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[1] Past studies of hillslope evolution have typically assumed that soil creep processes
are governed by a linear relationship between local hillslope angle and transport distance.
The assumption of “linear diffusion” has fallen out of favor because, when coupled with an
expression of mass continuity, it yields unrealistic hillslope profiles. As a consequence,

a better understanding of the mechanics of sediment transport is needed. Here we report
results from a series of flume experiments performed to investigate sediment transport by
dry ravel, a common soil creep process in arid and semiarid environments. We find that,
at gentle slopes, transport distances follow distributions characteristic of local transport.
As gradients steepen, a fraction of the particles begins to exhibit nonlocal transport, and
that fraction increases rapidly with slope. A stochastic discrete element model that couples
an effective friction term with a shock term reproduces the results from the flume
experiments, suggesting that it can be used to explore the nature of particle transport on
rough surfaces. The model predicts that exponential distributions of transport distances on
gentle slopes evolve into quasi-uniform distributions on steep slopes, and the transition
occurs as slopes approach the angle of repose. Our results support previous findings that
the angle of repose represents a threshold between friction and inertial regimes. In addition,

we propose that the angle of repose represents a fuzzy boundary between local and

nonlocal transport.

Citation: Gabet, E. J., and M. K. Mendoza (2012), Particle transport over rough hillslope surfaces by dry ravel: Experiments and
simulations with implications for nonlocal sediment flux, J. Geophys. Res., 117, F01019, doi:10.1029/2011JF002229.

1. Introduction

[2] Regardless of climate and underlying lithology, soil-
mantled hillslopes are typically convex, with flat ridges and
slopes that steepen away from the divide. The ubiquity of
this profile compelled Gilbert [1909] to propose perhaps
the first hypothesis linking a sediment transport process with
landscape form. Gilbert’s key insight was that, on hills domi-
nated by soil creep, the volume of sediment transported
increases downslope and, thus, slopes must steepen to drive
higher rates of sediment flux. Later, Culling [1960, 1963,
1965] provided a quantitative underpinning for Gilbert’s
theory by assuming that sediment flux by soil creep is lin-
early proportional to slope (although he expressed doubts
that this assumption was strictly correct). Hillslope profiles
predicted with a linear flux law, however, resemble real
hillslopes only near the divide; further from the divide,
predicted profiles continue to steepen whereas real hillslopes
often reach an approximately constant gradient (Figure 1).
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Andrews and Bucknam [1987] were the first to address this
discrepancy and developed a nonlinear equation in which
flux increases asymptotically as slopes approach a threshold
gradient. Similar transport equations, albeit derived via dif-
ferent approaches, have been proposed by others [Gabet,
2003; Roering et al., 2001].

[3] Although hillslope profiles modeled with the nonlinear
transport equation are more similar to real profiles [Roering
et al., 1999], they do not reproduce straight midslope sec-
tions. Indeed, models that assume that soil is a continuum and
that sediment flux can be deterministically predicted as a
continuous function of local hillslope gradient cannot pro-
duce linear hillslope sections. In these models, gradients must
always increase downslope because temporal changes in
elevation at any point on the surface are based on the diver-
gence of the local sediment flux. Deterministic nonlinear flux
laws, to an extent, help to straighten the hillslopes but, at
steady state, the curvature can never be zero. This problem
highlights the need for a new approach to represent hillslope
sediment transport.

[4] Tucker and Bradley [2010] explained that continuum
models, such as the one introduced by Culling [1960, 1963],
depend on two assumptions: (1) the average sediment flux is
determined by the hillslope gradient without the need to
account for the exact movement of each individual soil
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Figure 1. Hillslope profile (diamonds) near Santa Barbara, California. The midslope section is linear;
field inspection of the slope showed no evidence of landslides or overland flow that could have straight-
ened the profile. The semiarid climate and the shrubby vegetation are conducive to dry ravel. Profile

extracted from 1 m digital elevation model.

particle, and (2) the gradient only needs to be known at a
single point to determine the sediment flux at that point.
These locality assumptions are reasonable when particles on
a hillslope move only short distances relative to the length of
the hillslope [Schumer et al., 2009]; they are violated, how-
ever, when the distances that particles travel are large relative
to hillslope length. Specifically, nonlocality occurs when the
mean distance traveled by a particle tends toward infinity
and, as a result, the probability distribution associated with
the transport distance develops a heavy tail that is right
skewed [Tucker and Bradley, 2010]. Whereas deep soil creep
processes (e.g., shrink-swell) may be adequately represented
by a continuum approach because the motion of an individual
particle is impeded by its neighbors, surface creep processes
(e.g., dry ravel) may exhibit nonlocal transport and, thus, may
be better represented by a particle-based approach [Furbish
and Haff, 2010; Furbish et al., 2009; Roering, 2004].

[5] To shift from a continuum paradigm to one that is
particle based, a better understanding is needed of the
movement of individual particles down a rough surface and,
in particular, the distribution of transport distances. Only a
few studies have investigated the motion of particles in nat-
ural environments. Schumm [1967] tracked the movement
of painted clasts on a hillslope in an arid environment. He
found that the transport distance was dependent on slope but
his data set is too limited to examine the distribution of dis-
tances (interestingly, Schumm dismissed some of his data
because he felt that the particles had traveled too far). In a
study of rain splash, Ghahramani et al. [2011] documented
an exponential distribution of transport distances at low
slopes but, at higher slopes, the distribution became heavy
tailed, suggesting nonlocal transport. Given the dearth of
field measurements, others have resorted to laboratory
experiments to investigate particle transport. In a study of

talus slope formation, Kirkby and Statham [1975] measured
the trajectories of an irregular particle down a board rough-
ened with gravel and found that transport distances were
exponentially distributed. Similarly, Riguidel et al. [1994]
performed experiments by rolling a ball down an inclined
planar bed of closely packed homogeneous glass spheres;
although this physical model simplified a more complex
reality, the authors noted that it permitted a careful exami-
nation of the physics of particle motion. In their experiments,
Riguidel et al. [1994] observed that particle behavior could
be divided into three regimes. At low slopes, the particles
traveled a short distance and then stopped; at intermediate
slopes (5—15°), the particles reached a constant velocity; at
steep slopes, the particles accelerated and began bouncing
downslope. In the constant velocity regime, they found that,
similar to Kirkby and Statham [1975], transport distances
were exponentially distributed. Using a nearly identical setup
as Riguidel et al. [1994], Samson et al. [1998] found that, as
slopes steepen, the lateral component of travel diminishes.
Abstracting particle motion even further, Quartier et al.
[2000] rolled cylinders down a bed of homogeneous cylin-
ders to reduce particle motion to quasi—two dimensions. They
concluded that the energy of the mobile particles was dissi-
pated by shocks from impacts with the bed and by the trap-
ping of particles between bed roughness elements.

[6] In an important first step toward a more realistic
approach to describe surface soil creep processes, Tucker
and Bradley [2010] developed a cellular model to link the
behavior of individual particles (or particle aggregates) with
hillslope form. In their approach, individual particles on a
slope were randomly selected and activated on the basis of
their position relative to their neighbors and a probability
distribution. Although the process of particle motion was
represented probabilistically, the model reproduced realistic
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Figure 2. Photograph of flume surface. Pencil for scale.

hillslopes with convex hilltops and straight midsections.
This model represents a step forward because it is discrete
and nondeterministic; the probability distribution for particle
motion, however, was chosen arbitrarily owing to a lack of
appropriate data.

[7] Assuming an exponential probability distribution of
transport distances, Furbish and Haff [2010] developed a
theoretical approach to hillslope transport that produces
slopes that are nearly linear in their midsections but the
authors expressed the need for “further clarification on the
physics of deposition.” Taking a different path, Foufoula-
Georgiou et al. [2010] used analytical solutions of frac-
tional derivatives to distinguish between local transport on
gentle slopes and nonlocal transport on steep slopes, an
approach that also produces nearly linear profiles. Impor-
tantly, both Furbish and Haff [2010] and Foufoula-
Georgiou et al. [2010] incorporate the topographic char-
acteristics of the particles’ paths.

[s] These recent papers highlight the need for: (1) mea-
surements of the probability distribution of particle transport
distances for a range of slopes, and (2) a modeling approach
that incorporates the physics of particle motion. In this
contribution, we investigate particle transport by dry ravel,
the rolling, sliding, and bouncing of individual particles
down a rough surface [4Anderson et al., 1959]. We chose dry
ravel as the focus of our study because it is a common pro-
cess in arid and semiarid environments, it can be easily
studied in the laboratory, and the physics of the process
can be parsimoniously described [Gabet, 2003; Kirkby and
Statham, 1975; Quartier et al., 2000].

2. Materials and Methods

[s] A dry ravel flume was constructed by pouring con-
crete into a 3 m long, 0.3 m wide wooden box and embedding
1-5 cm diameter subangular to rounded quartzite clasts
(Figure 2). The numbers of clasts from each size class were

chosen to yield an exponential distribution of roughness
elements that could be simply parameterized in a numerical
model. The specific location of each clast was random but
effort was made to maintain a relatively even spacing
between similarly sized rocks. With a winch, the head of the
flume was raised or lowered to adjust the slope. For each
experimental run, a single 1 cm diameter particle was released
from a hopper at the head of the flume; the particle fell onto
a ramp that propelled it down the flume, imparting it with
an initial slope-parallel velocity of 0.7 m/s (sufficient to allow
it to travel a short but measurable distance on gentle slopes).
The transport distance was then measured and the particle
removed; this was repeated 100 times at each slope setting.
The angle of the flume was increased in increments of 3°,
beginning at 0°. After each change of slope, the height of the
hopper was adjusted to ensure that the initial velocity of the
particles in the down-flume direction remained at 0.7 m/s.
As the experiments progressed toward steeper slopes, some
of the pebbles did not stop until reaching the end of the
flume. At the flume angle of 30°, all 100 pebbles rolled to
the end and the experiment was terminated.

[10] The roughness of the flume was characterized by
measuring its elevation along width-parallel transects at 1 cm
intervals. Transects were taken along the length of the flume
at 10 cm intervals, for a total of 28 width-parallel transects.
The relief along each transect was calculated by subtract-
ing the mode of the transect elevations from each measure-
ment and taking the absolute value of the result. The flume
relief measurements were divided by the diameter of the
experimental particle (1 cm) to render them dimensionless.
A histogram of these relative roughness values reveals
an exponential distribution with a mean of 0.17 (Figure 3).

3. Results

[11] Each particle followed a unique path as it encountered
a random sequence of roughness elements. The journey

3of 11



F01019

Probability
©c o o o
w ~r OO O

o O
o N
1 )

F

0.1 03 05 07 09 11 13 15
Relative roughness

Figure 3. Distribution of relative roughness values for the
flume surface (n = 812).

of most particles could be placed into three broad categories:
(1) some particles rolled off the ramp, immediately
encountered an embedded clast and stopped; (2) some par-
ticles came down the ramp, slowed down after hitting a
medium-size clast, rolled around it, accelerated a bit, slowed
down after hitting another medium-size clast, and continued
to trickle down the flume until eventually rolling to a stop;
and (3) other particles rolled off the ramp into a relatively
smooth area, accelerated, hopped over or rolled around a few
medium-size roughness elements, and then rolled into a
large clast or the flume bottom and stopped. At all slope
settings (except the steepest, 30°), all path types were
represented although type 1 paths dominated at lower slopes
and type 3 paths dominated at steeper slopes. Because these
three types of motion are similar to what others have
observed under more idealized conditions [Quartier et al.,
2000; Riguidel et al., 1994; Samson et al., 1998], the tra-
jectories of the particles in our flume appear to belong to a
general class of behaviors characteristic of particles on rough
surfaces and are not unique to our particular experimental
setup.

[12] The average distance traveled by the pebbles increased
nonlinearly with the flume angle up to 15° (Figure 4a). At 3°,
there is an anomalous dip in the average transport distance;
however, it is not statistically lower than the average trans-
port distance at 0° (p value = 0.15). Particles began reaching
the end of the flume at 18° and the proportion of pebbles
rolling to the end of the flume increased rapidly as slopes
steepened (Figure 4b). For these steeper slopes, an average
travel distance was calculated only from the particles that did
not reach the end of the flume; these averages are not meant
to represent an aggregate mean transport distance but are
used to compare with model results.

[13] At low slopes, the distribution of travel distances is
tightly clustered around low values (Figure 5a); as slopes
steepen, the distribution becomes humped and its right tail
stretches out (Figure 5b). When the flume reaches angles
where a significant proportion of the particles rolled to the
end, 18-24°, the distribution flattens and becomes quasi-
uniform (Figure 5¢). At 27°, only 4 particles stopped before
the flume end, making it difficult to draw conclusions about
the shape of the distribution. In general, as slopes become
steeper, the shape of the distribution evolves to accommo-
date a greater range of possible transport distances; this
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conclusion is well captured by the increase in variance
(Figure 4a).

4. Numerical Model

4.1.

[14] A discrete element model was developed to assess
whether the transport of a particle down the flume could be
simulated numerically. In the model, a particle was given
an initial velocity, v, and the distance traveled, x, was deter-
mined according to:

Governing Equations

x = vAt (1)

where At is the time step. A time step of 0.1 s was deemed
appropriate because it represents a travel distance of ~1—
10 cm, similar to the distances between major roughness
elements. We note that the model results are sensitive to the
time step; for example, in simulations with time steps of order
1 s, particles would sometimes reach the end of the model
space too soon because of limited interaction with the surface.
[15] The velocity was updated at each time step with:

v=v+aAt. 2)

Quartier et al. [2000] concluded that the acceleration of a
particle on a rough bed can be represented with a Coulomb-
like friction term and a velocity-dependent shock term
such that

a = g(sinf — prcosf) — kv" (3)

where g is gravitational acceleration, 6 is slope angle, i is a
dynamic friction coefficient, s is a shock coefficient, and
w is a constant. At each time step, a value for ;. was ran-
domly chosen from a probability distribution to simulate the
random trajectory of a particle down the rough surface (see
section 4.2.). In previous granular flow experiments, some
have found a value of 1 for the exponent w [Samson et al.,
1998] while others found a value of 2 [Quartier et al.,
2000]; here, a set of simulations was done with each value
to compare results. When w =1 (i.e., linear shock),  has units
of s™'; when w =2 (i.e., quadratic shock), it has units of m ™"

[16] The particle was advanced, according to equations
(1)-(3), until its velocity became nonpositive or it reached
the end of the model space. Because the value of x was
unconstrained, its value was systematically varied until it
produced the best match to the flume data. For each value of
K, t tests (a = 0.05) were performed to compare the modeled
average transport distance to the flume data, and the best x
values were determined on the basis of how many average
transport distances the model correctly simulated. The
comparisons were made for the slopes in the range of 0-24°.
At 27°, the average transport distance on the flume was
calculated from only 4 particles because the other 96 reached
the end of the flume and, thus, comparisons with the model
results at this slope are tenuous; no particles remained on the
flume at 30°.

4.2. Probability Distribution of 1

[17] The results from the flume experiments at 0° slope
were used to construct a distribution of p values. Kirkby
and Statham [1975] and Gabet [2003] demonstrated that
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Figure 4. (a) Mean transport distances: model versus flume data. Error bars equal 1 SE. Both models per-
formed equally well; comparing the results for the steeper slopes is tenuous because only a small number
of particles remained on the flume. (b) Proportion of particles reaching the end of the flume: model versus
flume data. The linear shock model performed better than the quadratic model.

particles imparted with an initial velocity (vy) will travel a

distance, d, according to:

d =

Equation (4) assumes that the Coulomb friction term in
equation (3), which represents the trapping of particles
[Quartier et al., 2000], is primarily responsible for the dissi-
pation of energy. We propose that, when the flume was
inclined at 0° and particle velocities were at their lowest,
energy losses from velocity-dependent shock were small rel-
ative to losses from friction. Rearranging equation (4) yields

V2
= 0

v
2g(pcosf — sind)

+ tan

2gd cosf

4)

(5)

so that the coefficient of friction can be estimated from each
measured transport distance. In addition to minimizing the
effect of shocks, the results from the experiments at 0° were
used because (1) the travel distances were short and, therefore,
the calculated p spatially averages over only a small interval,
and (2) the pebbles bounced the least and, thus, spent the most
time in contact with the flume surface.

[18] The p values estimated with this approach follow
an exponential distribution with a mean of 0.25 (Figure 6).
It is important to emphasize that these p values reflect the
shape of the moving particles and not just the topography
of the flume surface. Nevertheless, the similarities between
the distributions of the friction coefficient and the rela-
tive roughness measured directly from the flume surface
(Figure 3) suggest a direct mechanistic link between the two
[Kirkby and Statham, 1975]. Finally, we note that, although
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Figure 5. Comparison of (a—c) measured and (d—f) modeled transport distance distributions for three
selected slope angles. Only the results from the linear shock model are shown because of its overall better
performance. The modeled distributions are fuller because of the greater number of particles.

we performed our experiments with a single particle size and
only one initial velocity, Kirkby and Statham [1975] and
Statham [1976] demonstrated that equation (4) applies to a
range of particle sizes and initial velocities.

4.3. Simulations of Flume Experiments

[19] To simulate the flume experiments, 10° particles
began with an initial velocity of 0.7 m/s at the top of a 3 m
long model space. The quadratic shock model (x = 0.0262)
and the linear shock model (x = 0.0175) performed equally
well in simulating the average transport distances observed
in the flume experiments (Figure 4a). With the quadratic
shock model, there was no statistically significant difference

(t test, a = 0.05) between the means of the experimental and
modeled transport distances for 8 = 3, 9, 12, 18, and 21°.
With the linear shock model, there was no statistically sig-
nificant difference (o = 0.05) between the means of the
transport distances for 6 = 9, 12, 18, 21, and 24°. Both
models, therefore, correctly simulated the average transport
distance for 5 out of 9 slope angles. Note that we are applying
a fairly strict standard for assessing the performance of our
model; similar studies [e.g., Batrouni et al., 1996] have relied
on a visual comparison of the fit between model and exper-
imental results.

[20] Although both models performed equally well in simu-
lating average transport distance, they differentiated themselves
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in their prediction of the proportion of particles reaching the
end of the flume (Figure 4b). The quadratic shock model was
incorrect at the three steepest slopes (Fisher’s exact test, a =
0.05), a critical mismatch with the flume data. In contrast, the
linear shock model correctly predicted the proportion of
particles reaching the bottom of the flume at every slope
(Fisher’s exact test, a = 0.05).

[21] Finally, the model reproduced reasonably well the
probability distribution of transport distances (Figures 5d—5f).
As with the average transport distances, however, the model
performed better at steeper slopes than gentler slopes. For
example, the model generally underpredicted the average
distances for slopes < 9° (Figure 4a) and the modeled dis-
tances at 3° form a slightly tighter distribution than the mea-
sured distances. This bias is most likely a consequence of
the assumption that the shock term was negligible in
our calculations of p from the experimental data at 0°
(equation (5)). In contrast, the numerical model accounts for
shocks and, thus, incorporates an extra component of energy
dissipation. Note that, for most combinations of velocity, y,
and 0, the shock term contributes only a small percentage
(order 1%) to the overall deceleration; for certain ranges of
values of these parameters, however, the shock term accounts
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for a more significant percentage (order 10%). The shock term
is particularly effective at slowing down rapidly moving
particles at intermediate slopes.

4.4. Modeling Particle Transport at the Hillslope Scale

[22] Given the better overall performance of the linear
shock model, it was used to investigate particle trajectories at
the hillslope scale. As in the flume simulations, p values were
randomly chosen from the exponential distribution (Figure 6)
and x was set to 0.0175. Although the flume surface is likely
harder and smoother than most real hillslopes where dry ravel
is active, the results should allow some general conclusions
on the nature of hillslope transport. Initial velocities were
randomly selected from an exponential distribution with a
mean of 0.5 m/s; we emphasize that the characteristics of
this distribution are not based on any data but are, simply,
reasoned guesses. Under natural conditions, a particle’s ini-
tial velocity could come from a variety of sources, such as a
fall from a cliff face [Statham, 1976], animal disturbance
[Anderson et al., 1959], or the destruction of vegetation dams
during a fire [Lamb et al., 2011]. Finally, the model space
was extended to simulate a linear, 100 m long hillslope.

[23] At slopes up to 21°, the model predicts an exponen-
tial distribution of transport distances (Figures 7 and 8a).
As slopes steepen, the right tail of the distribution thickens
and the distribution becomes quasi-uniform (Figures 8b—8d).
At even the steepest slopes, a fraction of the particles imme-
diately stopped because their initial velocities were too low
to overcome the initial resistance and develop sufficient
kinetic energy to continue down the slope. Admittedly, while
the general evolution of the transport distributions is likely
realistic, the roughness parameters derived from the flume
experiments produce actual distributions that may be unreal-
istic for most natural slopes where dry ravel is an important
process. For example, the model predicts that ~50% of the
particles activated on a 30° slope would travel more than
100 m (Figure 8b) whereas this result might be expected at
steeper inclines on natural hillslopes. Finally, note that, at low
slopes, the transport distributions of the flume experiments
and simulations were humped whereas the distributions from
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Figure 7. Cumulative distributions of normalized modeled transport distances. In the range of 3-21°,
distributions are strongly exponential. Note the semilogarithmic axes.
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Figure 8. Probability distributions of transport distance as a function of slope. The fraction of particles
reaching the end of the model space is noted as “dist. > 100 m: #.” For clarity, particles that traveled
<0.01 m were filtered from the results. Note the different scales on the x axes.

these simulations are exponential. The variation arises from
the difference in initial velocities; in the flume simulations, v,
was held constant whereas, in the hillslope simulations, v,
followed an exponential distribution.

5. Discussion

5.1.

[24] Given the complex three-dimensional motion of an
irregular particle over a rough heterogeneous bed, a set of
physical equations that would fully describe its trajectory
would be unwieldy and impractical for exploring sediment
transport down hillslopes. The goal, therefore, should be to
describe the motion phenomonologically in the most parsi-
monious fashion possible [Forterre and Pouliquen, 2008].
In a strict sense, the Coulomb-friction term in equation (3) is
only appropriate for the classic “sliding block on a plane”
scenario; nevertheless, it is commonly applied in the mod-
eling of granular flows [Iverson and Denlinger, 2001;
Pouliquen and Forterre, 2002]. As argued by Quartier et al.
[2000] and as suggested by our results (Figure 4), equation
(3) simulates reasonably well the macroscopic behavior of
a single particle while incorporating only one unconstrained
constant, . In addition, although Quartier et al. [2000]
derived equation (3) on the basis of the two-dimensional
trajectories of discs down a homogeneous surface, our
results suggest that the random sequencing of the friction
coefficient allows their approach to be expanded to the more
complicated three-dimensional motions of irregular particles
down a rough, heterogeneous bed. We note that, after testing

Simulating Dry Ravel

our approach, we tested a “bouncing” model on the basis
of the standard equations of motion [e.g., Batrouni et al.,
1996], with momentum loss occurring via a coefficient of
restitution. Despite extensive searches through parameter
space, this model did not perform as well as ours.

[25] Because our model accounts for the kinetic energy
of particles, particles in motion retain a memory of their
journey. Particles exhibiting nonlocal transport may pass
through “neighborhoods” that have different slopes and
surface roughness. The position and velocity at any point in
time of a particle in motion thus integrates the properties of
the neighborhoods through which it has passed. In other
words, a moving particle’s state retains information about
where it has been: given the same initial conditions, a par-
ticle that has recently passed through a rough patch will be
traveling slower than one crossing a smooth patch. The
slower-moving particle is, thus, more likely to arrest its
motion than its faster counterpart. In the cellular model
developed by Tucker and Bradley [2010], the particles have
no memory as they move downslope although the authors
emphasize that their model could be modified to keep track
of particle momentum.

[26] The stochastic nature of sediment transport revealed
by the flume experiments and the model brings to light some
of the limitations of the deterministic, continuum approach.
The deterministic nonlinear flux equation proposed by
Gabet [2003] for dry ravel is similar in form to those derived
by others to describe more general soil creep processes
[Andrews and Bucknam, 1987; Roering et al., 1999]. The
distinguishing feature of these equations is an asymptotic
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Figure 9. Modeled sediment flux versus slope. Symbol
size is proportional to downslope position where the flux
was measured: the smallest symbol indicates the numbers
of particles crossing a contour line 1 m from the divide;
the largest symbol indicates the number of particles crossing
a contour line 41 m downslope of the divide; and the dis-
tance between each intermediate position is 4 m. At slopes
<20, flux is relatively independent of position, and thus the
symbols overlap each other. At steeper slopes, downslope
positions “see” more particles because of the longer contrib-
uting area and the greater transport distances.

increase in flux as hillslopes approach a threshold gradient;
beyond the threshold gradient, sediment flux becomes infi-
nitely high. However, as shown in our results, the threshold
is fuzzy rather than distinct. Indeed, at slopes as low as 18°,
some proportion of the particles traveled across the entire
domain (Figure 4b). Our particle-based approach, as well as
Tucker and Bradley’s [2010], simulate well the fuzzy, sto-
chastic nature of the threshold: in both cases, the number of
particles reaching the lower boundary increases with slope.
The ability to model correctly the potential for long-range
travel is important for understanding the evolution of linear
slopes. Particles that travel to the bottom of the slope
essentially disappear from the hillslope and, thus, gradients
do not have to increase downslope in order to accommodate
their passage [cf. Gilbert, 1909]. In addition, our results
suggest that, even at very steep slopes, some proportion of
activated particles do not travel very far at all. Thus, for a
range of slopes steeper than the threshold gradient, the gross
sediment flux never becomes infinite.

5.2. Local Versus Nonlocal Transport and the Angle
of Repose

[27] The hillslope-scale model results suggest that an
exponential distribution of transport distances evolves into a
long-tailed distribution as slopes increase. Exponential dis-
tributions are characteristic of local transport [Foufoula-
Georgiou et al., 2010; Ganti et al., 2010]. In the case of
dry ravel on gentle slopes, the kinetic energy of particles is
low and their motion can be stopped by a wide range of
roughness elements. Thus, for each increment of travel, there
is an equal probability that the particle will become trapped;
this is a classic Poisson process that yields exponential
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distributions [Kirkby and Statham, 1975; Riguidel et al.,
1994]. At this range of slopes, dry ravel motion could be
considered to be dominated by frictional, rather than inertial,
forces [Riguidel et al., 1994].

[28] On steeper slopes, particles are more likely to accel-
erate and, thus, their kinetic energy increases such that only
the largest roughness elements are able to arrest their
motion. Dry ravel motion at these steeper slopes, therefore,
could be considered to be dominated by inertial forces
[Riguidel et al., 1994]. Because particles can accelerate on
these slopes, the probability that a particle may become
trapped decreases with distance, leading to the long-tailed
quasi-uniform distribution of transport distances. As dem-
onstrated by others [Foufoula-Georgiou et al., 2010; Ganti
et al., 2010], long-tailed distributions are a hallmark of
nonlocal transport.

[29] The term “angle of repose” takes on various mean-
ings, depending on context [Statham, 1976]; we use it here
in the sense of the angle of a pile of particles formed through
the accumulation of sediment dropping from above (i.e., the
angle of residual shear). Values for the angle of repose
commonly spans values from 25 to 35° [Selby, 1993], a
range that matches the transition from exponential to uni-
form transport distributions (Figure 8). This threshold angle
emerges spontaneously in our model even though the aver-
age value of p used in the exponential distribution, 0.25,
corresponds to 14° (note: tan 30° corresponds to the 90th
percentile of the w distribution). The angle of repose, there-
fore, appears to mark the transition between frictional and
inertial regimes [Riguidel et al., 1994] and between local and
nonlocal transport. For instance, Govers and Poesen [1998]
documented the motion of particles on a scree slope (pre-
sumably near the angle of repose) and found that the distri-
bution of transport distances had a heavier tail than predicted
according to an exponential distribution.

5.3. Sediment Flux As a Function of Slope and Distance

[30] Because the travel distance by raveling particles can
be relatively long, especially on steeper slopes, the sediment
flux at any particular spot on a hillslope may be dependent
on its distance from the divide. To assess the relative
importance of slope and downslope distance on sediment
flux, a series of model runs was performed in which 10°
particles were released at random positions on a linear 50 m
hillslope and the number of particles passing a particular
point was recorded. The initial velocities and p values were
parameterized as in the previous hillslope simulations. In the
range of angles 0—19°, transport distances are short and the
sediment flux can be described solely as a function of slope
(Figure 9). With increasing slope, however, travel distances
lengthen and positions further downslope are “seeing” par-
ticles that began their journey outside of the local neigh-
borhood. In other words, at steeper slopes, the length of the
contributing area becomes increasingly important. Similarly,
Foufoula-Georgiou et al. [2010] concluded that hillslope
transport is local on gentle slopes but nonlocal on steeper
slopes. These results suggest that the nonlinear increase in
dry ravel sediment flux with slope recorded by sediment traps
in the work of Gabet [2003] may have been primarily due to
an increase in transport distance, rather than sediment vol-
ume. Because the sediment traps were installed on a convex
hillslope, the apparent increase in flux with gradient may,
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Figure 10. Sediment flux as a function of slope and dis-
tance from the divide. (a) With a relatively low coefficient
of friction, sediment flux is strongly dependent on contribut-
ing length (x). (b) Doubling the friction coefficient damps
particle travel and decreases the influence of contributing
length while increasing the importance of slope.

instead, have been an increase in flux with downslope dis-
tance. Tucker and Bradley [2010] offered a similar critique of
efforts to parameterize the nonlinear soil creep equation.

[31] Although we do not advocate the use of deterministic
models to describe sediment flux by soil creep processes on
steep slopes, they are useful for gauging the importance of
various parameters. For example, Carson and Kirkby [1972]
proposed a general sediment flux equation that incorporates
local slope and the length of contributing hillslope:

gs o< xX"S" (6)

where ¢ is sediment flux (L*/T), x is distance from the upper
boundary, S is slope, and m and n are fitted parameters.
Whereas flux equations for soil creep processes have
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typically assumed that m = 0, our flume and model results
suggest that, at least for dry ravel, m > 0. To explore the
relative importance of contributing area, slope, and surface
properties on dry ravel flux, two sets of model runs were
performed for the range of slopes 1-49°. In one set of model
runs, the mean value of i (iz) was set to 0.25, and in the
other, ;i was doubled to 0.50. Fitting equation (6) to the
model results where ;@ = 0.25 yields m = 1.0 and n = 1.6
(Figure 10a), thus suggesting an important dependency on
contributing area. Doubling the average friction coefficient,
the slope exponent increases to 6 but the exponent on the
downslope distance drops to 0.4 (Figure 10b). Transport,
therefore, becomes increasingly slope-dependent and local
as the surface dissipates more energy. Surfaces that allow
particles to retain more of their energy, in contrast, promote
nonlocal transport.

5.4. Evolution of Talus Piles

[32] A thought experiment reveals how the evolution of
transport distributions with increasing gradient could be
used to explain the growth of talus piles formed from the
accumulation of weathered material falling from a cliff face
[Statham, 1976]. Initially, clasts collect at the base of the
cliff forming a low pile with gentle slopes. The low slopes
lead to an exponential distribution of transport distances of
rocks falling on the pile from above; during this stage, the
upper portion of the pile accumulates material faster than the
lower portion, and the pile steepens as it grows allome-
trically. Eventually, as the slope approaches the angle of
repose, rocks falling on the top of the pile follow a more
uniform distribution of travel distances; at this stage, the pile
experiences isometric growth.

6. Conclusion

[33] Although it has been useful to assume that the flux
from soil creep processes is linearly related to slope, recent
efforts have attempted to represent particle transport more
realistically. These efforts have led to the recognition that (1)
particle path lengths are not deterministic, and (2) particles
may travel significant distances relative to hillslope extent.
To examine the dynamics of particle transport, we per-
formed experiments and model simulations that explore the
process of dry ravel in arid and semiarid environments. The
governing equation for the numerical model couples a
Coulomb-like friction term and a linear shock term that
accounts for energy dissipation via impacts. Our results
reveal how the distribution of transport distance varies as a
function of slope for dry ravel. On relatively gentle slopes,
transport distances are well represented by exponential dis-
tributions but, as slopes steepen, the distributions become
more uniform. This transition begins as slopes approach the
angle of repose, suggesting that it represents a threshold,
albeit fuzzy, between local and nonlocal sediment transport.
In addition, our results suggest that sediment flux by dry
ravel is not purely slope dependent and that the upslope
contributing area may be an important factor.
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