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Abstract 
 

The number of model parameters of a k2 factorial design grows exponentially. When the number 

of factors is large, numerous higher-order interactions constitute a vast majority of the model 

parameters while many of them do not exist or are insignificant. The classic methods of 

fractional factorial designs, Plackett-Burman designs, Taguchi designs etc. seek an already 

developed and often cataloged design that fits exactly the problem being tackled or select a 

design that fits it the most. Most, if not all, of these designs were developed in absence of 

convenient computation tools and enjoy computational simplicity. The necessary number of 

treatment combinations for unbiased estimation of significant parameters is often exceeded; 

undesirable confounding, i.e., biased estimation, is difficult to avoid. An opposite approach is to 

determine, for any set of model parameters considered as significant, a corresponding set of 

equal (and minimum) number of treatment combinations for unbiased parameter estimation. A 

companion feature of that approach is active avoidance of confounding. In addition, if the 

experimenter, particularly when unsure of the “borderline” significance of some parameters, can 

attempt to sequence model parameters in non-increasing order of magnitude (based on prior 

knowledge or subjective judgment), a corresponding sequence of treatment combinations can be 

numerically determined (with one treatment combination added for each additional possibly 

significant model parameter).  Recently, a simple design pattern was proposed with which such a 

sequence of treatment combinations can be intuitively and easily obtained, without numerical 

computation. However, that pattern requires for the estimability of an interaction that all main 

effects and all lower-order interactions among all factors involved in the experiment have been 

estimated. For example, the interaction AB may not be estimable without main effect C having 

been estimated first. This paper relaxes that requirement and extends the use condition of the 
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approach to virtually all practical situations and presents a simple algorithm to estimate model 

parameters recursively.  As sequential experimentation progresses, no experiments already 

conducted could be considered unnecessary for unbiased estimation of significant parameters, 

and hence “forward compatibility” in minimizing the number of treatment combinations is 

achieved. Therefore, such optimality may be referred to as FC-optimality. 

 
 
Key Words:  Design of Experiment; Two-level Factorial Design; Fractional Factorial Design; 
Run Minimization; Parameter Estimablility; Sequential Design 
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1.  Introduction 

 

When each of the k factors of a factorial experiment can be set at one of exactly two levels, the 

experiment is referred to as a k-factor two-level full factorial design or a k2 full factorial design.  

Such a design has k2 model parameters and k2  treatment combinations. When all the k2 parameters 

must be estimated, via unbiased estimators and without confounding, all k2  treatment 

combinations must be experimented. When the number of factors is large, numerous higher-

order interactions constitute a vast majority of the model parameters while many of them can be 

considered insignificant and do not require estimation. (This is often referred to the Effect 

Sparsity Principle.) As a result, to estimate those significant, i.e., non-zero, model parameters, 

only a subset of the k2 treatment combinations is required.  In such a situation, the classical 

methods of fractional factorial designs, Plackett-Burman designs, Taguchi designs etc. all seek a 

design already developed and often cataloged that fits exactly the problem being tackled or select 

a design that fits it the most.  General methodologies can be found in Box et al.(1978),  

Montgomery(2009) and Taguchi and Konishi (1987). Examples for development of designs 

meeting more specific requirements include (Franklin, 1985; Hedayat and Pesotan 1997; He and 

Tang, 2003; and Mee, 2004).  

 

The classical fractional factorial approach capitalizes on computational simplicity in estimation, 

resulting from orthogonality among columns of the “design matrix.” But, adding a fraction for 

the purpose of estimating additional model parameters with less or without confounding doubles 

the number of treatment combinations. High experimentation cost, long experimentation duration 

and short product life-cycle of some industries have motivated research on minimizing the 
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number of treatment combinations in a statistically valid manner.  In the semiconductor-

fabrication industry, one complete experimental run of a new “recipe” for wafer fabrication may 

cost $20,000 and may take one month.  In that and some other mature industries, much domain 

knowledge and past experience has accumulated regarding presence or absence of interactions 

among some of the experimental factors. However, the exact magnitudes of some existent 

interactions must still be estimated through experimentation. 

 

The Plackett-Burman method basically focuses on all main effects, with their possible 

confounding with two-factor and higher-order interactions ignored. The column orthogonality 

associated with any of the design matrices enables simple arithmetic estimation in screening a 

superset of possible factors. It requires the minimum number of treatment combinations for 

estimating all main effects, including the grand effect, only if all interactions are indeed non-

existent. In addition, confounding pattern is unclear or complicated at best.  The Taguchi 

orthogonal-array method seeks to reduce the number of treatment combinations with domain 

knowledge about presence/absence of interactions between two factors while the orthogonality 

among columns of the design matrix and the resulting computational simplicity is kept. It is able 

to single out some two-factor interactions for their estimation and for avoiding their confounding 

with each other and with main effects. But, the discrete jump in the number of treatment 

combinations (typically of 4) does not minimize the number of treatment combinations. Also, 

confounding pattern with other model parameters is unclear or complicated at best.   

 

Recently, Tsao and Wibowo (2005) emphasized that when only m of the k2  effects/interactions 

may be non-zero, only m treatment combinations are required for their estimability, i.e., unbiased 
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estimation or estimation without confounding among themselves or with other parameters.  With 

their estimation, one can build an adequate regression model. They developed a numerical 

method, based on the Phase-I Simplex Method for linear programming, to identify a minimal set 

of exactly m treatment combinations to estimate the m non-zero effects/interactions. The design 

matrix is “irregular” in the sense that the columns of the design matrix no longer enjoy 

orthogonality, and hence parameter estimation requires numerical inversion of the design matrix. 

(Although the computation involved in such inversion is a little more complex than the inner-

product and division operations required for the classical fractional factorial, Taguchi, and 

Plackett-Burman methods, it is a trivial task in this computer era.) Such a method has been 

referred to as a least-treatment-combination method in Tsao and Patel (2013). 

 

Confounding in parameter estimation is a major issue in reducing the number of treatment 

combinations.  It occurs when the expected value of a parameter estimator is not exactly the 

parameter being estimated but is “contaminated” with some other parameters.  In other words, it 

occurs when the estimator is biased. When an estimator exists whose expected value is exactly 

the parameter it is intended to estimate, the parameter is said to be estimable (and the estimator is 

said to be unbiased); an alternative expression is that the parameter can be estimated.  In this 

paper, when we state that a parameter can be estimated, we mean its estimability. In addition, 

when all significant model parameters are estimable, we say that the model is adequate. When 

such an unbiased estimator does not exist, given the treatment combinations of an experiment, 

the parameter is said to be non-estimable. Estimability is the focus of this paper. Estimation 

accuracy, i.e., precision under assumption of estimability, hinges upon the number of replications 

for the selected treatment combinations and is beyond the scope of this paper. 
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The classical fractional factorial method uses the concepts of resolution level and aberration 

level as primary measures for non-estimability. These concepts treat a higher-order interaction as 

less important or smaller in magnitude than a lower-order interaction (or a main effect). For 

example, main effect A is always more important or larger (in magnitude) than interaction AB or 

BC.  These concepts also treat any interaction of the same order as equally important as any 

other interaction of the same order. For example, the interaction between factors A and B is 

treated as equal in importance as the interaction between factors C and D.  (This is often referred 

to as the Effect Hierarchy Principle.) In this approach, there are only three practical levels of 

resolution, namely, Resolution III, IV, and V, and such categorization could be quite coarse. 

These reflect the statistical purity of the method in the sense that domain knowledge about (a) 

possible larger magnitude (or importance) of a two-factor interaction than a main effect  or (b) 

larger relative importance (or magnitude) of one two-factor interaction than another cannot be 

incorporated, at least not easily.  As mentioned earlier, the confounding patterns of Taguchi and 

Plackett-Burman methods are complicated if not unclear. 

 

Rather than passively selecting from alternatives the design that incurs least amount of 

confounding, Tsao and Patel (2011, 2013) defined the concept of “active confounding 

avoidance”: identifying those model parameters  that should be estimated without confounding 

among themselves. These parameters can be those considered non-zero, based on domain 

knowledge or prior knowledge, and hence their accurate estimation is important; confounding of 

any of them with any of the parameters considered as zero should not pose significant problems. 
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Tsao and Patel (2013) proved active confounding avoidance for the least-treatment combination 

methods proposed in Tsao and Wibowo (2005) and Tsao and Liu (2008). 

 

In the larger context of experimentation planning, Montgomery (2009) suggested that 

experimentation should be conducted iteratively and sequentially, and the initial design, which is 

often intended for gaining experience and learning, should not consume more than 25% to 30% 

of the budget.  This is consistent with the sequential nature of model building and parameter 

estimation commonly practiced in the real world. When one more fraction is added to a current 

fractional factorial design of an experiment, all the experiments already conducted and their 

results remain useful. This concept was defined as “forward compatibility” in Tsao and Patel 

(2013). But, in the Taguchi and Plackett-Burman methods, a design enabling estimation of a 

larger number of model parameters may not contain all the treatment combinations of the current 

design; therefore, forward compatibility may not hold. Extending the work of Tsao and Wibowo 

(2005), Tsao and Liu (2008) considered the situation where the experimenter has domain or prior 

knowledge such that he/she can sequence parameters or blocks of them approximately in non-

increasing magnitude. They treated the most complicated case where all model parameters can 

be sequenced this way and proposed, for any first m parameters in the sequence, a numerical 

algorithm for generating a corresponding sequence of m treatment combinations with which the 

m parameters are estimable. With these two corresponding sequences, estimability of one 

additional model parameter is ensured by adding the corresponding treatment combination. This 

obviously ensures least treatment combination for estimating any set of first m parameters, hence 

achieving forward compatibility. Tsao and Patel (2013) proved that this algorithm also achieves 

active confounding avoidance. Experimentation can be stopped once the current model is 
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deemed adequate, e.g., when the estimation residuals cannot be distinguished statistically from 

realizations of a white noise and the newest parameter in the current model cannot be 

distinguished statistically from 0.  To the experimenter, the sequential expansion proposed in 

Tsao and Liu (2008) and Tsao and Patel (2013) is optimal in the sense that the experimentation 

can stop whenever the current model is deemed adequate and no experiments already conducted 

could be considered unnecessary, hence achieving “forward compatibility” in minimizing the 

number of treatment combinations. Therefore, such optimality may be referred to as FC-

optimality. 

 

Early on, Box et al. (1978), in their commentaries on the examples given in the chapter More 

Applications of Fractional Factorial Designs, recognized the necessity for experimenters to use 

judgment for efficiency, with a calculated risk.  This sequencing of effects/interactions and the 

corresponding sequencing of treatment combinations proposed in Tsao and Liu (2008), Tsao and 

Patel (2013) and this paper provide experimenters new ways to formulate judgment and improve 

efficiency.  We refer to these two sequencing concepts as parameter-sequencing and treatment-

combination sequencing and these two types of sequences as a parameter sequence and a 

treatment-combination sequence, respectively. 

 

Tsao and Patel (2013) defined for all i,   ni 0 , the concept of i-th degree reduced factorial 

model 2k,i, which is the full-factorial model with all model parameters involving i+1 or more 

factors removed from the model. They also proposed a simple and intuitive design pattern that 

produces, without any computation, for all i, ni 0 , a set of treatment combinations whose 

experimentation ensures estimability of all the parameters of 2k,i, all with least treatment 
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combinations, active confounding avoidance and forward compatibility. In addition, if the 

experimenter, in expanding 2k,i to 2k,i+1 , can sequence the parameters newly added to the model 

in non-increasing order of magnitude or importance, the simple and intuitive design pattern 

produces a corresponding sequence of treatment combinations, without numerical computation. 

As in Tsao and Liu (2008), exactly one additional treatment combination is added for one 

additional model parameter that needs to be estimated. The model building process can be 

stopped at any time when the current model is deemed adequate. 

 

Note, however, that the intuitive design pattern proposed in Tsao and Patel (2013) requires  

for the estimability of any parameter (of the parameter sequence) that all lower-order parameters 

among all factors involved in the experiment can be estimated . For example, the interaction AB 

may not be estimable without main effect C having been estimated first. This paper relaxes that 

requirement and extends the use condition of the approach to virtually all practical situations.  

The use condition is that when one additional parameter is added to the model, all lower-order 

parameters must have already been included in the model.  For example, when AB is added to 

the model, the grand effect G, the main effects A and B must have already been included in the 

model.  (The main effect C needs not be included in the model already, however.) This 

requirement is similar to but stronger than the so-called Effect Heredity Principle, which states 

that in order for an interaction to be significant, at least one of its “parent factors” should be 

significant. Therefore, this requirement may be referred to as the Full Heredity Assumption. To 

the experimenter, the sequential expansion proposed in this paper is optimal, as the more 

restrictive sequential expansion proposed in Tsao and Patel (2013) and as the less restrictive but 

much more computation-intensive sequential expansion proposed in Tsao and Liu (2008), in the 
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sense that the experimentation can stop whenever the current model is deemed adequate and no 

experiments already conducted could be considered unnecessary.  As one new parameter is 

added to the model and one corresponding treatment combination is added to the experiment, the 

new parameter needs to be estimated and the estimates for the existing parameters may change. 

We provide a simple estimator for the former and a simple updating formula for the latter. With 

these, estimating parameters requires no matrix inversion throughout the model building process, 

thus keeping the computation simplicity enjoyed by fractional factorial design, Plackett-Burman 

design and Taguchi orthogonal-array design. 

 

This type of optimality can be considered sequential optimality; it has not received much 

attention until Tsao and Liu (2008). Other optimality criteria have been studied, e.g., D-

optimality (e.g., Kiefer and Wolfowitz, 1959; Box and Draper, 1971; St. John and Draper, 1975; 

Evans, 1979; Bulutoglu and Ryan, 2009). Given a model, a set of candidate runs and a prescribed 

number of runs, D-optimality seeks a design, i.e., a subset of the candidate runs, that has exactly 

the prescribed number of runs and produces the smallest possible variances for the parameter 

estimators. D-optimality is attempted through numerical search. Due to the non-convex nature of 

the optimization problem, no existing algorithms can guarantee achievement of D-optimality. If 

candidate runs involve no replications or the number of replications is the same for all treatment 

combinations, then D-optimality reduces to a problem of selecting a set of treatment 

combinations that has a prescribed number of treatment combinations and produces minimum 

variances for the parameter estimators. Moreover, if the row rank of the matrix relating all the 

treatment combinations to the mean responses is equal to the number of model parameters, then 

all the model parameters are estimable. Under these conditions, D-optimality seeks estimability 
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and minimum variance. We, in this paper, deal primarily with the model building process 

through which an adequate or correct model is built and significant parameters are estimable, 

while an adequate or correct model is usually assumed as given in the theory of D-optimality. 

“Conditional D-optimality” has been studied so that, given a set of runs, the most D-efficient 

additional runs can be identified (e.g., Mitchell, 1974; Welch, 1982; Verotta, 1988).  However, 

the achievability of overall D-optimality of the final model cannot be guaranteed at all when 

additional parameters are added to a current model sequentially during the model building 

process, with the corresponding treatment combinations of “conditional D-optimality” 

sequentially added to the design.  In short, D-optimality is particularly useful when the model is 

already adequately built; conditional D-optimality attempted in individual steps of the model 

building process ensures no global D-optimality or even anywhere close to it when the 

exploratory stage ends and an adequate model has been built. 

 

These sequencing proposals have been intended for cost minimization without sacrificing 

statistical validity.  Statistical tests that should be conducted to ensure such validity have been 

addressed in detail in Tsao and Liu (2008), including a thorough diagnostic check after 

experimenting for each additional treatment combination to estimate one more effect/interaction.  

They were also summarized in Tsao and Patel (2013). As discussed in detail in Tsao and Liu 

(2008), the sequential experimentation can be implemented block by block, where a block 

represents a set of effects/interactions of indistinguishable magnitudes or significance levels.  

The focus of this paper is on findings beyond the work of Tsao and Patel (2013), 
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This paper is organized as follows.  Section 2 focuses on the 42  factorial design and use it to 

illustrate the main contributions of this paper beyond the work of Tsao and Patel (2013).  Section 

3 defines the problem in the general context of 2k full factorial design, states the general design 

pattern and provides the simple parameter-estimation algorithms. Section 4 provides all the 

proofs.  Concluding remarks are given in Section 5. 

 
2. Motivation, Problem Description and Main Contributions, via the 42 Factorial Design 

 

As in Tsao and Patel (2013), we use the 42 factorial design to motivate the problem and to 

illustrate the solution.  We focus on the value added by this paper, particularly (a) the general 

intuitive design pattern and the general and practical use conditions under which the pattern 

expands a sequence of treatment combinations one at a time for estimating one additional model 

parameter of a parameter sequence, (b) why the pattern works and how to estimate the newly 

added model parameter (as a simple inner product) and how to update the estimates (as simple 

modifications) already obtained for the existing but inadequate model parameters to become 

estimates for the expanded model.  Discussions on the advantages possessed by the general 

intuitive design pattern to be proposed in this paper but also enjoyed by the intuitive design 

pattern proposed in Tsao and Patel (2013) are omitted.  Such advantages include least treatment 

combinations, active confounding avoidance, and forward compatibility.  For similar reasons, 

comparisons with other existing methods are also omitted. 

 

2.1 Problem Description 

We first describe the full 42 factorial design.  The four factors are denoted as Factors A, B, C and 
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D.  Sixteen, i.e., 42 , treatment combinations are required in the full factorial design. We use a 

vector of four “–“ or “+” signs to represent the low or high levels of the four factors of a 

treatment combination, respectively.  We refer to such a representation as a level-vector  

representation. When convenient, we also use another common representation of a treatment 

combination (Montgomery, 2009), where presence of a lower case letter a, b, c or d in such a 

representation signifies that the treatment of the corresponding upper-case factor is set at the high 

level “+” while absence of such a lower case letter signifies that the treatment is set at the low 

level “-“.  For example, a treatment combination ac represents the treatment combination where 

Factors A and C are set at their respective high levels “+” while Factors B and D are set at their 

respective low levels “-“.  (In the level-vector  representation, this treatment combination is 

represented as (+,-,+,-).) When all factor treatments are set at their respective low levels “-“, the 

treatment combination is represented by a period “.”.  We use this alternative presentation also 

for denoting the mean responses.  For example, the mean responses appearing in the last column 

of Table 2 below are indexed with respect to this alternative representation. 

 

To define a full regression model for a 42 full factorial design, we use the following conventional 

notation, which is also used in Tsao and Patel (2013).  G denotes the grand effect; A, B, C, and D  

denote the four main effects; AB, AC, AD, BC, BD and CD denote the six two-factor 

interactions; ABC, ABD, ACD and BCD denote the four three-factor interactions; ABCD 

denotes the four-factor interaction. In the notation just defined, the full regression model for the

42  factorial design is:  
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DCBADCBADCBA xxxxxxxxxxxxY                                                                                                             (1) 

where DCBAxxxx xDxCxBxAG
DCBA 2222

  

DCDBCBDACABA xxCDxxBDxxBCxxADxxACxxAB
222222



DCBADCBDCADBACBA xxxxABCDxxxBCDxxxACDxxxABDxxxABC
22222

   ,                           (2) 

1ix  for i=A, B ,C and D, r = 1, 2,…,n, and n is the number of replications.  As commonly 

practiced in the literature and for discussion convenience, we use A, B, C and D to denote the 

Factors A, B, C and D as well as the main effects of Factors A, B, C and D.  When distinction 

among the grand effect, the main effects and interactions is not important, we refer to all of them 

as model parameters or simply as parameters. Note that in this regression model, the unknown 

coefficients are actually G, A/2, B/2, C/2, D/2, AB/2, AC/2, AD/2, BC/2, BD/2, CD/2, ABC/2, 

ABD/2, ACD/2, BCD/2 and ABCD/2.  They, except for the grand effect G, are half of the 

corresponding model parameters. We will refer to them as the regression coefficients of the 

regression model or simply the regression coefficients.  These regression coefficients are 

sequenced in an identical manner as their corresponding model parameters. For convenience in 

discussing the mathematical crux of the proposed method, we deal primarily with the regression 

coefficients in presenting the numerical examples in this Section 2 and proving the main 

theorems in Section 4.  However, the main contributions of this paper will also be expressed in 

terms of the model parameters. 

 

As in Tsao and Patel (2013), this paper focuses mainly on the relationship between the  2k  

parameters (i.e., effects/interactions)  and the 2k mean responses and how the latter, or some of 

them, can be used to estimate the former, particularly those whose magnitudes are significantly 
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and statistically different from zero.  A common modeling principle is parsimony, i.e., use of as 

few model parameters as possible to represent the relationship. Another common practice is 

sequential modeling. Guided by the parameter estimates of a current model and the resulting 

residuals, the experimenter conducts statistical tests to determine whether the current model is 

adequate or not, and, if not, may explore further parameters and treatment combinations to better 

represent the relationship. (Such exploration may be conducted for the ultimate purpose of 

identifying treatment combinations that can eventually produce responses close to either 

optimality or a pre-determined target.) Because of the focus on mean responses and their 

relationships with the parameters, Eq. (2), without the random-error term, plays a pivotal role in 

this special case. It is clear from Eq. (2) that all 16 model parameters can be solved explicitly as 

16 linear functions of the 16 mean responses once these 16 mean responses have been obtained. 

Because of the orthogonality between any two columns of the matrix associated with the right-

hand side of Eq. (2), the 16 model parameters can be easily solved.   

As in Tsao and Liu (2008) and Tsao and Patel (2013), we seek, for any given sequence of model 

parameters of non-increasing magnitude or importance, a corresponding treatment-combination 

sequence so that the first m, 421  m , model parameters in the parameter sequence can be 

estimated with the first m treatment combinations of the treatment-combination sequence. 

In other words, throughout the sequential experimental process, one additional model parameter 

is estimable with the addition of the corresponding treatment combination.   

 

2.2 Main Contributions – The General, Simple and Intuitive Design Pattern and Its Use 

Condition 

To illustrate the main contribution of this paper, we consider a particular sequence of model 
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parameters (i.e., effects/interactions) in non-increasing order of magnitude.  This particular 

parameter sequence is G, A, B, AB, C, AC, BC, ABC, D, AD, BD, CD, ABD, ACD, BCD and 

ABCD, as shown as the column headers of Table 1.  Note that interaction AB is considered as 

more important than main effect C; interaction ABC is considered as more important than main 

effect D and three two-factor interactions, namely AD, BD and CD, out of the six possible two-

factor interactions.  Note also that this parameter sequence is beyond the scope of Tsao and Patel 

(2013), which requires that (i) main effect C be ahead of interaction AB in the parameter 

sequence, (ii) main effect D be ahead of all two-factor interactions among Factors A, B and C, 

(not to mention interaction ABC), (iii) interaction AD be ahead of interaction ABC.  This is a 

main contribution of this paper. 

 

We seek to sequence the 16 treatment combinations so that (a) they can be experimented in the 

sequence until no more statistically non-zero model parameters need to be estimated, and (b) the 

first m parameters of the parameter sequence, 421  m , can be estimated with the first m 

treatment combinations of this treatment-combination sequence, with no confounding among the 

m parameters.  The general intuitive design pattern to be proposed and proved later in this paper 

produces the following sequence of treatment combinations: “.”, a, b, ab, c, ac, bc, abc, d, ad, 

bd, cd, abd, acd, bcd, and abcd. These treatment combinations are the row headers of Table 1. 

Note that each of these treatment combinations is defined by the four elements (of 1 or –1) of the 

same row corresponding to the low “-“ or high “+” levels of the four Factor A, B, C and D. The 

correspondence between this parameter sequence and the treatment-combination sequence 

produced according to the general intuitive design pattern proposed in this paper is detailed in 

Table 2. For visual clarity, the treatment combinations are also defined in the clearer contrast 



18 
 

between “-“ and “+” symbols, i.e., in their level-vector representation; their position numbers x’s, 

in order of their appearance in a conventional full design matrix, are also provided and are 

denoted as TCx’s 

 

Note that the treatment-combination sequence is exactly the same as the model-parameter 

sequence, except that the former is in lower case while the latter is in upper case.  The general 

intuitive design pattern proposed in this paper exhibits such exact correspondence between the 

model-parameter sequence and the treatment-combination sequence.  The only condition 

required for the new proposed general intuitive design pattern to work is that the new additional 

parameter to be estimated completes a “parameter factorial” associated with all the factors 

relevant to the new parameter. We explain and illustrate this condition with this particular 

example as follows. At the beginning, none of the factors is considered insignificant, not to 

mention the interactions among the factors, and hence the only parameter to be estimated is G. 

Although any treatment combination would suffice for the estimation, we choose “.” as the base 

treatment combination, i.e., the treatment combination (-,-,-,-). (In fact, labeling of low vs. high 

levels can be arbitrary. Any existing labeling scheme can be easily altered so that the base 

treatment combination can be relabeled as (-,-,-,-).) For the next parameter (of the parameter 

sequence), i.e., A, one treatment combination is selected; the treatment combination is “a”. Note 

that A together with the grand effect G constitute a full parameter factorial {G,A}of Factor A.  

Similarly, the treatment combination “a” together with the base treatment combination “.” 

constitute a full “treatment-combination factorial” for Factor A.  A full treatment-combination 

factorial or simply a treatment-combination factorial of a subset of all the factors is defined to be 

a subset of all the treatment combinations of the 2k factorial design whose treatment levels of the 
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factors of the subset span the full factorial design for the factors, as if they are the only factors 

considered in an experiment.   

 

Similarly to the discussion about parameter A and the corresponding treatment combination “a”, 

the same can be said about the following parameter B of the parameter-sequence and the 

following treatment combination “b” of the corresponding treatment-combination sequence. The 

next model parameter in the parameter-sequence is AB, and the next corresponding treatment 

combination is “ab”. With the grant effect G, and the main effects A and B already considered in 

the model, the interaction AB completes the full “parameter factorial” associated with the 

Factors A and B; the full “parameter factorial” associated with Factors A and B is {G,A,B,AB}.  

In addition, the treatment combinations “ab” completes the full treatment-combination factorial 

for Factors A and B. The same can be said about the main effect C, interactions AC and BC and 

the corresponding treatment combinations “c”, “ac” and “bc”. Now all  parameters associated 

with Factors A, B and C have been estimated, except for the interaction ABC, and all treatment 

combinations associated with the full treatment-combination factorial for Factors A, B and C 

have been selected and experimented, except for the treatment combination “abc”. Therefore, 

interaction ABC completes the full parameter factorial of parameters for Factors A, B and C; the 

full parameter factorial associated with Factors A, B and C is {G,A,B,C,AB,AC,BC,ABC}.  In 

addition, treatment combination “abc” completes the full treatment-combination factorial for 

Factors A, B and C. The same logic establishes the fact that inclusion of each new model 

parameter in the parameter sequence completes the parameter factorial associated with all the 

factors relevant to the new parameter. In addition, the inclusion of the corresponding treatment 

combination completes a full treatment-combination factorial associated with the same factors.  
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For ease of discussion, we refer to such completions as “parameter-factorial completion” and 

“treatment-combinaion-factorial completion”, and refer to the model parameter and treatment 

combination that lead to the corresponding completion as “parameter-factorial completing” and 

“treatment-combination-factorial completing,” respectively.  It may be informative to give an 

example for which the proposed general intuitive design pattern does not work.  The proposed 

design pattern would not work for any sequence starting with G, A, B, C, D, AB, AC, and ABC, 

for example. This is because the three-factor interaction ABC does not complete the parameter 

factorial for Factors A, B and C, i.e., the three factors involved in this interaction; the two-factor 

interactions BC is necessary for the completion but has not been included in the model for 

unbiased estimation yet. 

 

Another example not satisfying the use condition of Tsao and Patel (2013), but satisfying the use 

condition of the general intuitive design pattern proposed in this paper, is the parameter sequence 

G, A, B, C, D, AB, AC, BC, ABC, AD, BD, CD, ABD, ACD, BCD and ABCD and the 

corresponding treatment-combination sequence “.”, a, b, c, d, ab, ac, bc, abc, ad, bd, cd, abd, 

acd, bcd, and abcd. In terms of the labeling used in conventional design matrix, these treatment 

combinations are numbered as 1, 2, 3, 5, 9, 4, 6, 7, 8, 10, 11, 13, 12, 14, 15 and 16. 

 

As in Tsao and Patel (2013), invertibility of any of the m leading principal submatrix,  421  m

, delineated in Table 1 plays a key role in parameter estimability. All such submatrices are 

invertible.  The proof will be by mathematical induction, and it will be shown in Section 4 that 

invertibility of any such an mm leading principal submatrix guarantees the invertibility of the 

next )1()1(  mm leading principal submatrix. 
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2.3 Why the Design Pattern Works and How to Estimate the Parameters 

 

Let T’ be an )1()1(  mm  matrix and T be its mm leading principal submatrix. In other 

words, T’ is obtained by expanding T with one row and one column. Suppose that T is invertible.  

To obtain T-1, we can perform elementary operations on T such that T│I becomes I│T-1, where I 

is the m×m identity matrix. T-1 can be used to help determine the invertibility of T’ and, if so, the 

inverse of T’. In our case, T represents a square design matrix, and we expand a given design 

matrix with one parameter and the corresponding treatment combination at a time. We use the 

step of adding interaction AD to the current model consisting of parameters G, A, B, AB, C, AC, 

BC, ABC and D. In the rest of this section, we assume the knowledge of the inverse matrix T-1 

for ease of illustration only.  This knowledge is not required to show the invertibility of T’; it is 

not required to motivate an unbiased estimator for the new parameter AD or the formulae for 

updating the current parameter estimates to become the new estimates.  (It is required, however, 

for obtaining recursively the inverse matrices of the leading principal submatrices of the full 

design matrix, as to be discussed later.) For ease of illustration, the true parameter values are 

assumed to be G=100, A=90, B=80, AB=70, C=60, AC=50, BC=40, ABC=30, D=20, AD=10, 

with all other parameters assumed to be 0 or non-existent.  The 10 resulting mean responses are 

45, 35, 45, 115, 45, 75, 65, 295, 55, 65. Note again that regression coefficients of the regression 

model, as opposed to the parameters of the 2k full factorial experiment, are G=100, A/2=45, 

B/2=40, AB/2=35, C/2=30, AC/2=25, BC/2=20, ABC/2=15, D/2=10, and AD/2=5, with all other 

regression coefficients assumed to be 0 or non-existent.  
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To illustrate how to estimate the new parameter AD and how to update the current estimates of 

the current parameters, we use the elementary row operations needed to transform the 10×10 

matrix on the left-hand side of the vertical line in Table 3 into the 10×10 identity matrix. The 

main idea of this illustration is that pre-multiplying the 10×10 design matrix (associated with the 

first 10 parameters) by the 10×10 matrix to the right-hand side of the vertical line produces the 

10×10 matrix to the left of the vertical line. Transforming the 10×10 matrix to the left of the 

vertical line to the 10×10 identity matrix and performing the same elementary row operations on 

the 10×10 matrix to the right of the vertical line produces the inverse matrix of the 10×10 design 

matrix, to the right of the vertical line.  We now briefly explain the composition of the two 

10×10 matrices. 

 

The 9×9 inverse of the design matrix with nine model parameters (G, A, B, AB, C, AC, BC, 

ABC, D) and the nine corresponding treatment combinations is seen on the right-hand side of the 

solid vertical line in Table 3; it consists of the first nine columns and the top nine rows. The rest 

of the elements, i.e., the last row and the last column, in the matrix on the right-hand side are all 

zero except the (10,10) element, which is set to 1.  (They are the last row and column of the 

10×10 identity matrix.) We now focus on the left-hand side of the vertical line. The counterpart 

to the 9×9 inverse matrix is the 9×9 identity matrix.  We add interaction AD and its 

corresponding treatment combination ad to the design matrix. In this case, the last row is the ad 

row of the 10×10 design matrix associated with the first 10 model parameters (G, A, B, AB, C, 

AC, BC, ABC, D, AD) appended with the mean response of the treatment combination ad. The 

first 9 rows of the RHS column are the estimates of G, A/2, B/2, AB/2, C/2, AC/2, BC/2, ABC/2, 

and D/2, respectively, obtained in the previous iteration based on (i) the incomplete model of 
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only the first nine parameters of the parameter sequence and (ii) the corresponding nine (true) 

mean responses calculated based on 10 parameters and the assumed parameter values. The 

column to the left of the RHS column is the updated first nine elements of the AD column, which 

can be obtained by pre-multiplying the first nine elements of the AD column of the 10×10 design 

matrix by the inverse of the 9×9 design matrix of (G, A, B, AB, C, AC, BC, ABC, D). These 

updated first nine elements turn out to be (-1, -1, 0, 0, 0, 0, 0, 0, -1)T. The reason is as follows. 

Let us focus on the first nine rows of the 10×10 design matrix. The invertibility of the 9×9 design 

matrix of the nine-parameter model implies that the AD column, i.e., the last column, is linearly 

dependent on the first nine, and the linear combination is unique.  Note that the updated first nine 

elements of the AD column just mentioned constitute the nine multipliers of this linear 

combination. For the moment, focus on those columns associated with the effects G, A, D and 

AD.  For each of the nine rows, two of the four constant multipliers are +1 and the other two are 

-1. (In general, for each treatment combination of a full 2k factorial design, except for the one 

with all factors set to the high level, the number of the +1  constant multipliers in the 

corresponding regression equation and that of the -1 coefficients are equal.)  This implies that the 

four columns G, A, D and AD sum to a zero vector or, equivalently, the AD column can be 

obtained by multiplying the sum of the G, A and D columns by -1.  This implies the three -1’s of 

(-1, -1, 0, 0, 0, 0, 0, 0, -1).  Uniqueness of the linear combination further implies that the first 

nine elements of the AD column are (-1, -1, 0, 0, 0, 0, 0, 0, -1).  

 

Performing elementary row operations in Table 3 to convert the first ten elements of the last row 

to the left of the vertical line to (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) and then make the column of AD (0, 0, 

0, 0, 0, 0, 0, 0, 0, 1)T (to the left of the vertical line) produces the inverse of the 10×10 design 



24 
 

matrix, as exhibited on the right-hand side of the vertical line in Table 4. Two quick observations 

provide hints for a general phenomenon.   First, the last row of the inverse matrix reveals that the 

regression coefficient AD/2 can be estimated the way they should be as if only the four treatment 

combinations constituting a treatment-combination of Factors A and D are available, with all 

other factors set to their low levels.  In general, the newly added parameter should be estimated 

as if only the treatment combinations constituting the treatment-combination factorial of all the 

relevant factors, with all other factors set at their level levels; this will be proved in Section 4. To 

the left of the vertical line is the 10×10 identity matrix and the RHS column, which contains the 

updated regression coefficients G, A/2, B/2, AB/2, C/2, AC/2, BC/2, ABC/2, and D/2, and the 

value for the new regression coefficient AD/2, respectively. Note that only the estimates of 

regression coefficients G, A/2, and D/2 have changed. All other old estimates have remained the 

same. In fact, the new G is the previous G plus AD/2. Similarly, the new A/2 and D/2 are, 

respectively, previous A/2 plus AD/2 and previous D/2 plus AD/2.  These amount to the change 

of model parameters from G to G+AD/2, from A to A+AD, and from D to D+AD.  In general, 

the current grand effect G will be updated to become G plus half of the estimate of the newly 

added parameter while any of all the other  parameters constituting the parameter factorial will 

be updated to become itself plus the estimate of the newly added parameter.  Finally, it can be 

seen that the RHS column exhibits the correct regression coefficients. 

 

3. Problem Definition, Notation and Main Results 

 

We first define the general problem and then describe the main results. To facilitate the 

discussion, we adopt a set of notation that is more amenable for addressing the general case of 
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k2 factorial design. It is the same set of notation used in Tsao and Patel (2013); it is essentially 

the same set of notation used in Tsao and Liu (2008) and Tsao and Patel (2011) except that the 

index for the factors used in this paper is j, instead of i. Let j be the index for the factors, j = 1, 2, 

…,k.  Denote the grand effect as Ge and the effect of factor j as je , j = 1, 2, …, k.  Let lj ,  l = 1, 

…, k, denote a factor 1, 2, …, or k, and when L arbitrary factors appear in a subscript, the 

subscript is denoted as Ll jjjj ......21  and the factors appear in ascending order of their indices, 

i.e., Ll jjjj  ......21 . Denote the interaction among factors 

kjjjj Ll  ......1 21  as Ll jjjje ......21 , with a subscript encompassing all the factors 

involved and with the involved factors placed in an ascending order of factor indices.  For 

convenience of discussion, we refer to any of the grand effect, main effects of the k factors, and 

all the interactions as a model parameter or, simply, a parameter. As usual, jx  = +1 or -1, j = 1, 

2, …, k. Let r = 1, 2, …, n, denote the number of replications. With this notation, the full 

regression model for a k2  factorial design can be stated as 

... ; 1 2 1 21 2 ... ... ;x x x r k kk x x x x x x ry                            (3) 

where 
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Note that the last term of Eq. (4) is simply k
k xxxxxe .....

2 4321
...1234 .  Eq. (4) has k2 equations and 

k2 model parameters, which consist of the grand effect, k main (factor) effects and 12  kk  
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interactions.  A regression model involving only m non-zero parameters will be referred to an m-

parameter model. 

 

This paper focuses on estimability of model parameters and deals with the issue of identifying 

treatment combinations through whose experimentation significant model parameters can be 

estimated with an unbiased estimator, without confounding.  Although the estimation process 

includes estimation of the mean responses based on experimental results, we focus only on the 

remainder of the estimation process and concern ourselves only with the relationship between the 

mean responses kxxx ...21
 and all the model parameters.  Therefore, our focus is on Eq. (4) and the 

random error term 1 2 ... ;kx x x r  of Eq. (3) and possible replications are ignored.  With the error terms 

ignored, we are not really dealing with estimation of the model parameters; we are actually 

solving the model parameters in terms of the mean responses.  However, to distinguish a model 

parameter from its solution in terms of the mean responses and to be consistent with the larger 

context of estimation, we denote the solution of a model parameter in terms of the mean 

responses with a “hat”.  For example, such a solution for Ll jjjje ......21
is denoted as 

Ll jjjje ......21
ˆ . 

 

A treatment combination ),,.....,,,( 1321 kk xxxxx   of a 2k full factorial design, where jx  = + or - , j 

= 1, 2, …, k,  is alternatively represented as a set of those of the k factors that are set at the high 

level (+). To distinguish such a treatment-combination representation from a set of factors, the 

factor indices of such a representation will be delimited with a pair of angle brackets “ ” , 

instead of the curly bracket “ ”commonly used to delimit a set of elements.  This notation will 

be used whether the factors are expressed explicitly as an integer from 1 through k or implicitly 
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as a set of symbols for the k factors. When all factors are set at the low level (-), the treatment 

combination is represented, for convenience, as “.”, i.e., as a dot. (This is consistent with the 

convention.) For example, the treatment combination ( - , + , +, - ) of 24 full factorial design is 

alternatively represented as 3,2 . Also, a treatment combination of 24 full factorial design where 

factors 1j  and 2j  are set at the high level (+) is represented as 21, jj .  Similarly, we adopt a 

corresponding alternative representation for the mean responses according to this alternative 

treatment-combination representation.  More precisely, we use this alternative treatment-

combination representation as the subscript of the corresponding mean response.  Since there is 

little chance for confusion, the pair of angular brackets may be omitted for notational 

convenience. We continue the above examples. When all factors are set at the low level (-), the 

mean response is represented as . or simply . . The mean response of the treatment 

combination 3,2 of any full 2k factorial design is alternatively represented as 3,2 , regardless of 

the number k of factors involved.  Also, the mean response of the treatment combination 21, jj  

of any full 2k factorial design is represented as 21, jj . 

 

Definition: The parameter factorial of L factors { 1j , 2j , ….., Lj } is the set of model parameters 

consisting of the grand effect, the main effects of all these factors and all possible interactions 

among these factors. (The parameter factorial of one factor consists of the grand effect and the 

main effect of the factor.) 

 

Definition: Consider any parameter Ll jjjje ......21 in any parameter sequence of a 2k full factorial in 

which the grand effect is the leading parameter.  Suppose the preceding parameters include all 
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the parameters of the parameter factorial of factors { 1j , 2j , ….., Lj }, except Ll jjjje ......21 .Then, 

addition of this parameter to the preceding parameters is said to complete the parameter factorial 

of the L factors { 1j , 2j , ….., Lj }. Also, for ease of discussion, this parameter is said to be 

parameter-factorial completing, with the context of the L factors { 1j , 2j , ….., Lj } implicitly 

assumed and omitted.  (When the parameter is a main effect 1j
e , it always completes the 

parameter factorial of Factor 1j  , because the leading parameter is the grand effect.) 

 

Definition: A parameter sequence of a 2k full factorial design is parameter-factorial completing 

if and only if each of its parameter is parameter-factorial completing. 

 
With the notation and terminology just defined, we first discuss the four main contributions of 

this paper and then capture them in two separate algorithms.  It is clear that any such parameter-

factorial-completing parameter sequence must start with the grand effect, as the leading 

parameter of the sequence. With the grand effect being the leading parameter of a parameter-

completing parameter sequence, a main contribution of this paper is about sequencing the 

treatment combinations of a 2k full factorial design according to the given parameter sequence, 

ordered in non-increasing importance or magnitude. Note that each parameter is indexed by the 

factors involved. More precisely, each main effect je , j = 1, 2, …, k, is indexed by the factor j; 

each of the L-factor interaction Ll jjjje ......21 is indexed by the L factors involved, namely 1j , 2j , 

….., Lj . The factors specified in such an index are referred to in this paper as the relevant factors 

of the parameter or, equivalently, parameters relevant to the parameter. For each of these 

parameters, a corresponding treatment combination can be obtained in the following simple 
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manner. The treatment combination corresponding to the grand effect  Ge  is set to the treatment 

combination “.”, i.e., the treatment combination with all factors set to the low level (-).  For all 

other parameters, simply place the factor index (i.e., the subscript) of the parameter in an angle 

bracket. ( Ge involves no factors, and hence the correspondence can be considered as being 

obtained with no factor indices set to the high level (+).)  Given the sequence of parameters, the 

sequence of treatment combinations is nothing but the sequence of the corresponding treatment 

combinations so obtained. We refer to such a correspondence as a factor-to-high-level 

correspondence.  Note that this correspondence is unique.  The general intuitive design pattern 

proposed in this paper is this unique and simple correspondence. This design pattern is the first 

major contribution of this paper. 

 

When the equations of Eq. (4) are written according to the given parameter sequence and the 

corresponding factor-to-high-level treatment combination sequence, the theory can be succinctly 

developed.  First, switch the sides of the mean-response terms and the linear combinations of 

model parameters so that the latter appear on the left-hand side of the equations.  Next, rearrange 

the order of the summands of the linear combinations according to the exact order of the given 

model-parameter sequence.  Finally, rearrange the treatment combinations and the companion 

model equations according to the corresponding factor-to-high-level treatment-combination 

sequence.  This process has been illustrated in Section 2 with the process leading to Table 1. 

With this particular manifestation of the full 2k design matrix, the mm  leading principal 

submatrix, for each m such that km 21  , together with the m corresponding mean responses 

constitute an m-parameter model.  In the rest of this paper, such an mm  leading principal 

submatrix of this manifestation of the full 2k design matrix will be denoted as mmD   and will be 
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referred to as the m-th “design matrix” or simply as a design matrix, when the number m of 

parameters is not important. In such an m-parameter model, only these m parameters are 

considered as significant or non-zero. The second main contribution of this paper is that, for each 

m such that km 21  , the m-th design matrix mmD   is invertible, and, therefore, the m 

parameters can be uniquely solved with the m corresponding mean responses.  The third main 

contribution of this paper is that the inverse matrix 1
mmD of each mmD   can be obtained 

recursively with simple closed-form formulae, and the fourth main contribution is that the values 

of the m parameters of the m-parameter model can also be obtained recursively with simple 

closed-form formulae. 

 

The first and the fourth major contributions constitute all what an end-user needs to know.  They 

are captured below in an algorithm. The second major contribution lays the foundation of all the 

other contributions and will be stated as Theorem 1 in Section 4, together with its proof.  The 

third major contribution is useful for calculating the variances of the individual parameter 

estimators or the covariance structure of the estimators, among other uses, and is captured below 

in another algorithm.   The rationales for the two algorithms have been illustrated in Section 2. 

We now state the two algorithms and leave the proofs for their validity to the next section.  The 

first algorithm generates for any given parameter-factorial-completing parameter sequence a 

corresponding treatment-combination sequence according to the one-to-one factor-to-high-level 

correspondence and generates recursively the parameter estimators for all the m-parameter 

models.  We refer to it as “The Sequentially and Optimally Estimating Parameters (SOEP) 

Algorithm for 2k DOE” or simply as “The SOEP Algorithm”. 
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The Sequentially and Optimally Estimating Parameters (SOEP) Algorithm for 2k DOE 

 

Initialization:  

Let SP any parameter-factorial-completing sequence of the parameters of a 2k factorial design 

starting with the grand effect as the leading parameter.  Let STC denote the treatment-combination 

sequence to be constructed by this algorithm.  Set m = 1. Set STC to be the base treatment 

combination “.” (where all factors are set at the low level).   

 

Iteration: 

Step 1: Set m = m +1. Let the m-th parameter of SP be denoted as Ll jjjje ......21 , where 1j , 2j , …..,

Lj  are the factors involved. 

Step 2: Augment sequence STC with the treatment combination Ll jjjj ......21 . (In other words, 

select the treatment combination where factors 1j , 2j , ….., Lj are set to the high level while all 

other factors are set to the low level.) 

Step 3: Set the estimate Ll jjjje ......21
ˆ  of Ll jjjje ......21 to be 
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level and the N denotes the number of such factors.  (In other words, estimate Ll jjjje ......21
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way as if one is to estimate it with only an L-factor full factorial design and with all other k-L 

factors set to the low level.) 

Step 4: Set Gê  to Ll jjjjG ee ......21
ˆ

2
1ˆ   (In other words, update the estimate of the grand effect by 

adding half of the Ll jjjje ......21
ˆ obtained in Step 3.) Set all other ''

1
'
2

'
1 ,,.....,,

ˆ
NN jjjje


 such that

},,.....,,{},,.....,,{ 121
''

1
'
2

'
1 LLNN jjjjjjjj   to LlNN

jjjjjjjj ee ......,,.....,, 21''
1

'
2

'
1

ˆˆ 


.  (In other words, update 

estimates of all other parameters constituting the parameter-factorial of a 2L full factorial design 

by adding the estimate Ll jjjje ......21
ˆ of Ll jjjje ......21 obtained in Step 3.)  Also, leave all the other 

parameter estimates intact. Go to Step 1. 

 
The recursive parameter-solution process of SOEP is equivalent to inverting recursively the 

design matrix of the m-parameter model for all m such that km 21  . We state this recursive 

design-matrix inversion as the “Inverting Matrix  for Sequentially and Optimally Estimating 

Parameters (IM-SOEP) Algorithm for 2k DOE” and as “The IM-SOEP Algorithm” for short.  We 

state the algorithm here and prove it in Section 4 in terms of regression coefficients exclusively 

and not translating it in terms of the model parameters, because of the nature of matrix operation. 

Recall that, in Eq. (4), the regression coefficient associated with the grand effect is identical to 

the grand effect itself while the regression coefficient associated with any other model parameter 

is half the corresponding model parameter. 

 
The “Inverting Matrix  for Sequentially and Optimally Estimating Parameters (IM-SOEP) 

Algorithm for 2k DOE” (The IM-SOEP Algorithm) 

Initialization:  
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Let SP any parameter-factorial-completing sequence of the parameters of a 2k factorial design 

starting with the grand effect as the leading parameter.  Let STC denote the treatment-combination 

sequence constructed by the SOEP Algorithm.  The design matrix kkD 22   is formed with respect 

to these two corresponding sequences, with the j-th column associated with the j-th  parameter 

(or regression coefficient) of the given parameter sequence and with the i-th row associated with 

the i-th treatment combination of the corresponding treatment-combination sequence. So are the 

the m-th design matrix mmD   (i.e., the mm leading principal submatrix of kkD 22 
) and the 

matrix INV
mmD  produced by this algorithm.  Set m = 1. Set INV

mmD  to be the 11 matrix 11D with 1 as 

the single (1,1) element.   

Iteration: 

Step 1: Set m = m +1. Let the m-th parameter of SP be denoted as Ll jjjje ......21 , where 1j , 2j , …..,

Lj  are the factors involved. 

Step 2: Augment INV
mmD )1()1(  by appending the following 1m  row vector to form the m-th row 

of INV
mmD  .  For any set of LN   factors }','

1,.....,'
2,'1{ NjNjjj

 such that 

},1,.....,2,1{}','
1,.....,'

2,'1{ LjLjjjNjNjjj



 , set the element corresponding to ''

1
'
2

'
1 ,,.....,, NN jjjje


  

to L

NL

2
)1( 

. Set the rest of the elements to 0. 

Step 3: Augment the INV
mmD )1()1(  to form the first m-1 rows of INV

mmD   in the following three sub-

steps. 

Sub-step 3.1:   

Augment each row of INV
mmD )1()1(  by appending 0 as the m-th element of the row. 
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Sub-step 3.2: For any row whose corresponding treatment combination ','
1,.....,'

2,'1 NjNjjj


is such that },,.....,,{},,.....,,{ 121
''

1
'
2

'
1 LLNN jjjjjjjj    , add the row obtained in Step 2 (i.e., the m-

th and last row of INV
mmD  ) to the corresponding row just obtained in Step 3.1. 

Sub-step 3.3: Go to Step 1. 

 

4. Theorems and Proofs 

 

We first show, in Theorem 1, the invertibility of mmD  ; the proof is by mathematical induction. 

The validity of the recursive estimation of the m+1 parameters of the (m+1)-parameter model 

based on (a) the m estimators of the m-parameter model and (b) the (m+1)-st regression equation, 

as stated in the SOEP Algorithm, is proved in three theorems – Theorems 2, 3 and 4. Theorem 2 

is about how to estimate the new and (m+1)-st parameter, involving neither recursion nor 

mathematical induction.  Given this estimator, Theorem 3 is about how to recursively update the 

estimators of the first m parameters of the m-parameter model to obtain the estimators of the first 

m parameters of the (m+1)-parameter model.  Integrating Theorem 2 and Theorem 3 via 

mathematical induction, Theorem 4 completes the validity of the recursive estimation of model 

parameters and hence the validity of the SOEP Algorithm.  Theorem 5 establishes that the 

recursive estimation process of Theorems 2, 3 and 4, i.e., that of the SOEP Algorithm, is 

equivalent to calculating recursively the inverse matrix INV
mmD )1()1(  based on the inverse matrix 

INV
mmD  and the new information contained in the (m+1)-parameter model.  In other words, the 

recursive parameter-estimation process of the SOEP Algorithm is equivalent to the recursive 

design-matrix-inversion process of IM-SOEP Algorithm. 
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The proof of Theorem 1 and Theorem 3 can be facilitated by recognizing a general phenomenon 

of a full '2k  factorial design involving kk ' factors, as stated in the following Lemma 1. Since 

this phenomenon holds for any 2k full factorial design, we state the lemma and prove it in the 

general context of a general full 2k factorial design, instead of the present context of a full '2k  

factorial design. 

 

Lemma 1: In each of the 2k rows of any 2k full factorial design of k factors, the number of “-” 

(i.e., “-1”) signs is always equal to the number of “+” signs (i.e., “+1”), except for the row 

corresponding to the treatment combination with all factors set at the high level (+). 

 

Proof:  The 2k signs of the 2k model parameters in each row of the 2k design matrix (or in each 

equation of Eq. (4)) are exactly the 2k terms of the sum-of-product expression of )1(
1




k

j
jx , 

where the sum-of-product expression is simply 

kkkkk xxxxxxxxxx 1211211 ....................1   .  Therefore, the sum of the coefficients 

in each of the rows is simply )1(
1




k

j
jx . As a result, the sum is 0 as long as one of the jx ’s is -

1 or, equivalently, as long as one of the factors is set at low level (-), with the only exception 

being the case of all factors set to their high levels.  This completes the proof. 

 

 Lemma 1 means that, in each of the 2k model equations, there are equal number of negative 

signs and positive signs in front of the 2k model parameters, with only one exception.  The 
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exception is the model equation corresponding to the treatment combination with all factors set 

at their high levels (+). 

 

 

Theorem 1: Let a parameter-factorial-completing parameter sequence of a 2k full factorial 

experiment be given and the treatment-combination sequence be generated by the factor-to-high-

level correspondence in Step 2 of the SOEP Algorithm.  Then, for any given m such that 

km 21  , the mm design matrix mmD  is invertible, and the m-parameter model has a unique 

solution. 

 

Proof: We use the method of mathematical induction. The case of m=1 is trivial. Now suppose, 

as the induction hypothesis, that the mm design matrix mmD  is invertible.  Denote its inverse 

matrix as 1
mmD , as usual. We seek an )1()1(  mm matrix such that pre-multiplying it to the 

)1()1(  mm design matrix )1()1(  mmD  produces the )1()1(  mm identity matrix 

)1()1(  mmI .  We use a linear-algebra technique to determine the invertibility of )1()1(  mmD and, in 

case of invertibility, to calculate the inverse matrix 1
)1()1(



 mmD based on 1
mmD . We define, as the 

left-hand side of Eq. (5), an )1()1(  mm matrix in terms of 1
mmD and )1()1(  mmD  with a goal 

to transform it into )1()1(  mmI through a set of elementary row operations (EROs) and to 

transform simultaneously the bracketed matrix on the right-hand side of Eq. (5) into the inverse 

matrix 1
)1()1(



 mmD of )1()1(  mmD  through the same set of EROs. 

                                                                               (5) 

 
)1()1(

1

1
1
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where mmI  is the m-dimensional identity matrix, 1mC is an m-dimensional column vector, mR 1 is 

an m-dimensional row vector, 10 m  is the m-dimensional column vector of 0’s, and m10 is the m-

dimensional row vector of 0’s.  It is clear that the (m+1)-dimensional row vector [ 11 mR  ] is 

simply the (m+1)-st row of )1()1(  mmD .  We now relate 1mC  to 1
mmD and )1()1(  mmD as follows.   

The first m rows of )1()1(  mmD is simply [ mmD 

'
1mC ], where '

1mC denotes the last column of the 

first m rows of )1()1(  mmD .  Since mmD  is invertible, by the induction hypothesis, '
1mC is linearly 

dependent on the m columns of mmD  . Note that the unique set of multipliers of the linear 

combination, when expressed as a column vector, is simply '
1

1




 mmm CD .  By Eq. (5), we have 

1
'

1
1





  mmmm CCD .  We now show that 1mC  consists of -1’s and 0’s as follows.  Let the (m+1)-st 

parameter be denoted as 
Ll jjjje ......21 , where 1j , 2j , ....., Lj denote the L factors involved.  Narrow 

the focus on those columns associated with all L2 parameters of the parameter factorial of these 

factors. By Lemma 1, there are an equal number of “+” signs (i.e. +1’s) and “–“ signs (i.e., 1

’s).  This implies that all the L2 columns (limited to the first m rows of )1()1(  mmD , i.e., [ mmD 

'
1mC ] ) sum to the m-dimensional 0 vector.  This further implies that the element of 1mC  

corresponding to any parameter of the parameter factorial of the L factors is -1. By the 

uniqueness of the linear combination, all the other elements of 1mC  are 0. We now turn our 

attention to identification of a set of EROs that, when applied to both sides of Eq. (5), transforms 

the left-hand side to )1()1(  mmI and hence transforms the bracketed matrix of the right-hand side 

to 1
)1()1(



 mmD .  Consider two subsets of EROs. The first subset is used to transform the m-

dimensional row vector mR 1 to the m-dimensional 0 vector m10 .  Because mR 1 consists of +1’s 
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and -1’s, this subset involves multiplying each of the rows of ][ 1 mmm CI by either +1 or -1 and 

adding the resulting row to the last row of the left-hand-side matrix.  Note that all the elements of 

mR 1  in the columns corresponding to the parameter factorial of factors 1j , 2j , ....., Lj are 1. 

Therefore, the corresponding rows of ][ 1 mmm CI are multiplied by -1 and then added to the last 

row [ 11 mR  ]. For these rows, the corresponding element of 1mC  is -1.  Since there are 12 L

such rows and all other elements of 1mC are 0’s, the last element of this last row becomes L2  

Finally, the last row is divided by L2 .  Therefore, the first subset of EROs transforms the last 

row [ 11 mR  ] of the left-hand-side matrix of Eq. (5) to the last row of )1()1(  mmI .  Adding this last 

row to any of those rows with -1 as the last and (m+1)-st element constitutes the second subset of 

EROs. These two subsets of EROs transform the left-hand-side matrix of Eq. (5) to )1()1(  mmI

and the bracketed matrix of the right-hand side of Eq. (5) to 1
)1()1(



 mmD .  The existence of these 

two subsets of EROs ensures the invertibility of )1()1(  mmD , which in turn implies uniqueness of 

the solution to the corresponding parameter model. By mathematical induction, the proof is 

compete. 

 

We have proved the invertibility of mmD  for all m such that km 21  .  This invertibility implies 

the existence of a unique solution to the m unknown parameters of an m-parameter model.  As 

will be shown below, the SOEP Algorithm produces a solution to these m unknown parameters; 

hence it produces the unique solution.  In the context of statistical estimability, this invertibility 

implies the existence of a unique set of unbiased estimators; we are content with discussing 

existence of a set of unbiased estimators, without explicitly referring to the uniqueness. We now 

prove that, for all m such that km 21  , the SOEP Algorithm indeed produces recursively all m 
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parameter estimates of the m-parameter model, all done without any numerical matrix inversion. 

Let us focus on any model parameter in the given parameter-factorial-completing parameter 

sequence other than the leading parameter eG, i.e., the grand effect.  More precisely, focus on 

Ll jjjje ......21 .  

 

Due to the construction of the treatment-combination sequence according to the factor-to-high-

level correspondence, the treatment combination corresponding to this focal model parameter 

Ll jjjje ......21 can be expressed in general as 1,.....1,1,1,.....,1,1,1,.....,1
1


Ljj xx . This 

treatment combination together with some preceding ones in the treatment-combination sequence 

constitute a full treatment-combination factorial for Factors 1j , 2j , ….., Lj , with the treatment 

levels of all the other factors set at low level (-). Now, focus on exclusively the rows in the 

current design matrix corresponding to these treatment combinations and the companion mean 

responses.  Obtain the coefficients of LL jjjje
121 ..... 

associated with all these treatment combinations 

(corresponding to the full parameter-factorial for the L factors). Set the estimator of this 

parameter Li jjjjjje
14321 ..... 

 to be the inner product of the coefficients of LL jjjjjje
14321 ..... 

 just obtained 

and the corresponding mean responses, divided by the divisor 12 L .  More precisely, the linear-

combination estimator of the focal parameter LL jjjjjje
14321 ..... 

can be obtained as follows:         

1

'
.....

..... 2
14321

14321 



 L

jjjjjj
jjjjjj

LL
LL

ff                                                                                              (6) 

where 2𝐿−1is the usual divisor and 




'
..... 14321 LL jjjjjjf   1,1,.....,1,1

01 


 

L

 







},,.....,,{

1,.....,1,1,1,.....,1
1

1211
1

)1(
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u
jjjju

x
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)1(
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xx
L                                                                       (7)
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)1(
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)1(
LLLL
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jjjjuuuuuu

xx
LL   

1,.....1,1,1,.....,1,1,1,.....,1
)(

1
)1( 


Ljj xx

LL   

 

Note that this linear function '
..... 14321 LL jjjjjjf


does not involve any treatment combination in which 

at least one factor not belonging to the set of factors j1, j2, …., jL-1 and jL is set to the high level 

(+). Note again that all the treatment combinations involved constitute a  treatment-combination 

factorial design for the L factors j1, j2, ….,  jL and that the levels for all the other factors are set at 

their corresponding low levels (i.e., “-”).   

 

Theorem 2:  Let a parameter-factorial-completing parameter sequence of a 2k full factorial 

experiment be given and the treatment-combination sequence be generated by the factor-to-high-

level correspondence accordingly. Let LL jjjjjje
14321 ..... 

be any arbitrary and (m+1)-st parameter of the 

sequence.  Then, the estimator defined in Equation (6) is an unbiased estimator of LL jjjjjje
14321 ..... 

for the (m+1)-parameter model. 

 

Proof:  Denote the number of parameters preceding LL jjjjjje
14321 ..... 

in the given parameter 

sequence as m; LL jjjjjje
14321 ..... 

is the (m+1)-st parameter.  Each of the mean responses in Eq. (7) 

can be replaced with a linear combination of the parameters of the (m+1)-parameter model.  To 

show that LL jjjjjjf
14321 ..... 

produces exactly LL jjjjjje
14321 ..... 

, we replace each of the mean responses in 
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Eq. (7) with the corresponding linear combination.  We show first that, after the replacements, 

the coefficient of the new parameter LL jjjjjje
14321 ..... 

in Eq. (7) is 2L and then that the coefficients for 

all the other m parameters are 0.  Recall that the treatment combinations involved in calculating 

LL jjjjjjf
14321 ..... 

constitute a full treatment-combination factorial for the L factors, with the levels of 

all other factors set at the low (“-”); no other treatment combinations are involved.  In the rest of 

this proof, we will limit our attention exclusively to only these treatment combinations.  For ease 

of discussion, when we refer to a column, we actually address only those entries of these 

treatment combinations in this column.  Similarly, when we refer to a full design matrix, we 

actually address only those rows of these treatment combinations of this design matrix. For ease 

of discussion, we will drop the qualifier “with the levels of all other factors set at the low (“-”)” 

and will refer to these treatment combinations as “L-factor (full) treatment-combination 

factorial.” Note again that the coefficients of the mean responses in Eq. (7) are exactly the 

corresponding entries in the LL jjjjjje
14321 ..... 

column of the full 2k design matrix.  Therefore, Eq. (7) 

is nothing but the inner product of the LL jjjjjje
14321 ..... 

column and the mean response column, with 

the scope limited to only L-factor (full) treatment-combination factorial.  This implies that the 

coefficient of LL jjjjjje
14321 ..... 

in Eq. (7) is 2L.  We now show that the coefficients for all the other m 

parameters are 0.   

 

The other m parameters can be partitioned into two groups. Group 1 is the set of all the 

parameters of the parameter factorial of the L factors j1, j2, …., jL-1 and jL , except LL jjjjjje
14321 ..... 

; 

these parameters include all main effects of the L factors j1, j2, …., jL-1 and jL , all interactions 

between any two of these L factors, and up to all interactions among any L-1 factors of these L 
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factors.  Group 2 consists of all the other parameters. We deal with group 1 first and then group 

2. The orthogonality among all columns of this full design matrix (limited to the L-factor (full) 

treatment-combination factorial of the L factors j1, j2, …., jL-1 and jL ) implies that in Eq. (7), the 

coefficients for all the parameters of group 1 is 0.  Group 2 parameters can be further partitioned 

into two sub-groups: those involving at least one of the L factors j1, j2, …., jL-1 and jL and those 

involving no such factors at all.  The column associated with any parameter of the first sub-group 

is obtained by multiplying the levels of those factors (expressed as either +1 or -1) belonging to 

the set of factors j1, j2, …., jL-1 and jL by a constant -1 or 1 depending on whether there are an odd 

or even number of other factors involved in the parameter.  (Note that the first sub-group of 

parameters does not contain LL jjjjjje
14321 ..... 

because it appears as the (m+1)-st parameter in the 

given parameter sequence, beyond the range of its m preceding parameters being considered for 

the two groups.)  As a result, the orthogonality among the columns associated with the parameter 

factorial of j1, j2, …., jL-1 and jL ensures the orthogonality between  any of those columns 

associated with the parameters of the first sub-group and the column associated with LL jjjjjje
14321 ..... 

.  

The orthogonality between the column associated with any parameter of the second sub-group 

and the ii jjjjjje
14321 ..... 

  column results from the fact that the coefficients of the latter column sum 

up to 0 and the fact that the coefficients of the former column are identically -1 or 1, depending 

on whether there are an odd or even number of other factors involved in the parameter.  This 

completes the proof. 

 

We have just shown how to estimate the newly added model parameter Ll jjjje ......21 . We now show 

how to update the estimators of the preceding parameters in the parameter sequence in light of 

the newly added model parameter, the corresponding treatment combination, and its mean 
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response. The proof can be facilitated by recognizing two general phenomena of a full '2k  

factorial design involving kk ' factors; one of them being Lemma 1 and the other one being 

stated in the following Lemma 2.  As mentioned earlier, since these facts hold for any 2k full 

factorial design, the two lemmas are stated and proved in the general context of a general full 2k 

factorial design, instead of the present context of a full '2k  factorial design. 

 

 

Lemma 2:  Consider the model equations in Eq. (4).  Denote the 2k parameters as 1221 ,.....,,
kvvv

and kv2 . Let 1v  be the grand effect eG and kv2 be the k-factor interaction and the last model 

parameter; let treatment combination 2k be the last treatment combination and the one in which 

all factor levels are set to the high level (+).  Consider any generic model equation associated 

with any of the first 2k -1 treatment combination.  Let 1221 ,.....,,
kccc  denote the coefficients of 

the first 2k-1 parameters 1221 ,.....,,
kvvv and let μ denote the mean response.  Suppose that the 

first 2k -1 parameters 1221 ,.....,,
kvvv can be solved with the first 2k-1 model equations, with the 

last parameter kv2
excluded from the equations; let *

12
*
2

*
1 ,.....,,

kvvv denote the solutions, 

respectively. Then, for any real number  ,  




N
i

i
i vc

k

)1()( *
12

1
, where N is the number 

of factors set at their low levels.  Moreover, if the k-factor interaction kv2
is included in the full 2k 

model and can be solved and if its solution is denoted as *
2kv , then *

2
*

kvvi  , i=1,….., 2k-1 and *
2kv

satisfy the corresponding expanded generic model equation, expanded with one more term 

kvN
2

)1( . 
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Proof: None of the 2k-1 treatment combination is the one with all factor levels set to their high 

levels.  In particular, the arbitrarily chosen treatment combination is not this one. By Lemma 1, 

we have 0
2

1




k

i
ic and hence 0)1(

12

1






N

i
i

k

c  , where N is the number of factors set at low 

levels.  Multiplying both sides by a real number  produces  0)1(
12

1






 N

i
i

k

c  . Since the 

first 2k -1 parameters 1221 ,.....,,
kvvv can be solved with the first 2k-1 model equations and model 

equation associated with this arbitrarily chosen treatment combination can be any one of the 2k-1 

model equations, we also have 




*
12

1
i

i
ivc

k

.  Summing these two equations produces  

 




N
i

i
i vc

k

)1()( *
2

1

1

. This proves the first part of the Lemma.  With  substituted by *
2kv , 

it is clear that 


'
2

1
i

i
ivc

k

where *
2

*'
kvvv ii  , i=1,….., 2k-1, N

kc )1(
2

  and *
2

'
2 kk vv  .  This 

completes the proof. 

 

As mentioned earlier, estimating the new (m+1)-st model parameter, according to Step 3 of the 

SOEP Algorithm,  involves no recursion and hence requires no mathematical induction for the 

proof.  However, updating the old parameter estimates of the m parameters of the m-parameter 

model, according to Step 4 of the SOEP Algorithm, involves recursion and requires 

mathematical induction for the proof.  Theorem 3 below establishes the validity of the updating 

recursion after experimenting the (m+1)-st treatment combination, based on hypothesized 

validity of the updating recursion after experimenting the first m treatment combinations.  This 
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induction validity will be integrated, in Theorem 4, with the corresponding induction hypothesis 

and Theorem 2 to establish the validity of the SOEP Algorithm. 

 

Theorem 3: Suppose that the m parameters of the m-parameter model can be estimated with the 

m corresponding factor-to-high-level treatment combinations. Suppose also that the (m+1)-st 

model parameter is LL jjjjjje
14321 ..... 

and is estimated with the estimator defined in Eq. (6). Then, the 

m+1 parameters of the parameter sequence of the (m+1)-parameter model can be estimated with 

the m+1 treatment combinations of the corresponding factor-to-high-level treatment-combination 

sequence.  The new estimate of the grand effect eG is the old estimate plus half of the estimate 

for  LL jjjjjje
14321 ..... 

.  Moreover, the new estimate of any other of the first m model parameters 

being part of the parameter factorial of Factors j1, j2, …., jL-1, jL is simply the old estimate plus the 

estimate for  LL jjjjjje
14321 ..... 

; the value of any other model parameter remains unchanged. 

 

Proof: Let us focus on any of the m equations of the m-parameter model.  We show that the new 

estimates specified in the theorem statement satisfy the corresponding equation of the (m+1)-

parameter model.  Since the estimates for all the model parameters not part of the parameter  

factorial of L factors j1, j2, …., jL-1 and jL remain unchanged, as specified at the end of Step 4 of 

the SOEP Algorithm, they do not play a role in continued satisfaction of the equation of the 

(m+1)-parameter model corresponding to the focal equation. Therefore, it suffices to focus on 

only those model parameters that are part of the parameter factorial of L factors j1, j2, …., jL-1 and 

jL .  This portion of the equation matches the corresponding  regression equation associated with 

a full-factorial model of only the L factors j1, j2, …., jL-1 and jL  (without any model parameters 

involving any of the other factors) except the absence of the focal parameter LL jjjjjje
14321 ..... 

.  
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(Here, the correspondence refers to the factor levels.) By Lemma 2, replacing each of the old 

parameter estimates obtained from the m design equations (associated with the m-parameter 

model) with the new estimate will produce the new corresponding equation for the (m+1)-

parameter model.  Note that the new estimates for all the parameters constituting the parameter 

factorial of L factors j1, j2,…..,jL-1 and jL. are their old estimates plus the estimate of 
LL jjjjjje

14321 ..... 
, 

except the grand effect eG. This is because the regression coefficient associated with  eG is the 

parameter  eG  itself while any of the other 2k regression coefficients is defined to be half of the 

corresponding model parameter. Since this is true for any of the m equations of the m-parameter 

model, we have shown that the new estimates satisfy the first m of the m+1 equations of the 

(m+1)-parameter model.  Theorem 1 has established that the )1()1(  mm design matrix 

)1()1(  mmD is invertible. This implies that the solution for the (m+1)-st parameter LL jjjjjje
14321 ..... 

specified in Eq. (6) together with the solutions to the first m parameters of any m of the m+1 

equations of an (m+1)-parameter model constitute solutions to the m+1 parameters of the (m+1)-

parameter model.  The theorem follows immediately because the new estimates satisfy the first 

m of the m+1 equations. The proof is complete. 

 

Theorem 4:  Let a parameter-factorial-completing parameter sequence of a 2k full factorial 

experiment be given and the treatment-combination sequence be generated by the factor-to-high-

level correspondence in Step 2 of the SOEP Algorithm. The first m, for each m such that 

km 21  , model parameters of the given model-parameter sequence are estimable if the first m 

treatment combinations of the corresponding treatment-combination sequence are experimented. 

Moreover, the formulae specified in Theorem 2 and Theorem 3, or, equivalently, in Steps 3 and 4 

of the SOEP Algorithm, provide recursively unbiased estimators of the m model parameters. 



47 
 

Proof: The proof is by mathematical induction. When m = 1, only Ge  appears in the model. The 

treatment combination “.” produces a single equation equating Ge  to the mean response of this 

treatment combination.  Now, suppose, as the induction hypothesis, that the first m model 

parameters of the given model parameter sequence, for any given m such that km 21  , are 

estimable with the first m treatment combinations of the corresponding treatment-combination 

sequence. We need to show that the (m+1)-st parameter of the sequence, which completes the 

parameter factorial of its constituent factors with some of the preceding model parameters and is 

denoted as LL jjjjjje
14321 ..... 

, as well as all the preceding model parameters are estimable with the 

first m+1 treatment combinations of the corresponding treatment-combination sequence.  By 

Theorem 2, we know that the expected value of the estimator for LL jjjjjje
14321 ..... 

as specified in Eq. 

(6) is the parameter itself and hence that the parameter is indeed estimable. This and the 

induction hypothesis together constitute the condition of Theorem 3.  Therefore, this theorem 

follows immediately from Theorem 3.  

 

We have established the validity of the SOEP Algorithm. We now prove that, for all m such that 

km 21  , the IM-SOEP Algorithm produces recursively the inverse of the design matrix mmD  , 

all done without any numerical matrix inversion.  In a nutshell, the proof establishes the 

equivalence between the recursive parameter-estimation process of the SOEP Algorithm and the 

recursive design-matrix-inversion process of the IM-SOEP Algorithm.   

 

 
Theorem 5:  Let a parameter-factorial-completing parameter sequence of a 2k full factorial 

experiment be given and the treatment-combination sequence be generated by the factor-to-high-
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level correspondence in Step 2 of the SOEP Algorithm.  The matrix INV
mmD    generated by the IM-

SOEP Algorithm recursively for all m such that km 21  is indeed the inverse matrix 1
mmD  of 

the design matrix mmD  of the m-parameter model. 

 

Proof:  Let m be any integer such that km 21  , and let the m-th parameter of SP be denoted as 

Ll jjjje ......21 , where 1j , 2j , ….., Lj  are the factors involved. We prove the theorem in two parts. 

We first prove that Step 2 of the IM-SOEP Algorithm produces the m-th row of 1
mmD .  We then 

prove that Step 3 of the IM-SOEP Algorithm produces the first m-1 rows of 1
mmD . (Part 1) The 

mean responses involved in Step 2 of the IM-SOEP Algorithm are identical to those involved in 

Eq. (7), although the indexing of the former is more compact than that of the latter. In Eq. (7), 

the multipliers applied to the mean responses involved are 0)1(  L , 1)1(  L , 2)1(  L ,….., 

)1()1(  LL  and LL )1( , and this pattern matches exactly the NL )1( appearing as the numerator 

of L

NL

2
)1( 

defined in the Step 2 of the IM-SOEP Algorithm, where N ranges from 0 to L. While 

the divisor used in Eq. (6) for estimating the model parameter is 12 L , the divisor used in Step 2 

of the IM-SOEP algorithm, as appearing in the denominator of L

NL

2
)1( 

, is L2 . These two 

divisors are consistent because the estimator LL jjjjjjf
14321 ..... 

of Eq. (6) is defined to estimate the 

model parameter LL jjjje
121 ..... 

while multiplication of the last row of INV
mmD   by the mean responses 

of the corresponding treatment combinations taking place in Step 2 of the IM-SOEP Algorithm 

produces the regression coefficient 
2

14321 ..... LL jjjjjje
 .  Therefore, the definition of '

..... 14321 LL jjjjjjf


as 
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specified in Eq.(7) is exactly the result of multiplying the m-th row of INV
mmD  by the mean 

responses of the corresponding treatment combinations. Note that multiplying the m-th (and last) 

row of INV
mmD  by the 1m column vector of the mean responses (of the m-parameter model) is 

simply multiplying the same row by the product of design matrix mmD   multiplied by the 1m  

column vector of the m model parameters.  (The reason is that this product and the 1m  column 

vector of mean responses are simply the two sides of the equations relating model parameters to 

mean responses of an m-parameter model.) Recall in proof of Theorem 1 that, in Eq. (7), only the 

multiplier  of LL jjjje
121 ..... 

is not zero, and that multiplier is 1. This implies that multiplying the  m-

th row of INV
mmD  obtained in Step 2 by the design matrix mmD  of the m-parameter model produces 

the m-th row of mmI  .  We have established that Step 2 of the IM-SOEP Algorithm does produce 

the m-th row of 1
mmD .  (Part 2) We now prove that Step 3 of the IM-SOEP Algorithm produces 

the first m-1 rows of 1
mmD . Let i be any integer such that mi 1 .  We consider the i-th model 

parameter (of the parameter sequence).  The new estimates established in Theorem 3 and 4 are 

expressed in terms of the old estimate and the estimate of the new regression coefficient 

2
14321 ..... LL jjjjjje
 .  Any such old estimate and the estimate of the new regression coefficient in turn 

result from multiplying a m1 row vector by the 1m vector of mean responses. Let the i-th row 

of INV
mmD   be the  row vector that, when multiplied by the 1m  column vector of the m model 

parameters, produces the new estimate for the i-th model parameter. We consider two cases for i. 

In case 1, the i-th model parameter (of the parameter sequence) belongs to the parameter factorial 

of Factors j1, j2, …., jL-1, jL ; case 2 applies to all the other model parameters. Theorem 3 

establishes for case 1 that the new estimate of the i-th regression coefficient is simply the old 
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estimate plus the estimate for the (m-th) regression coefficient 
2

14321 ..... LL jjjjjje
 .   Note, as discussed 

in Part 1 for the m-th row of 1
mmD , that multiplying the i-th row of any mm matrix by the 

1m column vector of the mean responses (of the m-parameter model) is simply multiplying the 

same row by the design matrix mmD   first and then by the 1m  column vector of the m model 

parameters. This simply implies for case 1 that the product of pre-multiplying the design matrix 

mmD  by the sum of (a) the i-th row of the 1
)1()1(



 mmD  augmented with 0 as the m-th element of 

the augmented row and (b) the m-th (and last row) of INV
mmD  is the i-th row of mmI  .  Note that (a) 

is exactly what Step 3.1 of the IM-SOEP Algorithm produces and (b) is exactly what Step 3.2 of 

the same Algorithm produces. We now turn our attention to case 2, which is simpler. Theorem 3 

establishes for case 2 that the new estimate of the i-th regression coefficient is simply the old 

estimate itself.  Similarly to case 1 (and actually more simply), the product of pre-multiplying the 

design matrix mmD  by the i-th row of the matrix 1
)1()1(



 mmD augmented with 0 as the m-th 

element of the augmented row is the i-th row of mmI  .  We have now established that Step 3 of 

the IM-SOEP Algorithm produces the first m-1 rows of 1
mmD .  In fact, the Steps 2 and 3 together 

produce the inverse matrix 1
mmD .  The proof for this theorem is complete. 

 
 
 
 
5. Concluding Remarks 
 

Minimization of the number of treatment combinations and unbiased estimation for significant 

model parameters, i.e., without confounding, are critically important performance goals for 2k 

factorial design.  Rather than passively choosing from available designs that perform differently 
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in these and other criteria as a multi-criteria decision-making, Tsao and Liu (2008) and Tsao and 

Patel (2013) proposed ways to actively achieve both goals simultaneously. Given a set of 

important model parameters (i.e., factor effects and interactions), their methods achieve the 

minimum number of treatment combinations for unbiased estimation of these parameters.  In the 

conventional language of design of experiment, these parameters are estimated without 

confounding among themselves. Tsao and Patel (2013) defined this concept as “active 

confounding avoidance.” Achieving these goals during the stage of identification of significant 

model parameters, i.e., model building, is more difficult but more important than when these 

parameters have been identified.  Experimentation conducted during this stage is inevitably 

sequential of some sort. If the sequencing is not done appropriately, experimentation already 

done earlier in the stage may turn out to be irrelevant or redundant in the end.  In such a case, 

minimization of treatment combinations is not achieved. Tsao and Patel (2013) defined the 

concept of “forward compatibility” where no treatment combinations already experimented turn 

out to be unnecessary at the end of the model building process.  The methods of Tsao and Liu 

(2008) and Tsao and Patel (2013) dealt with the most fundamental case where the model 

parameters of a 2k design are sequenced in non-increasing order of importance or significance.  

Their methods produce a corresponding sequence of treatment combinations that achieve 

minimum treatment combinations, active confounding avoidance and forward compatibility 

simultaneously.   

 

While the method proposed in Tsao and Liu (2008) is a numerical algorithm, the method of Tsao 

and Patel (2013) is a design pattern that can be used to generate the treatment-combination 

sequence intuitively and with ease. (Although that generation process requires  no  computation 
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at all, actual estimation of the model parameters requires matrix inversion.)  Although the former 

method requires numerical computation, it requires no use condition at all.  In other words, given 

any parameter sequence, the former method can produce a treatment-combination sequence that 

achieves the three goals. On the other hand, although the latter method requires no computation 

at all for the sequencing, it works only for a parameter sequence with a special structure.  The 

required structure is that the sequence be partitioned into blocks of parameters, with the block of 

grand and main factor effects followed by the block of two-factor interactions, followed by the 

block of three-factor interactions, and so on until the single-parameter block of the k-factor 

interaction.  (The sequence of the parameters within each block can be arbitrary.)  This paper 

relaxes this structure requirement on the parameter sequence and requires only that, for any 

parameter of the sequence, all lower-order parameters associated with the factors involved in this 

parameter have already appeared in the sequence.  For example, the interaction between factors 

A and B must be preceded in the sequence by the grand effect, the main effect of factor A and 

the main effect of factor B.  This condition is stronger than the Effect Heredity Principle, and we 

refer to it as the Full Heredity Assumption. We believe that this is a very reasonable assumption 

in practice.  Moreover, the method of recursive parameter estimation, as stated in the SOEP 

Algorithm, and the method of recursive design matrix inversion, as stated in the IM-SOEP 

Algorithm, not only eliminate the need for matrix inversion throughout the model building 

process but also provide insights into the process. Therefore, we believe that the intuitive and 

simple design pattern proposed in this paper achieves not only least treatment combinations, 

active confounding avoidance and forward compatibility but also high applicability and low 

complexity. 
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This paper continues the general approach first proposed in Tsao and Patel (2013) and proposes a 

significantly improved method along the same approach.  Details about this general approach 

and comparisons between this general approach and other major approaches and methods can be 

found in Tsao and Patel (2013).  Some such details, e.g., what statistical tests are needed to 

determine when no more experimentation is needed for model building, can also be found in 

Tsao and Liu (2008). 

 

Worthy subjects of future work include extension of these methods or the underlying approach to 

more complex real-world restrictions or requirements.  Such restrictions or requirements include 

the situations where nuisance factors exist and blocking is necessary or where unknown factors 

may exist and randomization is necessary. Some preliminary work on the blocking necessity has 

been reported (Tsao and Patel, 2012).   
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Table 1: Full Design Matrix Facilitating Parameter Estimation 
T.C.        P  G A B AB C AC BC ABC D AD BD CD ABD ACD BCD ABCD M.R. 

. 1 -1 -1 1 -1 1 1 -1 -1 1 1 1 -1 -1 -1 1 1  

a 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 2  

b 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 3  

ab 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 4  

c 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 5  

ac 1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 6  

bc 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 7  

abc 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 8  

d 1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 1 1 1 -1 9  

ad 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 10  

bd 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 11  

cd 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 13  

abd 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 12  

acd 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 14  

bcd 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 15  

abcd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16  

Divisor 16
 8 8 

8
 8 

8
 

8
 

8
 8 

8
 

8
 

8
 

8
 

8
 

8
 

8
 

 

 
  



58 
 

 
 
 

Table 2: Correspondence Between the Example Parameter Sequence and Its Treatment-
Combination Sequence According to the General Intuitive Design Pattern 

Parameter 
Sequence 

Corresponding Treatment 
Combination Sequence – 
Factors at High Levels 

Treatment 
Combination 
Sequence –  

Level Vector 

Treatment 
Combination 
Sequence - 
Standard 

Numbering 

Corresponding 
Mean Response 
with respect to 
Equation (2) 

G . ---- TC1 .  

A a +--- TC2 a  
B b -+-- TC3 b  

AB ab ++-- TC4 ab  
C c --+- TC5 c  

AC ac +-+- TC6 ac  
BC bc -++- TC7 bc  

ABC abc +++- TC8 abc  
D d ---+ TC9 d  

AD ad +--+ TC10 ad  
BD bd -+-+ TC11 bd  
CD cd --++ TC13 cd  

ABD abd ++-+ TC12 abd  
ACD acd +-++ TC14 acd  
BCD bcd -+++ TC15 bcd  

ABCD abcd ++++ TC16 abcd  
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Table 3: Set-up for Use of Elementary Row Operations to Calculate Inverse of the 10×10 Design Matrix 

G A B AB C AC BC ABC D AD RHS G A B AB C AC BC ABC D AD

G 1 0 0 0 0 0 0 0 0 -1 95 -0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.5 0

A 0 1 0 0 0 0 0 0 0 -1 40 -0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 0 0

B 0 0 1 0 0 0 0 0 0 0 40 -0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 0.125 0 0

AB 0 0 0 1 0 0 0 0 0 0 35 0.125 -0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 0 0

C 0 0 0 0 1 0 0 0 0 0 30 -0.125 -0.125 -0.125 -0.125 0.125 0.125 0.125 0.125 0 0

AC 0 0 0 0 0 1 0 0 0 0 25 0.125 -0.125 0.125 -0.125 -0.125 0.125 -0.125 0.125 0 0

BC 0 0 0 0 0 0 1 0 0 0 20 0.125 0.125 -0.125 -0.125 -0.125 -0.125 0.125 0.125 0 0

ABC 0 0 0 0 0 0 0 1 0 0 15 -0.125 0.125 0.125 -0.125 0.125 -0.125 -0.125 0.125 0 0

D 0 0 0 0 0 0 0 0 1 -1 5 -0.5 0 0 0 0 0 0 0 0.5 0

AD 1 1 -1 -1 -1 -1 1 1 1 1 65 0 0 0 0 0 0 0 0 0 1

 

Table 4: Inverse of the 10×10 Design Matrix 

G A B AB C AC BC ABC D AD RHS G A B AB C AC BC ABC D AD

G 1 0 0 0 0 0 0 0 0 0 100 -0.125 -0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.25 0.25

A 0 1 0 0 0 0 0 0 0 0 45 0.125 -0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 -0.25 0.25

B 0 0 1 0 0 0 0 0 0 0 40 -0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 0.125 0 0

AB 0 0 0 1 0 0 0 0 0 0 35 0.125 -0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 0 0

C 0 0 0 0 1 0 0 0 0 0 30 -0.125 -0.125 -0.125 -0.125 0.125 0.125 0.125 0.125 0 0

AC 0 0 0 0 0 1 0 0 0 0 25 0.125 -0.125 0.125 -0.125 -0.125 0.125 -0.125 0.125 0 0

BC 0 0 0 0 0 0 1 0 0 0 20 0.125 0.125 -0.125 -0.125 -0.125 -0.125 0.125 0.125 0 0

ABC 0 0 0 0 0 0 0 1 0 0 15 -0.125 0.125 0.125 -0.125 0.125 -0.125 -0.125 0.125 0 0

D 0 0 0 0 0 0 0 0 1 0 10 -0.25 -0.25 0 0 0 0 0 0 0.25 0.25

AD 0 0 0 0 0 0 0 0 0 1 5 0.25 -0.25 0 0 0 0 0 0 -0.25 0.25
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