next, we compare H1 (or H2)
to itself when using true acceptance probabilities and
naive acceptance probabilities. The purpose of this
comparison is to tease out the value of information
if a clinic decides to adopt either H1 or H2 booking
heuristic. Finally, we evaluate the effect of low lev- °
els of no-show rates and service time variability by
comparing H1, H2, and the straw policy.

All examples of this section use the follow-
ing common parameters: ("1[,1: w1y, 1, €) = (100, 35,
100, 85,280), r{ ; = 85 for i 3 I, Poisson same-day
demand with- E(X;) = 6 = 30% of each physician’s
capacity of 20 appointments per day. If desired,
each panel’s advance-book arrival rate can be var-
ied to realize different workloads for different physi-
cians. Total advance-book periods equal (0.7 x clinic
capacity)/(3_1L; M), which ensures expected clinic
demand equals clinic capacity. We report results when
Y Al =0.1. Each experimental setup is simulated
for 200 sample paths, and all booking strategies are
evaluated for the same sample paths. '

The first set of comparisons consider a six-PCP and
four-time-block clinic whose patients always show up
and find all physicians acceptable, but these patients
have the following time preferences: 8’ = (8, 8,1, 1)
for!=1,2;p'=(Q,8.B,1) forl=3,48=(1,1,5,8)
for 1 =5, 6. Each physician’s clinic profile has more
slots in blocks that are more acceptable to his or her
panel patients (i.e, x;; =6 if §; =1, and ; ; =4 oth-
erwise). We vary f8 from 0.2 to 0.8 in 0.1 increments
and study two arrival patterns: (1) constant arrival
rates: Al =01/m forall I=1,...,6 and t=1,...,7
and (2) varying arrival rates: when £ < (1/3)7, Af =3A!
fork=1,2and i=3,4,5, 6; when (1/3)1 < t < (2/3)7,
AF=3Al for k=3,4 and i=1,2,5,6; and when { >
(2/3)7, A* =3l for k=5,6and i=1,2,3,4.

H1 and H2 on average result in about 1% and
8% higher revenue as compared to the straw pol-
icy regardless of the value of 8 and the arrival pat-
tern. We report only the aggregate results in Table 8.
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Table 8 Performance of H1 and H2 Compared to the Straw Policy

No. Rav. improwv.
PCP match  Advance-book Spoilage scheduled/ compared to

- Policy (%) tailure rate (%) rate (%)  served  straw (%)
Straw 92.88 0.00 341 115.9 —
H1 94.34 0.04 3.50 115.8 1
H2 94.06 0.43 417 115.0 8

H1 achieves a higher PCP match, relative to the straw
policy, by reserving more popular slots for future
advance-book arrivals. In contrast, H2 with higher
spoilage and advance-book failure rates achieves a
high PCP match rate for different reasons. By reserv-
ing slots for same-day patients, it allows more of
those patients to have an appointment with their PCP.
H2 has much higher advance-book failure rate and
slightly smaller number of patients served because
some advance-book requests are denied when no-
book states are reached. However, overall revenue is
higher because it is costlier to turn away same-day
patients.

Next, we evaluate the performance of H1 and H2
with two levels of information: (1) true acceptance
probabilities and (2) naive acceptance probabilities.
The latter assumes that every physician and time
combination is acceptable to every patient. For each
heuristic, we calculate the value of preference infor-
mation by comparing that heuristic’s average daily
revenue to itself when the clinic uses true versus
naive acceptance probabilities as inputs. We also mon-
itor changes in patient-PCP match rates, advance-
book failure rates, and number of patients served. In
the results reported here, the clinic has eight full-time
physicians, four time blocks, and five slots per block.
Arrival pattern is time homogeneous, but expected
demand rates can vary by panel, resulting in imbal-
anced workload across physicians.

We use a full factorial design of three factors, each
with two levels, For a panel with strong (respec-
tively, weak) time preferences, we allow one block to
be always acceptable and the remaining blocks to be
accepted with probability 0.3 (respectively, 0.7). For a
panel with strong (respectively, weak) physician pref-
erences, the PCP is always acceptable and each non-
PCP is acceptable with probability 0.3 (respectively,
0.7). For a panel with adequate (respectively, inade-
quate) capacity, we let the expected demand be 66.7%
(respectively, 133.3%) of the capacity. These combina-
tions lead to eight stylized panel types.

Accurate preference information on average in-
creases daily revenue by $20.35 and $93.15 for Hl
and I2, respectively. H2 reduces advance-book fail-
ure rate by 1.3% and serves on average 1.16 more
patients per day when using true acceptance proba-
bilities as inputs. That is, our example clinic would

be able to serve on average 423.4 more patients per
year by updating patients’ acceptance probabilities
and using H2. We also studied a different scenario
(results not reported for brevity) in which physician
workloads were balanced and found that in such
cases, knowledge of accurate acceptance probabilities
does not significantly affect average daily revenues,
patient-PCP match rates, advance-book failure rates,
and the number of patients served (paired sample
tests were not significant in all comparisons). This
suggests that clinics whose physicians” workloads are
imbalanced are more likely to benefit from accurate
preference information when using H1 or H2 booking
schemes. Imbalanced workloads are a common occur-
rence in practice.

In the last set of examples, we evaluate the effect
of no-shows and service time variability, assum-
ing punctual physicians and patients, independent
and identically distributed service times and equal-
length appointment slots. We test two levels of
average no-show rates: 5% and 10%, with each
patient’s no-show probability drawn independently
from Beta(0.05,0.95) and Beta(0.1,0.9) distribution,
respectively. To test the impact of service time vari-
ability, 'we sample five distributions (see Table 9) that
have the same mean but different coefficients of vari-
ation (0.33, 0.58, 0.58, 0.71, and 1, respectively). These
distributions cover the range of service time variabil-
ity observed in empirical studies (0.3-0.85); see Cayirli
and Veral (2003). Finally, 8 = 0.5 and A} = 0.1/m for
each I and t. We report performance comparisons in
terms of paired sample ¢ statistics for the average dif-
ference in revenue, average patient wait, and average
physician overtime between H1 (or H2) and the straw
policy in Table 9.

H1 and H2 on average have a statistically higher
revenue than the straw policy has at each level of
no-shows. The difference in average patient wait and
physician overtime time between H1 (or H2) and the
straw policy is statistically insignificant in most cases.
However, when the difference is significant, H1 and
H2 perform better. If the length of the appointment
time slot is 30 minutes and average service time is 27.3
minutes, then patients’ average wait ranges from 6.8
to 45 minutes while physicians’ average overtime
ranges from 6 to 40 minutes across these 10 scenar-
ios. These results show that it is reasonable to use H1
and H2 when a clinic’s no-show probability is not too
high (<10%) and the service time variability is not
more extreme than the variability observed in empir-
ical'studies. '

6. Concluding Remarks
This paper presents a framework for using appoint-
ment request data to update patients’ preferences
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Tahle 9 Performance Comparison in Terms of f Statistics with Degree of Freedom = 199 Under Paired
Sample Tesls
R PCP match Avg. Avg. OT
fiossiion Sarvig ting Evenue malc V(. wait Vg
rate (%) distribution H1 H2 H1 . H2 H1 H2 H1 H2
5 Unif[0.4, 1.6] 6.5* 8.1+ 14.6* 135+ 18 -7 -16 -19
Unif{0, 2] 5.9 8.2* 14.4 124+ -10 -13 -07 -19
Gamma(3, 1/3) 7.5 8.4* 14.7° 1.1+ 05 -08 -08 =27
Gamma(2, 0.5) 5.7 7.9+ 15.4* 12.7 -0.8 -12 03 -09
Exp(1) 6.9* 8.6 14.8* 12.5* -1.1 -1.8 -0.3 -0.5
10 Unif[0.4, 1.6] 8.3 3.9 15.1+ 11.7* 0.4 —-0.5 -19 —3.4*
Unif[0, 2] 78 7.8* 15.8* 125+ 01 -10 —-16 -38

Gamma(3,1/3) 67+ 982 151 133 06 -01 —12 18
Gamma(2,05)  67° 7.9 162 . 119 01 —02 08
) Exp(1) 73 8¢ 138 104 17 14 04 03

*Significant at the 0.05 level.

and to subsequently use this information to. improve
clinics” revenues, serve more patients, and increase
patient-PCP match rates. This approach can be imple-
mented by utilizing data that can be retrieved from
existing Web-based appointment request systems.
However, it may not be suitable for clinics with high
no-show rates that cannot be controlled by the use of
a reminder system and patient education: or by bet-
ter matching patients” preferences with available slots.
Such clinics -may benefit from using approaches that
explicitly consider no-shows when making booking
decisions.

Our model is limited because it considers each
workday’s booking problem separately. A clinic
may benefit from knowing all acceptable dates and
the physician and time-block combinations that are
acceptable to each arriving patient on each date before
making a booking decision. However, that will make
the booking process tedious for the patients and the
state space of the appointment system will become
unmanageable because acceptable dates may span an
arbitrarily large period of time. It is perhaps for this
reason that common Web-based booking request sys-
tems accept requests for one day at a time.

Patient-centered service models have attracted
much attention in recent health policy literature. For
example, a medical home model is a one-stop model
that matches each patient with a team of providers
based on the patient’s needs. This team monitors a
patient’s health status and coordinates appointments
for acute, chronic, and preventive services. Similarly,
many health systems allow patients to see several ser-
vice providers in a day or within a short period of
time so that out-of-town patients do not need to travel
to the service facility multiple times. Both models
require matching patients” needs and preferences to
muitiple providers’ availability. An interestifig avenue
of future research along the lines presented in this
paper is the developmentiof a model-based- design of

an adaptive appointment system for integrated med-
ical services. ¥ o3

Electronic Companion

An electronic companion to this paper is available on
the Manufacturing & Service Operations Management website
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