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Patients' satisfaction with an appointment system when they attempt to book a nonurgent appointment is 
affected by their ability to book with a doctor of choice and to book an appointment at a convenient time of 

day. For medical conditions requiring urgent attention, patients want quick access to a familiar physician. For 

such instances, it is important for clinics to have open slots that allow same-day (urgent) access. A major chal

lenge when designing outpatient appointment systems is the difficulty of matching randomly arriving patients' 

booking requests with physicians' available slots in a manner that maximi7,es patients' satisfaction as well as 

clinics' revenues. What makes this problem difficult is that booking preferences are not tracked, may differ from 

one patient to another, and may change over time. 'Ihis paper describes a framework for the design of the 

next generation of appoi.rytment systems that dynamically learn and update patients' preferences and use this 

information to improve booking decisions. Analytical results leading to a partial characterization of an opti

mal booking policy are presented. Examples show that heuristic decision rules, based on this characterization, 

perform well and reveal insights about trade-offs among a variety of performance metrics important to clinic 

managers. 
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1. Introduction 
An outpatient appointment is a contract between a 
patient and a clinic by which the latter reserves a 
certain amount of service providers' time and phys
ical assets for the exclusive use of the patient who 
holds the appointment. Patients' satisfaction with 
their health-care clinic is affected not only by the per
ceived quality of medical services that they receive 
during their visit but also by their appointment book
ing experiences. Clinic managers care about having 
high scores on patient satisfaction surveys because 
that helps them attract new patients and negotiate 
better rates with insurers. Because the vast majority 
of medical appointments are booked with physicians 
working in primary care clinics, we focus in this paper 
on the design of primary ca:re appointment systems. 
A detailed description of the primary care service 
environment is provided in Gupta and Denton (2008). 
The ensuing abbreviated description focuses on fea
tures that are central to this study. 

Patients that belong to a health system choose both 
a preferred clinic and a preferred physician. The lat
ter is commonly referred to as the preferred care 
provider (PCP) for the patient. The term panel is used 
to denote a group of patients that has chosen the 
same PCP. Patients usually call in advance to book an 
appointment. Patients' satisfaction with an appoint
ment system when they attempt to book a nonurgent 

appointment is affected by their ability to book with 
their doctor of choice and at a convenient time of day 
(Cheraghl-Sohl et al. 2008, Gerard et al. 2008). Patients 
~.Iso prefer a sooner rather than a later appomtment 
so long as it meets their time and physician prefer
ences. For urgent medical conditions, patients want 
quick access to a physician. Clinics plan for such 
appointment requests and have open slots eac\1. day 
that allow same-day (urgent) access. 

Because appoinbnents are booked one at a time 
without knowledge of the number, sequence, and ser
vice requirements of future arrivals, many clinics use 
a two-step process to design appointment systems, 
which we call clinic profile setup and appointment book
ing steps, · respectively. Clinic profile setup refers to 
the common practice of dividing physicians' avail
able time on each workday into appointment slots. 
All slots need not be of the same length. For exam
ple, whereas a standard slot may be appropriate for 
the vast majority of routine appointments, physical 
exams and in-office procedures may require longer 
slots. Tn the appdintment booking (second) step, the 
clinic profile is known and the decision concerns 
which available appointment slot to book for each 
incoming appointment request. This paper is con
cerned with the second step. That is, we assume 
that the number of appointments and the length 
of each appointment slot have been determined for 
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each physician. Clinic profile setup may take into 
account a whole host of factors, including physicians' 
willingness to work overtime, no-show rates, service 
time variability, and demand for physicians' slots (see 
LaGanga and Lawrence 2007, Robinson and Chen 
2003, Denton and Gupta 2003, Ho and Lau 1992, 
Weiss 1990). 

What makes the appointment booking problem (the 
focus of this paper) difficult is that booking prefer
ences are different for each patient, and they change 
over time for the same patient. For example, some 
patients are willing to see any available doctor if they 
can have an appointment sooner whereas others pre
fer to wait until a slot becomes available with their 
PCP. Some patients are able to visit the clinic only 
within a short time window because of job-related 
constraints or personal schedules Gennings et al. 2005, 
Olowokure et al. 2006), whereas others can be quite 
flexible. Finally, changes in work schedule, marital 
status, and family size can alter a patient's booking 
pattern. 

Evidence shows that clinics .benefit by accommo
dating patients' preferences. First, matching patients 
with their PCP ensures continuity (quality) of care 
(Doescher et al. 2004) and allows physicians to provide 
more value-added services to their patients, which 
increases clinics' revenues (O'Hare and Corlett 2004). 
Second, matching patients with their PCP and offer
ing them a convenient appoinbnent time can decrease 
the number of no-shows and 'thereby increase opera
tional efficiency (Barron 1980, Carlson 2002, Smith and 
Yawn 1994). The above arguments provide the moti
vation for paying attention to patients' physician and 
time preferences and adapting appointment booking 
practices as these preferences change. The purpose of 
this paper is to develop a framework for the design of 
such adaptive appointment systems. We use patient
PeP match rate, advance-book failure rate, and the 
total number of patients served as surrogate measures 
for patients' satisfaction with the appointment book
ing system. . 

We assume a known clinic profile, which may 
include overbooking, and develop algorithms for 
making appointment booking decisions to maximize 
clinic revenue. We model each panel as a differ
ent revenue class and allow the revenue from each 
appointment to depend on whether the appoint-. 
mentis with a patient's PCP. Patients have different 
acceptance probabilities for each physician and time- · 
block combination, and each patient may have sev
eral acceptable combinations when he or she attempts 
to book an appointment. We also model advance
book (nonurgent) and same-day {urgent) demand. 
Inadequate capacity to serve urgent demand results 
in a higher cost to the health system. If a patient's 
service-time class can be ascertained at the time of 

booking an appointment, then such information can 
be incorporated in the proposed system by checking 
that the offered appointment slot is appropriate for 
the services requested. However, in numerical exam
ples presented in this paper, the availability of such 
information is not assumed. 

'Booking decisions do not depend on each patient's 
individual no-show probability because such proba
bilities are difficult to estimate from historical data. 
We comment on this issue in §2 based on an analysis 
of data from a large health system that had low no
show rates. Thus, our approach is suitable for health 
systems with low no-show rates. For the problem fea
tures mentioned above, we show that certain types of 
information that may be retrieved from existing Web
based appointment request systems can be used to 
estimate patients' preferences and improve booking 
decisions. Our approach may be viewed as an appli
cation of the Bayesian learning approach. for direc~ly 
estimating empirical distributions of patient accep
tance probabilities (e.g., see Carlin and Louis 2000). 
Our booking algorithm is a two-step process based 
on a partial characterization of the optimal booking 
decisions. 

In the remainder of this section, we compare and 
contrast our approach with other approaches used 
to design appoinhnent systems. A detailed review of 
relevant operations research (OR) literature can be 
found in Gupta and Wang (2008). Commonly used 
appointment systems can be categorized into four 
tnain types: (1) traditional systems that accept any 
booking request so long as the requested slot is open 
when the booking request is made, (2) carve-out sys
tems that reserve · a certain amount of capacity for 
specific procedures or· urgent services, {3) advanced 
access (or open access) systems that accommodate 
patients' appointment requests on the day they cali, 
and (4) hybrid approaches that accommodate both 
advance-book and same-day appointments. The tra
ditional system allows each open slot to be booked 
by any patient who happens to be the first person to 
request it. This approach usually results in large back
logs of appointments for popular physicians as well 
as a significant spoilage of slots (Savin 2006). Same
day requests are often deflected to urgent care clinics, 
sent to emergency rooms, or double booked. Because 
of these shortcomings, some clinics choose a carve
out approach in which a certain amount of capacity 
is reserved for later-arriving patients. Once available 
capacity drops to the reservation level, a variety of 
rules are used to release this capacity for specific 
procedures or urgent-need patients. The urgency of 
each patient's needs ·is determined by a triage nurse. 
Nonurgent patients generally cannot obtain same-day 
appointments (Murray and Berwick 2003). 
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Table 1 literature AnalysIs 

1. Objectives 2. Class 3. Assumptions 4. Criteria 

Study (a) (b) (c) (d) (a) {b) (c) (d) (e) (a) (a') (b) (c) (d) (a) (b) (c) (d) (e) 

Adaptive appointment system v, vi, viii .; .; .; .; - .; 1, 2 .; .; ,( ,( ,( .; 

Gupta and Wang (2008) v, viii .; .; ./ ./ 4 ,( .; .; ,( .; 

Rohleder and Klassen (2000) vi .; ./ 4 ,( .; ./ ,( 


Liu et al. (20tO) vii .; .; 3 II ,( .; ,( 


Muthuraman and Lawley (2008) vi ./ 2 I ./ ./ ./ ./ ./

.; .;Cayirli et al. (2008) ii ix ./ ./ 1 I ./ 


Klassen and Rohleder (1996) vi .; ./ 4 ./ .; ./ .; 

.;Robinson and Chen (201 0) ./ ./ 1 .; ./ 


Kim and Giachetti (2006) 1 ./ 

Denton and Gupta (2003) i, ii ./ 4 ./ .; ./ ./ .; 


1., 

Hassin and Mendel (2008) ii ,( 1 .; .; .; .; 
LaGanga and Lawrence (2007) i { 1 ./ .; .; ./ 
Kaandorp and Koole (2007) 1 .; ./ .; ./ 
Robinson and Chen (2003) 4 .; ./ .; ,( 

Weiss (1990) ii, iv 4 .; ./ .; ./ 
Green and Savin (2008) iii ,( 3 ./ .; ,( 

Vanden Bosch and Dietz (2000) li, iv ,( .; ,( 4 .; ./ .; ./ 
Wang (1999) ii, iv .; ./ 4 .; ./ .; ./ 

Note. A"./" (respectively,"-") indicates that the corresponding attribute is included in (respectively, absent from) the study. 

An advanced access system is designed to offer 
each patient an appointment with his or her PCP on 
the day he or she calls. In many cases, the implemen
tation of an advanced access system allows patients 
to be seen sooner and improves clinics' operational 
efficiency (Murray and Tantau 2000). H;owever, physi
cians are typically unable to cover all appointment 
requests that arise each day and push some demand 
to future days. In addition, some patients prefer to 
book appointments in advance, at a time and day of 
their choice, rather than call on the day they wish to 
see a doctor (Gerard et al. 2008, Parente et al. 2005, 
Saliseury et al. 2007). For reasons such as these, imple
mentations of advanced access systems are not always 
successful (Murray et al. 2003). 

Clinics that implement advanced access systems 
usually adopt hybrid approaches that allow both 
advance and same-day bookings. Gupta and Wang 
(2008) provide a model of a hybrid approach in 
the presence of patients' preferences upon assum
ing knowledge of the conditional probability that a 
patient belonging to physician l's panel, after calling 
in period t and observing the state of the appoint
ment systems, will request an appointment for slot j 
of physician i, for each i, j, s, t, and 1. The study 
shows that the optimal policy for a single-physician 
clinic is a threshold-type policy so long as patient
choice probabilities satisfy a weak condition. The 
authors also partially characterize the structure of an 
optimal policy for multiple-doctor clinics. This work 
provides insights into the importance of modeling 
patients' choices in the primary care setting. However, 
patient-choice probabilities are not easily obtained 
from appointment records, and patients generally do 

not have complete knowledge of the system state 
when requesting an appointment. We address both 
these issues in this paper. 

In Table 1, we compare this study with some recent 
papers in the appointment scheduling (AS) literature 
in terms of (1) the objectives of the study, (2) patient 
classification scheme, (3) key model assumptions, and 
(4) performance criteria that drive parameter selec
tion. Each major attribute is further divided into 
subattributes, which we describe next. Study objec
tives may consist of one or more of the follow
ing: clinic profile setup (l.a), booking decisions (l.b), '.
learning/adaptive approach for improving booking 
decisions (I.e), and comparison of different system 
designs (l.d). Furthermore, clinic profile setup may 
be static or dynamic and include one or more of the 
following decisions: number of of appointments per 
slot/session/day (l.a.i), appointment intervals/start 
times {l.a.ii), panel sizes (l.a.iii), and sequencing 
groups of appointments (l.a.iv). The decisions at the 
appointment booking stage include whether to accept 
a patient's request (l.b.v), which slot to book (l.b.vi), 
which appointment day to book (l.b.vii), whether 
to reserve capacity for same-day/urgent demand 
(l.b.vi~i), and how to sequence individual appoint
ments (l.b.ix). 

Patient classification may be based on revenue/ 
costs (2.a), patient preferences (2.b), no-show 
rates (2.c), service time distribution (2.d), and same
day versus advance-book requests (2.e). Classification 
typically helps improve capacity allocation decisions .. 

Key modeling assumptions concern no-show pat
terns (3.a), the decision stage at which no-shows 
affect AS design (3.a'), service time randomness (3.b), 
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patients' punctuality (3.c), and patients' prefer
ences (3.d). Patterns of no-shows may be homoge
neous (3.a.1), patient characteristics dependent (3.a.2), 
lead time dependent (3.a.3), and zero no-shows 
(3.a.4). No-shows may be modeled at the clinic pro
file setup stage (3.a'.l) and/or appointment booking 
stage (3.a'.ll). Performance criteria used to select AS 
parameters are revenue/cost (4.a), patient-PCP match 
(4.b), booking failure rate/utilization (4.c), patients' 
wait (4.d), and physicians' idle/overtime (4.e). 

Studies reported in Table 1, except Liu et al. (2010), 
focus on single session/day appointment problems. 
Liu et al. (2010) assume that patients have no pref
erence for a particular appointment day and that the 
clinic decides which day to book after taking into 
account system state and lead time dependent no
show probabilities. In the proposed adaptive appoint
ment system, advance-book patients first pick a 
desired appointment date. Booking decisions are 
made separately for each day and depend on the com
binations of physician and appointment time blocks 
that are deemed acceptable by patients on the chosen 
date. It also reserves capacity for same-day requests. 
The proposed approach is novel because it learns (l.c) 
and utilizes patients' preference information (2.b) in 
the booking process and because it prioritizes patient
pep match (4.b). 

Because our approach considers patients' prefer
ences and learning, discrete choice models such as 
probit or logit ,models that have been studied exten
sively in economics, marketing, and OR literatures are 
also relevant. These methods usually derive choice 
probabilities from the assumed utility-maximizing 
behavior of individual decision makers. Each deci
sion maker, upon receiving an offer of a choice set, 
selects one of the alternatives in the set. The individ
ual choices are then aggregated to obtain group-level 
measures of choice, e.g., the probability that an arbi
trary member of the group will choose a particular 
option in the choice set. McFadden (2001) and Train 
(2003) present extensive surveys of discrete choice 
models and Talluri and van Ryzin (2004) present 
customer-choice models in revei:me management. The 
contrast between revenue management studies and 
our approach can be explained in terms of the own
ers'ru.p of the choice set and booking decisions. In the 
former, the choice set is determined by the service 
provider and customers decide which product to pur
chase, whereas in our framework each patient (cus
tomer) reveals an acceptable set of slots and the clinic 
(service provider) decides which slot to book. 

The remain"d.er of this paper is organized as follows. 
in "§2, we present empirical evidence that supports 
tl;le proposed model. Model formulation is presented 
in §3. Then we analyze properties of optimal book
ing decisions and pres~nt two heuristics to help clin
ics make real-time booking decisions 1n §4. Section 5 

contains an evaluation of the impact of patients' pref
erences on different performance metrics, including 
those that are affected by no-shows and service time 
variability. Section 6 concludes the paper. 

2. 	 Analysis of a Health System's 
Appointment Data 

We studied appointment processes of a large health 
system and obtained historical appointment data con
cerning 37 primary care clinics that operate in urban, 
suburban, and rural areas. We analyzed these data to 
guide the choice of model features in §3. The data 
covered appointment times with a range of 13 months 
that were booked over 18 months. It contained 
1,461,948 records pertaining to 377,284 patients. The 
data elements were blinded medical record num
ber (MRN), date and time of call and appointment, 
blinded PCP ID and provider ID (provider was the 
doctor that actually saw the patient for that appoint
ment), age category, insurance status, five-digit zip 
code for each patient's address on file, and clinic loca
tion. Patient ages were divided into five-year intervals 
to obtain age categories. 

The data reveal that both the panel size and its age 
distribution are different for each physician. Although 
we did not have access to revenue data, publicly 
available data support a strong correlation between 
patients' age and the different types and costs of ser
vices they need (U.S. Bureau of Labor Statistics 2008). 
This implies that both the demand and the expected 
revenue generated by patients of different panels are 
different. To make our point, we show distributions of 
patients' ages, loyalty (determined by the proportion 
of patient-PCP matched visits among that patient's 
past visits in 10% increments) for three physicians' 
panels in our data set in Figures 1(a}-1(c). Chi-square 
tests showed that the distributions of age, loyalty, and 
time preferences were significantly different for dif
ferent panels (p-values were <0.0005 in each case). 
Moreover, the number of unique MRNs·within the 
13-month data for the three panels were 495, 719, and 
1,631, respectively, which suggests that panel sizes 
also differ by physician. 

We recognize that realized appointment times may 
not reflect true time preferences because booking suc
cess is also affected by the availability of requested 
slots. For example, it is possible that :Physician 2 
rarely works after 4 P.M. and that patients in his 
or her panel have adapted by accepting morning 
appointments. However, it is also possible that service 
providers respond to patients' needs. For example, 
families with teenagers and young adults often pre
fer appointment times after school hours, so as not to 
disrupt school attendance. Physician 1 may have cho
sen his or her work pattern with more availability in 
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Figure 1 Evidence from the Analysis of Data from 37 Clinics 
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the afternoon in response to such demand. Irrespec
tive of the underlying root causes, Figures 1(a)-1(c) 
serve to _highlight that panels provide a reasonable 
means by which to define revenue classes and aggre
gate patients' preferences. 

Next, we investigate the ability to predict patient
specific no-show probabilities from a data set such as 
ours. We first excluded canceled appointments from 
our data because the vast majority of the slots freed 
up in this fashion a·re rebooked. This resulted iit a 
1,171,950 encounters. Two factors that have been iden
tified in previous studies are (1) history of no-shows 
and (2) appointment lead time (i.e., the time between 
the appointment request and the appointment date). 
It has been suggested that patients with a history 
of no-shows are more likely to be a no-show and 
that longer appoinbnent lead times increase the likeli
hood of no-shows (see Dove and Schneider 1981, Lee 
et al. 2005, Gallucci et al. 2005, Whittle et al. 2008). 
Figure 1(d) shows that appointment delays are not 

significantly correlated with no-show rates in our data 
(Pearson correlation test shows no significant correla
tion with p-value > 0.4). A similar conclusion is also 
reached in Snow et al. (2009), Starkenburg et al. (1988), 
Irwin et al. (1981), Fosarelli et al. (1985), Neinstein 
(1982), and Dervin et al. (1978). 

Turning to the history of no-shows, our data 
contained appointment times that ranged over 
13 months. Therefore, we normalized the number 
of appointments per patient to a yearly basis and J 
found that more than 75% of the patients in our data I, 
had fewer than four appointments per year, which 
would make it difficult to estimate individuals' no
show probabilities reliably. We believe such estima
tion problems could arise in many practical settings. 

Finally, the overall no-show rate for the 37 clinics 
is 4.06% for all appointment and 2.97% for patient f' 
pep matched appointments. The overall patient-PCP r 
match rate was 45.7%. This implies that there may 
be a substantial opportunity to reduce no-show rates 

•' 
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Figure 2 A Web·Based Palient-Ciinic Interface 
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further by increasing patient-PCP match rates, which 
the adaptive appointment system is designed to do. 

3. 	 Model Formulation and 
Assumptions 

The vast majority of large health systems operate 
call centers where patients call to book appointments. 
With the adoption of electronic medical record (EMR) 
systems, however, many health systems are also able 
to provide a parallel Web-based option to patients 
for requesting nonurgent appointments. Patients are 
instructed to call if their needs are urgent. Similar 
instructions may also apply for special appointments 
such as physical exams and in-office procedures that 
take more time and for which physicians reserve 
specific slots in the~r daily sc;hedule. It is gener
ally believed that ~eb-based systems will become 
the primary means by which patients book nonur
gent appointments in the future. Therefore, our model 
assumes the availability of real-time data from a Web
based system. We illustrate the types of information 
that can be obtained from existing Web interfaces in a 

i: 	 mock-up in Figure 2. This mock-up is fashioned after 
existing systems familiar to the authors. However, it 
is not an exact replica of any particular system. 

In the mock-up, a patient indicates a preferred 
appointment date and acceptable combinations of 
physicians and time blocks. Clinics use time blocks 
rather than individual time slots because patients 
tend to have similar acceptance rates for time slots 
within each half-hour or one-hour time block. Note 
that our formulation allows clinics to choose arbitrary 
block size and number of slots in each block. That is, 
appointment lengths may not be uniform and may 
depend on anticipated service-time class and no-show 
rates. Upon receiving a patient's request, the clinic 
considers any checked combination of the blocks of 
time and physicians to be acceptable to the patient 
on the chosen day of appointment request. The clinic 
either books an appointment in one of the combina
tions indicated by the patient or responds that none 
of the requested comb~ations are available. Patients 

are encouraged to try a different date if their request 
is denied. 

To increase clinics' flexibility in scheduling patients 
in a manner that maximizes patient-PCP match and 
revenue, patients are asked to provide their accept
able sets but not rank their p references among . the 
acceptable combinations. If patients were asked to 
rank their preferences, clinics would be obligated 
to book appointments in the most preferred and 
available slots first, which would prevent them from 
keeping more capacity available in more popular 
combinations. 

The proposed adaptive appointment system has 
two components--a component that updates esti
mates of acceptance probabilities and a component 
that makes booking decisions after re<:eiving patients' 
requests. Below we describe each component in a 
separate section. Each section states model assump
tions first and then presents a formulation. We sh'?w 
in §3.2 that for making booking decisions, clinics only 
need to estimate panel-level acceptance probabilities. 
Therefore, §3.1 deals only with panel-level probabil
ities. Throughout the paper, we use m to denote the 
number of physicians and b to denote the number of 
time blocks on a workday. 

3.1. Learning Acceptance Probabilities 
Given that Web-based options similar to that in 
Figure 2 are in existence today, our approach mod
els each patient's preferences in terms of acceptance 
probabilities. For each physician indexed i and time
block indexed j, the probability that the kth patient in 
physician l's panel will find combination (i, j) accept
able is denoted by· p1

' ~. Furthermore, we assume that1, 1 
physician and time preferences are independently 

l, k d f3l,k "th l,k l,k f3l,£capturedby terms a i an i , wt Pi,j =a; i · 
This is consistent with the implied decomposition of 
physician and time preferences in Figure 2. From a 
technical viewpoint, it is possible to generalize our 
approach to situations where acceptance probabili
ties do not have the multiplicative form that we 
assume. However, we did not find any evidence to 
suggest that the multiplicative form is an unreason
able assumption. 

We assume that each patient reveals his or her true 
acceptable set in each request (prior to receiving an 
appointment) and that each booking attempt is an 
independent draw from a patient's preference distri
bution. The first assumption is based on the argument 
that if a patient's utility from booking an appointment 
for a particular physician and time-block combination 
is higher than the utility from not booking an appoint
ment, then the patient will include that combination 
in his or her acceptable set. The second assumption is 
based on anecdotal evidence that patients' time pref
erences vary by calendar day. 

' 	 . 
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As shown in §3.2, booking decisions depend only 
on panel-level acceptance probabilities pl, i = al,B}, 
where aj and /3) are the physician i and block j accep
tance probabilities for panell. We propose direct esti
mation of these probabilities; see §A of the online 
supplement for details. This is not the only way 
to estimate patients' choices. A parallel utility-based 
model can J?e constructed as welt and subsequently 
its parameters can be estimated. It can be shown that 
the strong independence of attributes assumed by 
clinics (as implied by Figure 2) leads to an equiv
alent model with similar estimation effort. We pro
vide details of this alternative approach and compare 
it to the proposed approach in §B of the online 
supplement. 

3.2. Making Appointment Booking Decisions 
At the time of booking appointments, clinic profiles 
exist for all future workdays on which appointments 
may be booked. The model that is used to obtain 
a partial characterization of optimal booking deci
sions also assumes that patients and physicians are 
punctual, patient no-show rates are negligibly small, 
and all same-day patients call before the start of the 
day. The existence of clinics with relatively low no
show rates has been documented in the literature 
(see, e.g., Cayirli and Veral 2003) and supported by 
our data (see §2). However, some clinics are also 
reported to have high no-show rates, and the pro
posed adaptive appointment system design may not 
be the best choice for such clinics. Clinics typically 
count all requests received within 24 hours before the 
start of a workday as same-day demand. This makes 
it reasonable t~ assume that same-day demand is real
ized just before the start of each workday. 

Our model considers each workday's appointment 
booking problem separately. This is justified, in part, 
by assumptions in §3.1 that patients' preferences may 
differ by calendar day and that patients are encour
aged to try other dates if earlier booking attempts 
fail. Beeause the clinic profile is assumed known, the 
clinic's objective function considered in this section 
does not include patient wait times and physician 
overtime, which are caused by service time variabil
ity, and choices of appointment lengths and overbook
ing. However, when evaluating different heuristics 
in §5, we also compare these metrics for different 
approaches. 

The following information is needed to make 
booking decisions: (1) patients' acceptance proba
bilities and arrival rates at the panel level; (2) 
clinic's average revenue, by par1el, of each PCP 
matched/mismatched appointment; (3) average costs 
of delaying an advance-book and same-day appoint
ment; and (4) each physician's same-day demand 
distribution. We define the inputs to the booking 

Table 2 Inputs olthe Booking Decision Model 

X1: Same-day demand lor physician I 
X: Total same-day demand; X = r:;:1 X1 

K= (K11): Matrix of capacity of each combination (i, i) of physician and time
block combination 

s = (s11): Matrix of number of appointments that have been booked for (i, j ) 
combination 


i<{ Physician i's capa_city; i<1 = EJ.1 K11 

ii: Clinic's capacity; R= ~, i 1 


s1: Physician i's booked appointments; 51 =}:~=, S;1 : 


s: Number of booked appointments at the clinic level; s= L:;:1 51
ri,1: Average revenue of aPCP matched advance-book panel/ 

appointment 
rf/ Average revenue of a PCP mismatched advance-book 

panel/ appointment, i #I 
r2: Average revenue of aPCP matchedsame-day appointment 
r~: Average revenue of aPCP mismatched same-day appointment 

1r1: Time-dependent average penalty induced by afailure to satisfy an 
advance-boo.k request 

c: Average cost of insufficient same-day capacity 
r: Number of potential advance-book appointment request epochs 

for aparticular workday 
r: An arbitrary advance-book appointment request epoch 

.\:: The probability of having an arrival from physician /'s panel at 
epoch t 

cl,: The probability that an arbitrary panel / patient's set of acceptable 
physicians isI 

{Jj: The probability that an arbitrary panel/ patient's set of acceptable 
time blocks is J 

Pi J: The probability that apanel/ patient's acceptable combinations are 
. (I, J); P!. J ::: cl, {3j 

decision model in Table 2 and explain model fea
tures below. 

In reality, patients' true acceptance probabilities are 
unknown. Therefore, we propose to use the best avail
able estimates of acceptance probabilities at each deci
sion epoch (from the updating procedure of §3.1). 
This can be justified because the updating procedure 
is independent of booking decisions and converges 
quickly to the true acceptance probabilities. Unit rev
enues from each booked appointment satisfy the fol
lowing inequalities: { 1 ~ r{c for each 1 and i =/= l, 
and r2 2: r~; see O'Hare and Corlett (2004) for sup
porting evidence. Same-day visit revenue does not 
depend on par1el index because these appointments 
are usually for acute symptoms for which the treat
ments offered are more likely to be independent of 
panel characteristics. 

The time between the start of advance-book re
quests for each workday and that workday is divided 
into T intervals such that the probability of obtaining 
more than one arrival in each interval is infinitesi
mally small. Tune is counted backward. Specifically, 
advance bookings, occur from period -r to period 1 
and all same-day bookings occur in period 0. Because 
patients who try to book appointments must have at 
least one acceptable combination, neither I nor Jis an 
empty set. 

I 


I 
' I 

I

~ · 

.II 
I 

.' 

I•I
I 

'I 
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In our model, the penalty for denying a patient's 
appointment requests n time periods before the 
appointment date is assumed to be different (smaller) 
from the penalty for doing so (n+d) period before the 
appointment date, where d 2:. 1. This makes sense for 
two reasons. First, patients who call well in advance 
are generally more particular about their time and 
physician preferences. The clinic harmonizes its book
ing practices with this behavior by setting 1rn S 
'Trn+d' V d 2:. 1. Second, this assumption leads to a fair 
allocation of slots as we shall show in §4.1.1. In partic
ular, this means that if a physician I patient's request 
for a particular combination is denied in period (n+d) 
given a particular system state, then another physi
cian I patient's request for that combination will be 
denied in period n as well for the same system state. 

Researchers have made a variety of attempts in 
recent years to estimate the cost of patiept wait
ing (terms c and 1r1 in our models). For example, 
Yabroff et al. (2005) and Russell (2009) estimate the 
cost of patient waiting based on wage rates whereas 
Robinson and Chen (2011) provide an observation
based method for estimating the relative cost of cus
tomer waiting time. Clinic administrators can eith~r 
perform a study similar to those reported in the liter
ature or use the results in these papers to guide their 
choice of patient waiting costs. 

We are now ready to set up the clinic's revenue 
function for the appointment booking problem. For 
this purpose, it helps to conceptualize the availability 
of different levels of information about the arriving 
patient. Specifically, we identify three levels of infor
mation and label them the (1) patient-level, (2) panel
level, and (3) clinic-level. At the patient-level, known 
information includes the patient label (l, k) (i.e., the 
arrival in period t is the kth patient in physician l's 
panel); the system states; and the patient's acceptable 
set (I, J). In contrast, panel-level information consists 
of the arriving patient's panel index and the system 
state, whereas the clinic-level information includes 
only the system state. 

We use notation u;·k(s), u~(s), and u1(s) to denote 
the maximum expected revenue from time t onward 
given patient-level, panel-level, and clinic-level infor
mation, respectively. With this notation in hand, the 
following recursive relationship holds: 

u;·k(s) = max { r~ 1 + ut-t(s +e;;),u1_1 (s) - 1rtl, (1)
1(i,j)e.(I,J) I • 

where e;,; is an m x b matrix with the (i, j)th entry 
equal to 1 and all other entries equal to 0. The 
first two terms in the curly brackets above capture 
the benefit of accepting the patient's request for the 
(i, j) physician. and time-block combination, whereas 
the next two terms capture the benefit of reject
ing the patient's requests. Equation (1) suggests that 

the clinic should accept a slot, say wpt' rpt), among 
the arriving patient's requests (I, f) for which rL + 
U 1_ 1(s + e;) 2:. U 1_ 1 (s) - 11'1 and the clinic's revenue is 
maximized. That is, UOP1

, lPt) E argmax(i,j)e(l,J){rf.t + 
ut_1(s+ eij): rL 1+U1_ 1 (s + e;,;) ~ ut-1 (s) -1r1]}. Ties may 
be broken arbitrarily. 

Using a logic similar to that behind Equation (1), 
revenue functions with panel- and clinic-level infor
mation can be written as follows: 

Upon comparing (1) with (2), we observe that the 
decision rule for accepting or denying a particu
lar (i, j) request is the same for all patients in the same 
panel. 1his arises because the arriving patient's infor
mation does not affect the clinic's valuation of its ben
efit from saving each combination for future arrivals. 
Similarly, upon comparing (2) and (3), we observe that 
the revenue function with clinic-level information is a 
weighted sum of revenue functions with panel-level 
information. 

Next, we turn to the revenue function correspond
ing to same-day requests, which has a different form 
because all same-day requests are assumed to arrive 
just before the start of the workday. In the model, 
we assume that we can optimally match them with 
available capacity. Therefore, it suffices to d efine the 
same-day revenue function with clinic-level informa
tion only, as shown below. 

u0 (s) =E( r2EminiX;, (K.; -s;)} 

In Equation (4), the first term is the expected revenue 
from same-day patient-PCP matched visits, the sec
ond term is the expected revenue from mismatched 
visits, and the third term is the expected cost due to 
excess same-day demand. · · 

4. Analysis 
The formulation of the appointment booking decision 
problem in §3.2 has a high-dimensional state space, 
which precludes the use of real-time and stored solu
tions of the stochastic dynamic program for every sys
tem state in each period. In what follows, we show 
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Table 3 An Ordering of Blocks tram the Clinic's Perspective 

Case 1 Case 2 

s 
Block 

1 
Block 

2 
Block 

3 
Block 

4 s 
Block 

1 
Block 

2 
Block 

3 
Block 

4 

13 (3,0,0,0) 1 1 1 2 13 (0, 0,0, 3} 2 3 4 
8 (3,2, 0,4) 1 1 NB 8 (4, 2, 0, 3) 1 1 NB 
3 (3,3, 3, 1) NB NB NB NB 3 (1 , 3, 3, 3) NB NB NB NB 

with the help of an example that there is no pattern 
or structure to booking decisions. 

Consider a single physician clinic with four slots 
each in four time blocks. We omit the physician 
label for simplicity. The panel-level acceptance prob
abilities for these blocks are j3 = (0.1, 0.2, 0.6, 1). 
Other parameters are (r{, 1 , r21 c, 7T1, A, J.L, T) = 
(6, 6, 10, 5, 0.7, 5, 16), where 7T1 = 7T and ..\.1 = A for 
each t = 1, ... , r, and J.L is the arrival rate for the · 
same-day demand, which is assumed to be Poisson 
distributed. The expected total demand is 16.2, 
whereas the total capacity is 16. Because this problem 
has a small state space, we are able to solve the 
underlying stochastic dynamic program to obtain 
an ordering of slots from the clinic's perspective for 
each system state and decision epoch. Ji the optimal 
decision is to deny the request for time-block j in 
every decision epoch at and after timet, then we say 
the system is in a no-book (NB) state for block j. In 
Table 3, the best slot to book for an arriving patient 
is the highest ranked available slot that is acceptable 
to the patient and that is not designated NB. 

We use two cases, each with three examples, to 
illustrate how an optimal decision may depend on 
the remaining capacity, time preferences of future 
arrivals, and the acceptable set of the next appoint
ment request (see Table 3). In the first example, t = 
13, and the total remaining capacity is 13. For Case 1 
(states= (3, 0, 0, 0)), the clinic's first choice is to book 
either block 1, 2, or 3, and the second choice is to book 
block 4. For Case 2 (state s = (0, 0, 0, 3)), the rank 
order of available time blocks is as follows: 1 >- 2 >- 3 
>- 4. That is, a patient whose acceptable set includes 
blocks 1 and 3 may be booked into either block 1 or 3 
in Case 1, but only in block 1 in Case 2. In the second 
example, when t = 8 and the total remaining capac
ity is 7, block 3 (respectively, block 4) is a NB block 
if 5=(3,2,0~,4) (respectively, s = (4,2,0,3)), and a 
patient whose acceptable set includes blocks 1 and 3 
will be booked into block 1 in Case 1 and block 3 in 
Case 2. In the third example, t = 3, the total remaining 
capacity is 6, and the clinic is in a no-book state for 
all blocks for both cases. 

These examples show that the optimal decision 
depends in a nontrivial fashion on the vector of 
remaining capacities, the index of the decision epoch, 
and acceptable sets. In addition, certain blocks are 

designated NB, which means that they are reserved 
for future same-day demand. The complexity of deci
sions increases when there are multiple physicians. 
Therefore in the next section, we characterize certain 
properties of optimal booking decisions, which are 
subsequently used to construct heuristic solutions. 

4.1. Properties 6f Optimal Booking Decisions 
For modeling convenience, we may think of the book
ing decision as a two-step process. Given that a 
panel l patient makes a booking request in period t 
with acceptable set (I, J), the clinic in the first step 
identifies sets of no-book states sf·1 for each i E I, 
i.e., states in which a panel 1 patient's request for an 
appointment with physician i is denied irrespective 
of J. If the current state is in the set of no-book states 
for all physicians in I , then the requesting patient is 
asked to try another date. However, if the process 
proceeds to the second step, then the clinic decides 
which of the acceptable and available appoinh_nents to 
book. That is, in stage two, the clinic ranks available 
(i, j) combinations in (I, J). It is also possible at this 
stage to deny a patient's request. Denials may happen 
either when the intersection set of patients' requested 
appointments and available appointments is empty 
or when the clinic earns a greater expected rev
enue by protecting specific appointments requested 
by the patient for future arrivals. This two-step pro
cess can be operationalized by developing procedures 
for identifying no-book states and procedures for rank 
ordering requested appointments (from the clinic's 
viewpoint) when the systeqt state is not in the no
book set. We obtain 'partial solutions for these two 
tasks in §§4.1.1 and 4.1.2, which form the basis for the 
heuristics propose~ in §4.2. 

4.1.1. No-Book States. In this section, we obtain 
s;· 1 for t = 1, and for t > 1 we identify a set of 

1states s:·1 such that s:·1 S s:· • We also show that for 
t > 2, When 7Tt ~ 7TI- l (which We assume), s:,l S s:~l' 
That is, patients who call earlier encounter smaller 
sets of no-book states. 

Consider a time t decision epoch when the kth 
panell patient makes a booking request, and assume 
that there will be no more future advance-book 
requests after this decision epoch. Let (I, J) denote 
this patient's acceptable set of appointments. Then the 
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clinic's decision problem is encapsulated in the fol
lowing revenue function: 

u:·k(s)= .max (r~ +u0(s+e1 ;),ua(s)-1T,).1
(r, !)~(!,f) ' ' 

The above· revenue function is identical to (1) when 
t = 1. For t > 1, the difference is that the right-hand 
side contains u0 instead of ul-1 because we assume 
no advance-book arrivals after period t. The clinic 
should consider booking an appointment for a panell 
patient if there is at least one (i, j) combination such 
that u0(s)- u0(s + e1,; ) ~ r{. 1+1T1• 

Let F;( ·) and F( · ) denote the CDF of physician 
i's and clinic's same-day demand, respectively. Upon 
rearranging the terms in Equation (4), we obtain 
u0(5) = r2E(X)- r2 :E;:1 E(X1 - i<1+51)++ r2 E~~1 E(i<1 

51 - X1)+- r~E(K- s- X)+- cE(X- l( + s)+. Let s_; 
be the total number of slots booked for all physicians 
except physician i. After a few more steps of algebra, 
the marginal benefit for reserving a physician i's slot 
in the last period can be further simplified to 

A(s1, ~-;) ~ u0(s)- u0(s + ei,j) 

= r2 +c- (r2 - rl)F;(i<;- s; -1) 

- (r~ + c)F(i<- 51 - 8_1- 1). 

Same-day patients do not have time preferences. 
Therefore, the value of A(s; , s_1) does not depend on 
which block 'j is being considered. 

Let a; and a_;, respectively, be the number of avail
able slots of physician i and the clinic not including i. 
Because CDF is a nondecreasing function, for any 
fixed value of 5_1, t..(s1, s_1) increases in 51• Therefore, 
there exists a protection level a:(s) = min{a1: A(i<1 

a;' S_;) > r( l + 7TI given a; ::: 0 and fixed 5_;I such 
that no physician_ i slot should be booked for a 
panel l patient if k1 -51 is less than a~(s). Similarly, 
for any fixed value of 81,, A(s1, 5_;) increases in 5_;, 
which implies that there exists a protection level 
a~i(s) ~min{a_;: A(~;, K_;-a_;)> rLr +7Tt given a_;::: 0 
and fixed 51} such that no physician i slot should be 
booked for a panel./ patient if the remaining clinic 
capacity, not counting physician i, is less than a~ 1 (s). 
Similar protection levels also exist with convex cost of 
unmet same-day demand· (see §C of the online sup
plement for details). 

PROPOSITION 1. Given a panel I patient's booking 
reguest for an appointment with physician i at decision
epoch t and no more advance-book requests after t, the set 
of no-book states is s;·,z ={s: i<1 - 51 :::: a~(s) }. 

An immediate · corollary of Proposition 1 is that 
1s~· =5i·1 for•each (i, l) pair because after t =1, there 

are indeed no more advance-book requests. Also, the 
booking decision for a type l.arrival regarding a 

physician i's slot depends oil the current state of the 
clinic only through a:(s) and a~ (5), which leads to 1 
a two-dimensional booking profile. Gupta and Wang 
(2008) obtain a similar result when advance-book rev
enue is independent of panel index. However, in their 
paper, all open slots of a physician are equally val
ued and are made available to the arriving patient so 
long as the remaining capacity is higher than the pro
tection level. In our framework the protection level 
serves only as an availability check in the first step 
of the booking process. We refer the reader to §D of 
the online supplement for an example that identifies 
no-book states for a two-physician clinic. 

PROPOSITION 2. The set of no-book states assuming no 
more advance-book requests is a subset of the true set of 
no-book states, i.e. s:,l ~ s;·l' and if 1Tt is nondecreasing in 
t1 then s:·I ~. 5;:_1

1• 

A formal proof of Proposition 2 is included in §E of 
the online supplement. On an intuitive level, the first 
part of this proposition holds because when there are 
no more advance-book requests, there are no compet
ing advance-book requests for the same slot. The only 
demand for a slot is from same-day requests. There
fore, the protection level after making the assumption 
of no more advance-book requests is never greater 
than the true protection level when advance-book 
requests do occur. The second result follows because 
higher cost of denying a patient's request leads to 
lower protection levels. 

4.1.2. Rank Order of Appointment Slots. Con
sider a single-physician clinic with block j capacity Ki 
and state s;. In this section, a block is deemed avail
able when s; < K; and the current states is not in the 
set of no-book states. We analyze this simpler prob
lem instance because in this case an advance-book 
patient's request is denied only when it is optimal 
to reserve capacity for same-day patients. This hap
pens because each advance-book appointment results 
in the same revenue. This means that when there is a 
single physician labeled l, Si =S! for each t. A formal 
argwnent is provided in §F of the online supplement. 

The clinic faces the problem of deciding which of 
the requested appointments in the acceptable set I to 
book. We consider only those instances in which for 
at least one j E 1, 5; < K;· If there is at least one block 
j e I such that K; - s; > 7- t and state 5 is not a no
book state, then it is straightforward to show that the 
clinic can book the patient in block j without affect· 
ing its ability to book future patients because all those 
patients still have a chance to book block j. Similarly, 
if the system is not in a no-book state and there is 
only one j e I such that K;- s; > 0, then a slot in 
block j should be booked. This means that a clinic 
needs guidance only when K; - s; :::: '1'- t for all j, and 
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there is more than one acceptable block with remain
ing capacity. We focus on such cases in the remainder 
of this section. 

Let cp(s) = 1 - 0;:•·<" (1 - {31) be the probability
1

that at least one time block is acceptable to an arriv
ing patient and has remaining capacity when system 
state is s and consider a decision epoch after which 
the clinic expeqs at most one additional advance
book arrival. Suppose that the patient's acceptable 
set includes blocks j and k, both of which have at 
least one open slot. The clinic may then base its 
decision on the value of cf>(s). The higher the value 
of c/J(s), the higher the chance of satisfying a future 
arrival's request. The clinic may consider the relative 
magnitudes of cf>(s + e) and rp(s + ek) when decid
ing which block to book. When both j and k have 
exactly one remaining slot, it may also consider the 
relative magnitudes of f3; and f3k· The above informal 
arguments are formalized in Proposition 3; a proof 
of Proposition 3 can be found in §G of the online 
supplement. 

PRoPosmoN 3. When choosing between blocks j 
and k, the clinic prefers to book in block j so long as f3; < 
f3k and rp(s + e1) > cf>(s + ek). Mathematically, if {31 < {3k 
and c/J(s + e1) > ¢(s + ek), then u1(s + e1) ~ u1(s +ek) for 
all t ~ 1. 

Proposition 3 gives a partial ordering of accept
able time blocks of a single physician. It suggests 
that among the available and acceptable combina
tions, a particular block is more likely to be a clinic's 
top choice if it has greater remaining capacity and if 
assigning a slot in that block has a SI;Jlaller effect on 
the clinic's ability to meet future demand. It is difficult 
'to show a similar result when multiple physician's 
slots are being compared because of different time.. 
preference patterns of patients belonging to different 
panels and because of different revenue rates. How
ever, we use insights from Proposition 3 to develop 
a metric, qL, to rank order available and acceptw 
able blocks from the clinic's viewpoint. This metric is 
used in heuristic rules for making booking·decisions . 
(see §4.2). 

We define qf, i as a measure of popularity of each 
(i, j) combination when Ki,j - si. j > 0 in period t as 
follows: 

1- 1 

q~ .="",\ip\ .j(K· ·- S· ·) (5)1,] ~ 2: 1,] I 11} I,J • 

z=l 

The numerator of (5) is the expected number of times 
that (i, j ) combination will be included in the accept
able set by panel i patients in the remaining advance
book periods, and the denominator is the remaining 
capacity of the (i, j) combination. The popularity mea
sure does not account for anticipated demand from 

nonpanel patients because both heuristics proposed 
in the next section give priority to achieving high 
patient-PCP match. · 

4.2. Heuristic Approaches 
We present two heuristics (Hl and H2) that utilize the 
popularity index in (5) and give priority to matching 
patients with their PCP. In describing the heuristics 
below, we assume that a panell patient has tendered 
an appointment ·request with acceptable set (I, J) and 
that the system state iss. The booking decisions gen
erated by Hl and H2 are appealing on an intuitive 
level for two reasons. First, because rL ::::: ri, 1 for i i- 1, 
and there are a variety of other benefits of matching 
patients with their PCP, it is reasonable to strive for 
a high patient-PCP match. Second, because any com
bination in (I, J) is acceptable to the patient who ten
dered that request, it can be beneficial to reserve slots 
with higher fll,j values for future patients. 

Hl books an appointment so long as the intersec
tion set of open slots and (I,]) is not empty. That is, 
Hl assumes that the set of no-book states is empty. 
It attempts to first book a patient with his or her 
PCP. If multiple PCP slots are open and included in 
J, then Hl books a slot with the smallest value of qj .. 

'J
If none of the acceptable PCP slots are available, then 
Hl books the slot with the smallest value of qf.j, i f=. l, 
among all non-PCP slots in the acceptable set. 

1H2 calculates s;· and only considers physicians i 
included in I for which s ¢ SJ'1

• Upon ascertaining that 
s ~ s:' 1, H2 attempts to first book a patient with his or 
her PCP. If multiple PCP slots are open and included 
in J, then H2 books a slot with the smallest value 
of q{, i' If none of the acceptable PCP slots are avail
able, then H2 books the slot with the smallest value 
of q[,1, i # l, among all non-PCP slots in the acceptable 

1set for which s ¢ s;· • The key difference between Hl 
and H2 is that Hl does not protect slots for same-day 
demand. 

4.3. Tests of Performance of Hl and H2 ., 

For the single physician example presented at the 

beginning of §4, the expected daily revenue evalu

ated at the beginning of the advance-book period, 

when the system starts empty and we use Hl and 

H2 to make booking decisions, turns out to be 99.76% 

and 99.81%, respectively, of the optimal expected rev
 ,,I enue. This suggests that the performance of Hl and 
H2 is reasonable in problem instance's with a single , I 
physician. J

1: 

·' 
i

However, problems with multiple physicians are I 

not tractable and the corresponding optimal expected I 

revenue cannot'be determined exactly. Therefore, we i 
compare. the expected rev~nues obtained from the 
two heuristics to the expected maximum attainable 
revenue, which is an upper bound. To calculate this 
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bound, we simulate sequences of advance-book and 
same-day arrivals and then use an integer program, 
~hown in §4.3.1, to calculate the maximum attainable 
revenue for each sample path. 

4.3.1. Maximum Attainable Revenue. Let K 
(respectively, K1) be the set of decision epochs with 
an arrival from an arbitrary panel (respectively, 
panel l) . In addition, let aLi = 1 if (i , j) physician 
and time-block combination is acceptable to the 
advance-book patient who arrives in period t and 
al, i = 0 otherwise. Let x1 denote the realized same-day 
demand from panell. The decision variables are y!, 1 
and of. 1, where yl, 1 is the number of slots that belong 
to the (i , j) combination and that are assigned to 
same-day panell patients. Furthermore, ol,1 = 1 if the 
clinic assigns a slot of the (i, j) combination to the 
patient who arrives in period t, and oi, i =0 otherwise. 
Let M(l) be the set of physicians excluding l. Then 
the maximum attainable revenue of a sequence of 
arrivals can be obtained by solving the following 
integer program. 

m b m b 

max .L:L :~=>Lot; + I: :L I: 2: r{,zoi.l 
1=1 /=1 te K1 1=1 iEM(/) j=l t eK1 

ject to 

i, i ~ al, 1 Vi = 1, ... , m; j = 1, . .. , b; t E K, 
Ill . b 

L_L oL ~ 1 V t eK, 
=l i=l 

m 

"'o~ +'"'y1 - < K - - 'l i=1, .. . ,m; J·= l , ... ,b,..- 1 L..- 1 1I, 1,) , 
eK Z=l 

Ill b 

 LYLi ~ x1 Vl =1, ... , m, 
i= l /= 1 

J.i e {O, l} Vi =1, .. . ,m; j= l , . .. , b; t eK, and 

i,i:::. o Vi= l , .. . , m; j=l, ... , b; l = l , ... ,m. 

sub

o

_
i

'L
t

L

o

y

Using CPLEX 8.1 solver, the maximum attainable rev
enue for each sequence of advance-book and same
day arrivals in the examples reported in §4.3.2 was 
obtained in less than a second. 

4.3.2. Results of Performance Tests. We tested 
H'l and H2 with the help of a five-factor design 
of experiments. The factors were (1) four clinic 
sizes (m = 2, 4, 6, and 8); (2) five clinic loads (expected 

Table 4 Time Dominant 

ai p~ p~ {3~ If. 
1 0.2 0.4 0.6 
2 1 0.5 0.5 0.5 
Odd 1;:: 3 1 0.5 0.5 0.3 
Even /;;: 4 0.3 0.5 0.5 1 

Table 5 Physician DQminant 

a~do Q~ven /3; 

Odd I 1 0.3 

Even I 0.3 1 


Table 6 Moderate 

a~d a'...,. plod, /3~/eJI 

Odd I 1 0.4 1 0.4 

Even I 0.4 1 0.4 1 


demand/ average capacity =85%, 90%, 100%, 110%, 
and 115%); (3) two types of panel loads (homoge
neous or heterogeneous); (4) four preference types 
(time dominant in Table 4, physician dominant in 
Table 5, moderate in Table 6, and no preferences); 
and (5) two levels of information accuracy (perfect 
or biased)-for a total of 320 different scenarios. We 
repeated the evaluation of the 320 scenarios under 
two cost structures: C/ Tr = 2 and c/ 11' = 8. A higher 
cj Tr ratio is appropriate for clinics that place a high 
priority on meeting same-day appointment requests. 
Results are summarized in Table 7 and Figure 3. They 
confirm that H1 and H2 are robust under a variety 
of different clinic environments. However, before d is
cussing the results, we first describe the experimental 
setup in more detail below. 

A clinic may set up time blocks with different 
lengths and / or different number of appointment slots 
within a time block. For example, a clinic may divide 
physicians' morning sessions into three one-hour 
blocks, each with two 30-minute slots, and afternoon 
sessions into two two-hour blocks, each with three 20
minute appointments. On any given day, a particular 
physician's slots in each block may vary on account 
of staff meetings, training, variable work schedules, 
and differences in the number of work-in/ overbook 
slots. To capture this variability, we assume that clin
ics have on average five slots within each of four daily 
blocks for each physician, but the actual number of 
slots within each block for each physician is indepen
dently sampled from a uniform [4, 6] distribution. 

Each physician's same-day demand is assumed to 
be ind~pendent and Poisson distributed with mean 6 
(30% of the average capacity). Different levels of 
clinic load are simulated by choosing T = 0.7x 
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Table 7 

Cj'IT 

2 

8 

Aggregate Performance 

Relative revenue 

Clinic load (%) Mean so 
H1 85 0.992 (0.017) 

90 0.989 (0.021) 
100 0.981 (0.026) 
110 0.965 (0.033) 
115 0.958 (0.036) 

H2 85 0.992 (0.01 7) 
90 0.989 (0.020) 

100 0.983 (0.024) 
110 0.974 (0.028) 
115 0.971 (0.028) 

H1 85 0.968 (0.100) 
90 0.955 (0.106} 

100 0.902 (0.161} 
110 0.807 (0.212} 
115 0.728 (0.250) 

H2 85 0.977 (0.063) 
90 0.969 (0.069) 

100 0.947 (0.081) 
110 0.923 (0.085) 
115 0.909 (0.102) 

PCP match 

Mean SD 

0.958 (0.040) 
0.952 (0.041) 
0.943 (0.042) 
0.942 (0.041) 
0.943 (0.040) 

0.958 (0.040) 
0.952 (0.041) 
0.942 (0.042) 
0.940 (0.039) 
0.939 (0.039} 

0.957 (0.040) 
0.950 (0.042) 
0.943 (0.041} 
0.941 (0.040) 
0.944 (0.038) 

0.957 (0.040) 
0.949 (0.042) 
0.941 (0.041) 
0.936 (0.040) 
0.936 (0.039) 

Advance-book 
fail ure 

Mean SD 

0.007 (0.01 8) 
0.009 (0.022) 
0.013 (0.027) 
0.022 (0.033) 
0.027 (0.038) 

0.010 (0.024) 
0.016 (0.035) 
0.037 (0.054) 
0.083 (0.077) 
0.108 (0.083} 

0.008 (0.020) 
0.010 (0.024) 
0.014 (0.026) 
0.022 (0.034) 
0.027 (0.037) 

0.01 6 (0.037) 
0.022 (0.044) 
0.049 (0.063) 
0.101 {0.083) 
0.135 (0.090) 

Spoilage 

Mean SD 

0.123 (0.088) 
0.094 (0.083) 
0.047 (0.068) 
0.022 (0.055) 
0.013 (0.048) 

0.124 (0.088} 
0.095 (0.082) 
0.050 (0.068) 
0.028 (0.057) 
0.021 (0.051) 

0.119 (0.085) 
0.093 (0.084) 
0.051 (0.071) 
0.021 (0.053) 
0.014 (0.047) 

0.121 (0.084) 
0.095 (0.083) 
0.058 (0.071) 
0.035 (0.059) 
0.031 (0.055) 

I
. I 

I 

(20 slots/physician) x m x (clinic load)/'LZ:.1 A:, where 
I:Z:.1 A: = 0.1. In the homogeneous panel load sce
nario, the arrival probability for each panel equals 
I:Z:.t A:;m , whereas in the heterogeneous panel load 
scenario, A.J = 0.8 I:;:1 A~jm, A~ = 1.2 :L:/~1 A.lJm, and 
A:' =0.8 'LZ:.1 Alfm for I' ::=:: 3. We also varied the clinic 
load by keeping 7' fixed and changing each decision 
epoch's arrival rate. The performance of Hl and H2 
was similar to what we report in Table 7. Therefore 
those results are not presented in the interest of b revity. 

We assume that information bias results in inaccu
rate estimates of f3j. Let f3}cdl be panel l's acceptance 
probability for time-block j, where (d) indicates that 
block j has the dth highest p robability among the b 
time blocks for panel !. In the biased case, the clinic's 
estimate is assumed to be sufficiently inaccurate that 
it reverses the ordering for each· panel's time-block 
acceptance p robabilities. That is, the clinic uses ~J(dl = 
fJ~b-d+ll when making booking decisions. For exam
ple, the clinic would use ~1 =(1, 0.6, 0.4, 0.2) as the 
clinic's biased estimates for {31 in Table 4. 

To focus attention on the impact of patient prefer
ences and to not confound this effect with the effect 
of different revenue classes, we assumed that all pan
els had the same expected revenue. In particular, 
(rfy '1T , r2 , rD = (100,35, 100,85), rL 1 = 85 fori -::j: I, 
and Trt = Tr for all t. We generated SO sam:ple paths 
for each scenario and tracked the performance of H l 
and H2 by average relative revenue (as compared 
to the bound discussed in §4.3.n average patient
PCP match rate, average advance-book failure rate as 
a percentage of nonurgent requests for a partic_ular 

appointment date, and average spoilage rate as a per
centage of slots unused. . 

We first compared Hl's and H2's performance 
with accurate and biased acceptance probabilities for 
each sample path. Neither H l's nor H2's average 
performance is affected much by using inaccurate 
acceptance probabilities-relative revenue on average 
increased by 0.53% for Hl and decreased by 0.49% 
for H2; all other metrics were on average affected less 
than 1.8% and 0.7% for H l and H2, respectively. Note l" 
that the improvement in Hl's performance is because 
of the higher advance-book failure rate induced by 
biased estimates of acceptance probabilities, which 
increases availability of slots for same-d ay demand . 

Table 7 reports average performance measures 
sorted by cj'TT ratio and clinic load. For each combina
tion, the reported performance metrics are aggregated 
over all possible scenarios of panel load, preference 
type, and information accu racy. Both H1 and H2 have 
high average patient-PCP match rates (94.7% and 
94.5%), low average advance-book failure rates (1.6% 
and 5.7%), and low average spoilage rates (6.0% and 
6.6%). The relative revenue performance of Hl and 
H2 is respectable with low variability when cjTr =2
the relative revenue is on average 97.7% and 98.2% 
of the bound for H1 and H2, respectively. When 
cf'1T = 8, the relative revenue performance is worse 
(on average 87.2% and 94.5% of the bound for Hl 
and H2, respectively), but H2 performs better. This 
suggests that when a health system has other options 
for taking care of u rgent requests (e.g., urgen t clinics), 
its cost of turning away same-day requests is smaller 

'I. 




When C/ 7r=B 

(a) By preference type and clinic load 

Clinic load (%) 


85 90 100 110 115 
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(b) By clinic load and clinic size 
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Figure 3 Average Relative Revenue and 95% Conlidence Intervals 
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Note. T, time dominant; P, physician dominant; M, moderate; N, no 
preferences. 
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(low Cj'TT) and it may be justified in using H1, which 
is much simpler to implement. 

Next, we report more detailed results in Figure 3 
for the case when cj'TT = 8. As seen in Figure 3(a), 
for each clinic load, the relative revenue performance 
of H1 and H2 is robust across preference types. 
Similar results were also observed for panel loads, 
which are not reported. here in the interest of brevity. 
Note that the means and confidence intervals are 
based on all sample paths generated across different 
clinic environments conditioned on the levels of fac
tors presented in each subgraph. The relative perfor
mance of H1 and H2 deteriorates when clinic load 
exceeds capacity (Figure 3(b)) but improves as the 
clinic size ·increases (Figure 3(b)). The latter happens 
because each panel's same-day demand is assumed 
to be independent, and clinics with more physicians 

benefit from pooling available capacity to take care 
of same-day demand. The size effect may disap
pear when same-day demand patterns are correlated 
across physician panels. · 

5. Insights 
In this section, we first compare the performance of 
H1 and H2 to a straw policy that does not utilize 
patients' preference information when making book
ing decisions. The straw policy attempts to book each 
arriving patient with the earliest available and accept
able patient-PCP matched slot. If none of the matched 
acceptable slots is available, the straw policy then 
books an appointment in the earliest available non
PCP slot, paying no attention to remaining capacity 
and time preferences. Next, we compare H1 (or H2) 
to itself when using true acceptance probabilities and 
naive acceptance probabilities. The purpose · of this 
comparison is to tease out the value of information 
if a clinic decides to adopt either H1 or H2 booking 
heuristic. Finally, we evaluate the effect of low lev- · 
els of no-show rates and service time variability by 
comparing H1, H2, and the straw policy. 

All examples of this section use the follow
. 	 I . 
mg common parameters: (r1 1, 'TT1, r2, r2, c)= (100, 35, 
100, 85, 280), r;,, = 85 for i =I= l, Poisson same-day 
demand with· E(X1) = 6 = 30% of each physician's 
capacity of 20 appointments per day. If desired, 
each panel's advance-book arrival rate can be var
ied to realize different workloads for different physi
cians. Total advance-book periods equal (0.7 x clinic 
capacity)/(L:f~1 AD, which ensures exp~cted clinic 
demand equals clinic capacity. We report results when 
2::?~1 A; = 0.1. Each experimental setup is simulated 
for 200 sample paths, and all booking strategies are 
evaluated for the same sample paths. 

The first set of comparisons consider a six-PCP and 
four-time-block clinic whose patients always show up 
and find all physicians acceptable, but these patients 
have the following time preferences: {31 = (i3, ~~ 1, 1) 
for l = 1, 2; {31 = (1, fi, [3, 1) for l = 3, 4; {31 = (1, 1, fi,{3) 
for l = 5, 6. Each physician's clinic profile has more 
slots in blocks that are more acceptable to his or her 
panel patients (i.e.~ K 1,j = 6 if f3j = 1, and t<1, j = 4 oth
erwise). We vary {3 from 0.2 to 0.8 in 0.1 increments 
and study two arrival patterns·: (1) constant arrival 
rates: Al = O.l f m for all l = 1, ... , 6 and t = 1, ... , T 

and (2) varying arrival rates: when t ~ (1/3)T, A:= 3A: 
for k= 1, 2 and i =3, 4, 5, 6; when (1/3)T < t:::: (2/3)7', 
Af =3.A~ for k=3, 4 and i=1,2,5,6; and when t > 
(2/3)7', A}= 3.A: fork= 5, 6 and i = 1, 2, 3, 4. 

H1 and H2 on average result in about 1% and 
8% higher revenue as compared to the straw pol
icy regardless of the value of [3 and the arrival pat
tern. We report only the aggregate results in Table 8. 
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Table 8 Performance ol H1 and H2 Compared to the Straw Policy 

No. Rev. improv. 
PCP match Advance-book Spoilage scheduled/ compared to 

· Policy (%) failure rate (%) rate(%) served straw(%) 

Straw 92.88 0.00 3.41 115.9 
H1 94.34 0.04 3.50 115.8 1 
H2 94.06 0.43 4.17 115.0 8 

Hl achieves a higher PCP match, relative to the straw 
policy, by reserving more popular slots for future 
advance-book arrivals. In contrast, H2 with higher 
spoilage and advance-book failure rates achieves a 
high PCP match rate for different reasons. By reserv
ing slots for same-day patients, it allows more of 
those patients to have an appointment with their PCP. 
H2 has much higher advance-book failure rate and 
slightly smaller number of patients served because 
some advance-book requests are denied when no
book states are reached. However, overall revenue is 
higher because it is costlier to turn away same-day 
patients. 

Next, we evaluate the performance of Hl and H2 
with two levels of information: (1) true acceptance 
probabilities and (2) naive acceptance probabilities. 
The latter assumes that every physician and time 
combination is acceptable to every patient. For each 
heuristic, we calculate the value of preference infor
mation by comparing that heuristic's average daily 
revenue to itself when the clinic uses true versus 
naive acceptance probabilities as inputs. We also mon
itor changes in patient-PCP match rates, advance
book failure rates, and number of patients served. In 
the results reported here, the clinic has eight full-time 
physicians, four time blocks, and five slots per block. 
Arrival pattern is time homogeneous, but expected 
demand rates can vary by panel, resulting in imbal
anced workload across physicians. 

We use a full factorial design of three factors, each 
with two levels. For a panel with strong (respec
tively, weak) time preferences, we allow one block to 
be always acceptable and the remaining blocks to be 
accepted with probability 0.3 (respective!~ 0.7). For a 
panel with strong (respectively, weak) physician 'pref
erences, the PCP is always acceptable and each non
PCP is acceptable with probability 0.3 (respectively, 
0.7). For a panel with adequate (respectively, inade
quate) capacit~ we let the expected demand be 66.7% 
(respectively, 133.3%) of the capacity. These combina
tions lead to eight stylized panel types. 

Accurate preference information on average in
creases daily revenue by $20.35 and $93.15 for H1 
and H2, respectively. H2 reduces advance-book fail
ure rate by 1.3% and serves on average 1.16 more 
patients per day when using true acceptance proba
bilities as inputs .. That is, our example clinic would 

be able to serve on average 423.4 more patients per 
year by updating patients' acceptance probabilities 
and using H2. We also studied a different scenario 
(results not reported for brevity) in which physician 
workloads were balanced and found that in such 
cases, knowledge of accurate acceptance probabilities 
does not significantly affect average daily revenues, 
patient-PCP match rates, advance~book failure rates, 
and the number of patients served (paired sample 
tests were not significant in all comparisons). This I 

suggests that clinics whose physicians' workloads are 
imbalanced are more likely to benefit from accurate 
preference information when using H1 or H2 booking 
schemes. Imbalanced workloads are a common occur I.rence in practice. t 

In the last set of examples, we evaluate the effect 
of no-shows and service time variability, assum
ing punctual physicians and patients, independent 
and identically distributed service times and equal
length appointment slots. We test two levels of 
average no-show rates: 5% and 10%, with each 
patient's no-show probability drawn independently 
from Beta(O.OS, 0.95) and Beta(O.l, 0.9) distribution, 
respectively. To test the impact of service time vari
abilit~ 'we sample five distributions (see Table 9) that 
have the same mean but different coefficients of vari
ation (0.33, 0.58, 0.58, 0.71, and 1, respectively). These 
distributions cover the range of service time variabil
ity observed in empirical s~dies (0.3-0.85); see Cayirli 
and Veral (2003). Finally, f3 =0.5 and A:= 0.1jm for 
each l and t. We report performance comparisons m 

• i 
iterms of paired sample t statistics for the average dif I : 

:11•·ference in revenue, average patient wait, and average 
II : 

physician overtime between H1 (or H2) and the straw 
policy in Table 9. 

H1 and H2 on average have a statistically higher I I 

revenue than the straw p olicy has at each level of 
no-shows. The difference in average patient wait and { 

physician overtime time between Hl (or H2) and the 
straw policy is statistically insignificant in most cases. 
However, when the difference is significant, Hl and 
H2 perform better. If the length of the appointment 
time slot is 30 minutes and average service time is 27.3 
minutes, then patients' average wait ranges from 6.8 
to 45 minutes while physicians' average overtime 
ranges from 6 to 40 minutes across these 10 scenar
ios. These results show that it is reasonable to use H1 
and H2 when a clinic's no-show probability is not too 
high (~10%) and the service time variability is not 
more extreme than the variability observed in empir
ical··studies. 

6. Concluding Remarks 
This paper presents a framework for using appoint
ment _request data to update patients' preferences 

I 

i 

http:0.3-0.85
http:Beta(O.OS
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Table 9 Perfo"t'mance Comparison in Terms of t Stalislics with Degree ol Freedom = 199 Under Paired 
Sample Tests 

Revenue PCP match Avg. walt Avg. OT 
No-show Service time 
rate(%) distribution H1 H2 H1 H2 H1 H2 H1 H2 

5 Unif[0.4, 1.6] 6.5• 8.1· 14.6' 13.5' -1.8 -1.7 -1.6 -1 .9 
Unif[0,2] 5.9 8.2• 14.4' 12.4' -1.0 -1.3 -0.7 - 1.9 
Gamma(3, 1/ 3) 7.5' 8.4* 14.7• 11.1' 0.5 -0.9 - 0.8 -2.7• 
Gamma(2, 0.5) 5.7• 7.9' 15.4' 12.7' -0.8 -1.2 -0.3 -0.9 
Exp(1) 6.9• 8.8' 14.8' 12.5' - 1.1 - 1.8 -0.3 -0.5 

10 Unif[0.4, 1 .6] 8.3• 3.9' 15.1' 11.7' 0.4 -0.5 -1.9 -3.4' 
Unif[O, 2] 7.6• 7.8' 15.8' 12.5'• -0.1 -1.0 -1.6 -3.8 
Gamma(3, 1 ; 3) 6.7• 9.2' 15.1 ' 13.3• - 0.6 -0.1 -1.2 - 1.9 
Gamma(2, 0.5) 6:7• 7.9· 15.2' ' 11 .9' -0.1 -0.2 - 0.8 -3.2• 
Exp(1) 7.3• 8.9' 13.8' 10.4• 1.7 1.4 0.4 0.3 

•Significant at the 0.05 level. 

and to subsequently use this information to. improve 
clinics' revenues, serve more patients, and increase 
patient-PCP match rates_ This approach can be imple
mented by u tilizing data that can be retrieved from 
existing Web-based appointment request systems. 
However, it may not be suitable for clinics with high 
no-show rates that cannot be controlled by the use of 
a reminder system and patient education· or by bet
ter matching patients' preferences with available slots. 
Such clinics ·may benefit from using approaches that 
explicitly consider no-shows when making booking 
decisions. 

Our model is limited because it considers each 
workday's booking problem separately. A clinic 
may benefit from knowing all acceptable dates and 
the physician and time-block combinations that are 
acceptable to each arriving patient on each date before 
making a booking decision. However, that will make 
the booking process tedious for the patients and the 
state space of the appointment system will become 
unmanageable because acceptable dates may span an 
arbitrarily large period of time. It is perhaps for this 
reason that common Web-based booking request sys
tems accept requests for one day at a time. 

Patient-centered service models have attracted 
much attention in recent health policy literature. For 
example, a medical home model is a one-stop model 
that matches each patient with a team of providers 
based on the patient's needs. This team monitors a 
patient's health status and coordinates appointments 
for acute, chronic, and preventive services. Similarly, 
many health systems allow patients to see several ser
vice providers in a day or within a short period of 
time so that out-of-town patients do not need to travel 
to the service facility multiple times. Both models 
require matching patients' needs and preferences to 
multiple providers' av.ailability. An intetestiri.g avenue 
of future research along the lines presented in this 
paper is the developmenbof a model-based· design of 

an adaptive appointment system for integrated med
ical services. 
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