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Abstract 

 

Hunting for Undetectable Metamorphic Viruses 

 
by Da Lin 

 
Commercial anti-virus scanners are generally signature based, that is, they scan for known 

patterns to determine whether a file is infected by a virus or not. To evade signature-based 

detection, virus writers have adopted code obfuscation techniques to create highly metamorphic 

computer viruses. Since metamorphic viruses change their appearance from generation to 

generation, signature-based scanners cannot detect all instances of such viruses. 

 

To combat metamorphic viruses, detection tools based on statistical analysis have been studied. 

A tool based on hidden Markov models (HMMs) was previously developed and the results are 

encouraging—it has been shown that metamorphic viruses created by a well-designed 

metamorphic engine can be detected using an HMM.  

 

In this project, we explore whether there are any exploitable weaknesses in this HMM-based 

detection approach. We create a highly metamorphic virus generating tool designed specifically 

to evade HMM-based detection. We then test our engine, showing that we can generate viral 

copies that cannot be detected using previously-developed HMM-based detection techniques. 

Finally, we consider possible defenses against our approach.  
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1. Introduction 
 

A virus is a program designed to infect and potentially damage files on a computer [8]. To 

replicate itself, a virus must be permitted to execute code and write to memory. For this reason, 

many viruses attach themselves to executable files that are part of legitimate programs [16]. 

When an infected program is launched, the embedded virus is also executed and may replicate 

itself  to infect other files and programs. 

 

In general, a virus performs activities without permission of users. Some viruses may perform 

damaging activities on the host machine, such as corrupting hard disk data or crashing the 

computer. Other viruses are harmless and might, for example, print annoying messages on the 

screen, or do nothing at all. In any case, viruses are undesirable for computer users, regardless of 

their nature [12]. Modern viruses also take advantage of the always-connected Internet to spread 

on a global level. Therefore, early detection of viruses is necessary to minimize potential 

damage. 

 

There are many antivirus defense mechanisms available today. The most widely used mechanism 

is signature detection, which detects viruses by searching the files on a computer system and 

looking for known binary stringsor other signaturesof viral files [1]. Another mechanism for 

virus detection is code emulation, which creates a virtual machine to execute suspicious 

programs and monitor unusual activities.  

 

To evade signature detection, virus writers have adopted code obfuscation techniques to create 

highly metamorphic computer viruses. Since metamorphic viruses use various code obfuscation 

techniques to change their appearance from generation to generation, signature-based scanners 

might not be able to detect all generations of such viruses. 

 

In order to combat metamorphic viruses, virus detection tools based on statistical analysis have 

been studied. A tool based on the Hidden Markov Model (HMM) was developed in [2], and the 
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results are encouraging. In [2], it was shown that metamorphic viruses created by a well-

designed metamorphic engine could be detected using statistical analysis tools based on HMMs.  

 

The goal of this project is to develop a standalone metamorphic engine to show that it is possible 

to defeat HMM-based detection tools developed in [2]. We employ code obfuscation techniques, 

including equivalent instruction substitution, dead code insertion, and rearrangement of 

instruction order. In addition, we have designed our metamorphic engine to generate highly 

discrete copies of the base virus. Furthermore, each discrete viral copy will randomly select a 

“normal” file and make itself similar to that normal file. These morphed copies have been tested 

against an HMM of the base virus family, normal files, and our own morphed copies. We also 

tested our morphed copies against commercial virus scanners. 

 

This paper is organized as follows. In Section 2, we provide background information on 

computer viruses and discuss some possible defenses. Section 3 describes a similarity test that is 

useful for quantifying the degree of metamorphism, as well as describes HMMs and their use in 

detecting metamorphic viruses. Section 4 details the design and implementation of our 

metamorphic generator. Section 5 outlines the experimental results for our metamorphic virus 

engine. In Section 6, we consider a detection technique for identifying viruses generated by our 

engine. Section 7 presents our conclusions. Finally, we discuss possible extensions to the project 

and future work in Section 8.  

 

2. Computer Virus Evolution and Detection 
 

A computer virus is a small piece of software that piggybacks on real programs [24]. For 

example, a virus can insert itself into a spreadsheet program. When a user opens the spreadsheet 

and executes the program, the virus also runs, and it has the chance to reproduce (by attaching to 

other programs) and wreak havoc [24].  



- 10 - 

 

 

Figure 1. A virus can spell doom for your computer [24] 

Viruses usually have an “infect” phase and an “attack” phase. When an embedded virus runs 

during the infect phase, it will try to infect other executables by copying itself into them. Viruses 

that do not have attack phases are considered harmless. These viruses just replicate themselves 

and generally do not impact the normal system operation. However, most viruses also have a 

destructive attack phase in which they do considerable damage. These viruses usually activate 

their attack phase based on some sort of event. During the attack phase, viruses will reveal 

themselves in tangible ways—by doing anything from displaying silly messages to destroying all 

of the computer’s data. The trigger event might be a date, the number of times the virus has been 

replicated, or something similar [24].  

 

2.1 Antivirus Defense Techniques 
 

Techniques for generating viruses have advanced over time, as have the anti-virus techniques for 

detecting such advanced viruses. In this section, we will outline some of the popular antivirus 

techniques.  

2.1.1 Signature Detection 
 

Signature detection is the earliest anti-virus technique and is still the most widely used technique 

today [4]. In general, a signature of a virus is a string of bits found in a virus, but not in other 

executables [17]. When a new virus is analyzed, its signature will be put into the virus scanner 

database. During the scanning process, a signature-based virus detection tool will search all of 

the files in a system for known signatures. It will flag the file as infected if a known virus 

signature is found. For example, when an executable file is infected by the W32/Beast virus, it 
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will contain a binary signature of “83EB 0274 EB0E 740A 81EB 0301 0000” [13]. The virus 

scanner searches executables for this signature. If this signature is present in any executable file, 

it is declared to be the Beast virus. 

2.1.2 Heuristic Analysis 
 

Heuristic analysis [23] is a method designed to detect previously unknown computer viruses, as 

well as new variants of viruses already in the wild. Heuristic analysis detects viruses by 

executing questionable programs or scripts in a virtual machine and monitoring them for 

common viral activities, such as replication, overwriting files, and attempts to hide. If such 

actions are detected, the suspicious programs will be flagged as viruses and will raise alerts. 

 

Another method of heuristic analysis is to decompile the viral program, then analyze the code. 

This type of heuristic analysis then looks for instructions that are commonly found in viral 

programs. If the source code contains a certain percentage of instructions that match common 

viral instructions, the file is flagged and users are alerted. 

 

The effectiveness of heuristic analysis is fairly low due to the number of false positives. The 

reason for this is that heuristic analysis mostly operates on the basis of past experience [23]; it 

might miss new viruses that contain codes not found in any previously known viruses. However, 

heuristic analysis is also evolving in terms of its ability to reveal new viruses, so it still provides 

some measure of detection. 

 

2.2 Virus Evolution 

2.2.1 Virus Obfuscation Techniques 
 

Virus-like programs first appeared on microcomputers in the 1980s [19]. Since then, the battle 

between anti-virus (AV) researchers and virus writers continues. Virus writers constantly 

develop new obfuscation techniques to make virus code more difficult to detect [19]. To escape 

from generic scanning, a virus can modify its code and alter its appearance on each infection. 

The techniques that have been employed to achieve this end range from encryption, to 

polymorphic techniques, to modern metamorphic techniques [20]. 

 

http://en.wikipedia.org/wiki/Zero_day_virus
http://en.wikipedia.org/wiki/Computer_viruses
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2.2.2 Encrypted Viruses 
 

The simplest method to hide the virus body is to encrypt it with different encryption keys. A 

virus generated by this method usually consists of a small decrypting engine (a decryptor) and 

the encrypted body. When executed, the virus will first decrypt itself and then create another 

copy by encrypting itself with a different encryption key. Since a different encryption key is used 

for each infection, the virus body will look different as well. Efficient crypto methods, such as 

XOR, the key with the virus body, are typically used for this type of virus [2]. Although the virus 

body looks different from generation to generation, the decryptor that is embedded in the virus 

remains constant for all generations. As a result, it is possible to detect the virus indirectly by 

recognizing the code pattern of the decryptor.  

2.2.3 Polymorphic Viruses 
 

Polymorphism is a more sophisticated technique that virus writers implement to overcome the 

weakness of encrypted viruses. Polymorphic viruses hide the decryptor code by mutating it. This 

makes the decryptor code appear to be different from generation to generation. In addition, 

polymorphic viruses have the capability of generating a large number of unique decryptors that 

use different encryption methods to encrypt virus bodies [2]. Therefore, polymorphic viruses 

lack unique patterns on each infection. 

 

Although a polymorphic virus lacks a unique pattern on each infection, it is still possible to 

detect the actual virus code through the code emulation technique. To detect polymorphic 

viruses, anti-virus software incorporates a code emulator that allows the viruses to run within the 

emulation environment and dynamically detects the decrypted virus bodies. 

 

2.2.4 Metamorphic Viruses 
 

Instead of trying to hide the decryptor, as in polymorphic viruses, virus writers  have developed 

advanced metamorphic techniques to change the actual virus code for each infection [15, 18]. 

According to Muttik [14], ―Metamorphics are bodypolymorphics.‖ Since the virus body already 

has different appearances, encryption is no longer needed for hiding the virus. Different 

generations of a metamorphic virus can have different ―shapes‖ while maintaining the virus’ 
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original behavior. Figure 2 shows the diagrammatical illustration by Szor in [20]. In this section, 

we will discuss some of the metamorphic techniques employed by metamorphic virus writers. In 

general, metamorphic virus generators incorporate more than one of these techniques in order to 

produce highly morphed metamorphic viruses. 

 

 
Figure 2. Multiple shapes of a metamorphic virus body [20] 

2.2.4.1 Register Swap 

 

Register swap is the simplest metamorphic technique. It mutates the virus body by swapping the 

operand registers with different registers. For example, instruction ―pop edx‖ might be replaced 

with ―pop eax.‖ The W95/Regswap virus [7] is among the early metamorphic viruses that use 

register swap technique. With this technique, the opcode sequence remains unchanged, as shown 

in Figure 3. Such viruses can usually be detected by a wildcard string [19]. 
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Figure 3. Two different generations of RegSwap [9] 

2.2.4.2 Subroutine Permutation 

 

Subroutine permutation technique changes the appearances of a virus by reordering the virus’ 

subroutines. If a virus has n different subroutines, then it can generate n! different generations 

without repeating. The W32/Ghost virus [19] is one of the viruses that incorporates the 

subroutine permutation technique. This particular virus has 10 subroutines. Therefore, it can 

generate 10! (or 3,628,800) unique copies. However, the virus may still be detected with search 

strings [19], as the content of each subroutine remains constant.  
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Figure 4. Subroutine permutation 

 

2.2.4.3 Garbage Instruction Insertion 

 

Many complex metamorphic viruses [2] incorporate the garbage instruction insertion technique 

due to its effectiveness. Garbage instructions are instructions that are either not executed (dead 

code) or have no effect (do nothing) on program outcomes [13]. By inserting garbage 

instructions between core instructions randomly, a virus can potentially generate infinite unique 

copies.  

 

Examples of ―do nothing‖ instructions are ―nop,‖ ―add R 0‖, or ―sub R 0‖. [6]. A complete list of 

―do nothing‖ instructions can be found in Appendix C. Dead code instructions are usually 

generated by inserting ―jump‖ instructions to point to the next actual instructions. Any 

instructions between the ―jump‖ instructions and the next actual instructions will never be 

executed. The Win95/Zperm virus is one of the viruses that incorporates this technique. As 

illustrated in Figure 5 [19], the Win95/Zperm family of viruses creates new mutations by 

reordering core instructions and inserting jump and garbage instructions. 
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Figure 5. Zperm virus [19]. 

 

2.2.4.4 Instruction Substitution 

 

Instruction substitution is another common technique for generating metamorphic viruses. 

Instruction substitution is the replacement of an instruction or a group of instructions with an 

equivalent instruction or group [15]. For example, ―inc eax‖ is equivalent to ―add eax, 1,‖ and 

―move eax, edx‖ can be replaced by ―push edx‖ followed by ―pop eax.‖ The W32/MetaPhor 

virus is one of the metamorphic virus generators that incorporates the instruction substitution 

technique. Some examples of instruction substitution used by the W32/MetaPhor virus [19] are 

presented in Table 1. 

 

Table 1. Examples of instruction substitution used by W32/MetaPhor virus [19] 

2.2.4.5 Transposition  

 

Transposition is the reordering of the instruction execution sequence. This can only be done if 

the affected instructions have no dependency between them. For example, if the second 

instruction does not depend on the result of the first instruction, then the execution order of these 

two instructions can be swapped. Consider the following example from [24]: 

op1 [r1] [, r2] 

op2 [r3] [, r4] ; here r1 and/or r3 are to be modified 

 

We can swap the above two instructions only if: 
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1. r1 not equal to r4; and 

2. r2 not equal to r3; and 

3. r1 not equal to r3. 

 

 

2.2.5 Formal Grammar Mutation 
 

Formal grammar mutation is the formalization of existing code mutation techniques widely used 

in viruses (polymorphism and metamorphism) by means of formal grammars and automatons 

[10]. In general, classic metamorphic generators can be presented as bulky, non-deterministic 

automata, because all possible input characters are specified for each state of automata [10]. By 

formalizing existing code mutation techniques into formal grammar, one can then apply formal 

grammar rules to create new viral copies with great variations.  

 

A simple polymorphic decryptor code, as shown in Figure 6, can generate a new viral copy 

(Figure 7) that looks very different than the original copy.  

 

 
Figure 6. Simple polymorphic decryptor 

 
Figure 7. Generated polymorphic decryptor 
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3. Similarity and the HMM  
 

This section outlines the similarity test and the HMM developed in [2] for detecting 

metamorphic viruses.  

3.1 Similarity Test 
 

Metamorphism is, arguably, the best approach to escape detection. Different generations of a 

virus must look different in order to avoid detection by signature-based scanning. Some of the 

virus creation toolkits come with the ability to generate morphed versions of the same virus, even 

from identical configurations. The similarity test previously studied [2] has shown that it is 

suitable to measure the effectiveness of a metamorphic virus generator. In this section, we 

outline the steps of the similarity test and the meaning of its result. 

 

3.1.1 Similarity Test Method 
 

The similarity test employed the method developed by Mishra in [11]. It compares two assembly 

programs and assigns a quantitative score to represent the percentage of similarity between the 

two programs. Mishra’s method is outlined below and is illustrated graphically in Figure 8. 

 

1) Given two assembly programs, X and Y, first extract the sequence of opcodes for each of 

the programs, excluding comments, blank lines, labels, and other directives. The result is 

two opcode sequences of length n and m, where n and m are the numbers of opcodes in 

programs X and Y, respectively. Each opcode is assigned an opcode number: the first 

opcode is 1, the second is 2, and so on. 

 

2) Compare the two opcode sequences by considering all subsequences of three consecutive 

opcodes from each sequence. Then count as a match any case where all three opcodes are 

the same in any order. A mark will be placed on a graph coordinate (x, y) of the match,  

where x is the opcode number of the first opcode of the three-opcode subsequence in 

program X, and y is the opcode number of the opcode subsequence in program Y. 
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3) After comparing the entire opcode sequences and marking all the match coordinates, a 

graph plotted on a grid of dimension n × m is obtained. Opcode numbers of program X 

are represented on the x-axis and those of program Y are represented on the y-axis. To 

remove noise and random matches, only those line segments of length greater than some 

threshold values (e.g., five) will be retained. 

 

4) Since the test is basically a sequential match between the two opcode sequences, identical 

segments of opcodes will form line segments parallel to the main diagonal (if n = m, the 

main diagonal is simply the 45 degree line). If a line segment falls right on the diagonal, 

the matching opcodes are at identical locations on the two opcode sequences. A line off 

the diagonal indicates that the matching opcodes appear at different locations in the two 

files. 

 

5) For each axis, the sum of the number of opcodes that are covered by one or more of the 

matching line segments is calculated. This number is divided by the respective total 

number of opcodes (n for program X and m for program Y) to give the percentage of 

opcodes that match some opcodes in the other program. The similarity score for the two 

programs is the average of these two percentages. 

 
Figure 8. Process of finding the similarity between two assembly programs [2] 

3.1.2 Similarity Test Results 
 

Upon the completion of the similarity test, a graph will be generated to visualize the similarity 

results of the assembly files. Usually, a graph generated by plotting all of the matches for file X 

and Y (see Figure 9-a) is very populated. This makes it difficult to understand the similarity 

result. A cleaner graph can be generated by dropping all of the matches that are less than a 
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specified threshold. Figure 9-b shows a graph that is generated with threshold of 5. The latter 

provides a clearer visualization of the similarity result. Previous studies in [2] have shown that 

the best metamorphic engine (NGVCK) achieves a similarity score of about 10%, the lowest 

similarity score recorded, whereas normal files usually have a similarity score of about 30%.  

 
Figure 9. Similarity graph [2] 

 

3.2 HMM 
 

The Hidden Markov Model (HMM) is a statistical pattern analysis algorithm. The notations used 

in the HMM are as follows: 

 

T = Length of the observed sequence 

N = Number of states in the model 

M = number of distinct observation symbols 

O = Observation sequence {O0, O1, …, OT-1} 

A = State transition probability matrix 

B = Observation probability distribution matrix 

π = Initial state distribution matrix 

A generic Hidden Markov Model is illustrated in Figure 10. The state and observation at time t 

are represented by Xt and Ot respectively. The Markov process—which is hidden behind the 

dashed line—is determined by the initial state X0 and the A matrix. Only the Oi is observable, 

which is related to the actual states of the Markov process by the matrices B and A. 
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Figure 10. Generic Hidden Markov Model [14] 

HMMs are widely used for protein modeling and speech recognition applications [3]. In general, 

an HMM first creates a training model that represents the input data (training data). The training 

model contains a list of unique symbols observed in the input data and their positions in the input 

sequence. This model will be used by the HMM to determine if a given new input sequence has a 

pattern similar to that of the model.  

 

Recently, HM Ms have been successfully used to detect metamorphic viruses [2, 9]. Although 

metamorphic engines use varies code obfuscation techniques to change the appearance of viral 

copies, some similar patterns exist within the same family of viruses. An HMM collects the input 

data from all known viruses and builds the training models (one for each family virus) based on 

these input data. Subsequently, any file can be tested against these models to determine if it 

belongs to one of them. If an input file belongs to a model, then it is a member of the virus 

family that the model represents. 

3.2.1 HMM Example 
 

A simple example in [14] illustrates the inner working of an HMM. Suppose that one has no  

prior knowledge of the average annual temperature for any given year and wants to determine 

this information based on the observation of tree sizes (S-small, M-medium, L-large). To keep 

the example simple, let us assume that the annual temperature can be either hot (H) or cold (C). 

In addition, we know the probability of the annual temperature trend: a hot year followed by 

another hot year (HH) is 0.7; a hot year followed by a cold year (HC) is 0.3; a cold year followed 

by a hot year is 0.4; and a cold year followed by another cold year is 0.6. Figure 11 shows the 

matrix representation of these probabilities.  
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Figure 11. Temperature transition probability 

 

Furthermore, we know that the correlation between tree sizes and temperature is as follows:  

—In a hot year, the probability of a tree being small is 0.1, being medium 0.4, and being 

large 0.5. 

—In a cold year, the probability of a tree being small is 0.7, being medium 0.2, and being 

large 0.1. 

Figure 12 shows the correlation probability between temperatures and tree sizes in a matrix 

representation.  

 

Figure 12. Tree size probability 

 

 

In this example, the annual temperatures are the states, and the tree sizes are the observable 

symbols. The probability of different tree sizes at each temperature represents the probability of 

the observation symbols in each state. The states (H and C) are hidden, since the temperature 

cannot be seen directly. We can only see the observation symbols (S, M, and L), which are 

statistically related to the states. With the knowledge of correlation probabilities for annual 

temperature and tree sizes, we can build an HMM model as shown in Figure 13. 
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Figure 13. HMM model [14] 

 

Suppose we have observed that the tree sizes (observation symbols) sequence for four 

consecutive years is (S, M, S, L). We want to use this observed sequence to find the annual 

temperature sequence (states).   

 

To solve this problem with an HMM algorithm, we must first construct our HMM parameters as 

follows: 

 —State transition probability matrix 

   

 —The observation probability distribution matrix 

   
 

 —Number of states in the model N = 2 (hot and cold) 

 

 —Number of distinct observation symbols M = 3 (small, medium, and large) 

 

 —Given initial state distribution matrix 

   
 

The HMM steps used to determine the state transition for a given observation (S, M, S, L) of 

length T = 4 will be as follows:  
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1. Determine all possible state transitions = N
T
. 

2. Calculate the probability of a given observation sequence for each state transition of step 

1 (shown in Table 2). For example, calculate the probability of sequence HHCC as 

follows: 

 

P(HHCC)  = πH * bH(S) * aH,H * bH(M) * aH,C * bC(S) * aC,C * bC(L) 

= (0.6) * (0.1) * (0.7) * (0.4) * (0.3) * (0.7) * (0.6) * (0.1) 

= 0.000212 

 

3. The annual temperature sequence is the one with the highest probability. In this case, the 

answer would be “CCCH,” since it has the highest probability. 

 

 

 

 
Table 2. Probabilities of observing (S, M, S, L) for all possible state sequences [14] 

The above brute-force method of computing HMM results requires an exponential amount of 

work. This is generally infeasible. The beauty an HMM is that it includes efficient algorithms to 

solve the three problems in which we are interested. These are [14]: 

 

1. Given the model λ = (A, B, π) and an observation sequence O, find P(O | λ), which is the 

likelihood of observing the sequence O given the model. 

 

2. Given the model λ = (A, B, π), find an optimal state sequence for the underlying Markov 

process. That is, uncover the hidden part of the HMM. 
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3. Given an observation sequence O, the number of symbols M, and the number of states N, 

find the model λ = (A, B, π) that maximizes the probability of O. In other words, the 

model is trained to best fit the observed data. 

 

The fact that there are efficient algorithms for solving the three HMM problems provides a 

fundamental building block for constructing the HMM-based virus detector. More precisely, the 

HMM-based virus detector developed in [2] was implemented the following algorithms to solve 

the three HMM problems: 

1. The Forward algorithm: 

 

The equation to find the likelihood of an observed sequence is given as 

 

 
 

The naïve approach to solve the above equation would be to generate all possible state 

sequences Xi of length T and sum over the probabilities P(O, Xi | λ): 

 

 However, this direct computation requires 2TN
T
 computations. 

The forward algorithm (sometimes called the α-pass), which requires only N
2
T 

computations, is a much more efficient algorithm for solving the above equation. Instead 

of computing all possible states directly, the forward algorithm inductively computes the 

states as follows: 

For t = 0, 1, …, T –1 and i = 0, 1, …, N – 1, define a forward variable 

 

which denotes the probability of observing the partial sequence (O0, O1, …, Ot) up to 

time t and being in state qi at time t. The forward variables can then be computed 

recursively using the following steps: 

Step 1. Initialization  
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Step 2. Compute forward variables inductively  

 

The probability of P(O | λ) can then be calculated as 

 
 

 

2. The Viterbi algorithm: 

 

The Viterbi algorithm finds an optimal state sequence by finding a highest scoring overall 

path X* that maximizes the probability P(O, X | λ) as follows: 

 

For t = 0, 1, …, T – 1 and i = 0, 1, …, N – 1, let δt(i) denote the probability of the most 

probable state path (x0, x1, …, xt) that generates the partial sequence (O0, O1, …, Ot) up to 

time t and ending in state qi, 

 

 
To find δt(i) recursively: 

 

 

 
 

Then the most likely state sequence P* is computed as: 

 
 

3. The Baum-Welch algorithm: 

This algorithm provides an efficient method for adjusting the model parameters to best fit 

the observations. The sizes of the matrices (N and M) are fixed, but the elements of A, B, 

and π are free, subject only to the row stochastic condition. The process to re-estimate the 

model, which is one of the most amazing aspects of HMMs, is as follows: 

a. Initialize λ = (A, B, π) with a best guess. If a best guess is not available, random 

values such that π i ≈ 1/N, aij ≈ 1/N and bj(k) ≈ 1/M can be used.  
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b. Compute αt(i), βt(i), γt(i, j) and γt(i) using the following equations: 

 

The di-gammas can be written in terms of α, β, A, and B as 

 

The γt(i) and γt(i, j) are related by: 

 

c. Re-estimate the model λ = (A, B, π) as follows: 

 

 

 

d. If P(O | λ) increases, go to step b. 

 

 

3.2.2 HMM as a Virus Detection Tool 
 

HMM as virus detection tool requires training data to produce a model. The goal is to train one 

or more HMMs to represent the statistical properties of the virus family. These trained models 

can then be used to determine whether a given program is similar to the 
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viruses in the training set. Each model is trained by collecting training data from files generated 

by the same generator. This also means that the resulting model is specific to the generator from 

which the training data originate.  

 

To produce a training model, a set of virus files generated by the same generator must first be 

converted to assembly files using IDA Pro [22]. Unique assembly opcodes found in these files 

will constitute the HMM symbols. A long observation sequence is formed by concatenating all 

of the virus files within the same family. Given unique symbols and a unique observation 

sequence, an HMM training model can then be constructed using the solution of the third HMM 

problem discussed above. For example, given training data as shown in Figure 14, an HMM 

model can then be constructed as shown in Figure 15. 

 

 
Figure 14. Training data example [5] 
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Figure 15. HMM model example [5] 

After the HMM model is produced for a virus family, it can then be used to test any file to 

determine if it belongs to the same family. If a file has a score greater than a certain threshold, 

then it belongs to the same family. Otherwise, it is not in this family. An example of HMM 

output is shown in Figure 16. With this particular example, IDAN0 to IDAN4 are in the same 

virus family as the HMM model. IDAR0 to IDAR4 are not in the same virus family.  
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Figure 16. HMM result example [5] 
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4. Implementation 
 

4.1 Introduction 
 

In order to produce viral copies that are hard to detect, a metamorphic engine needs to implement 

many code obfuscation techniques. Each implementation may have its own process to decide 

when and how to apply the techniques.  

 

Even though a metamorphic engine implements all of the code obfuscation techniques, the HMM 

detector developed in [2] is still able to recognize the generated viruses and classify them into the 

same virus family. An unsuccessful attempt to escape from the HMM-based detector created in 

[5] has also shown that the HMM is very effective in detecting highly morphed viruses. In this 

project, we will develop another metamorphic engine to try to evade the HMM virus detector.  

 

4.2 Goal 
 

Our implementation was geared toward achieving the following goals: 

 

Generate morphed copies of a single input virus. These morphed copies should have a 

similarity of approximately 30% (match scores of normal files) with the base virus and among 

themselves. 

The morphed copies should have the same functionality as the base virus. 

morphed copies should be “close” to the normal programs. The assumption here is that the 

normal programs are the cygwin utility files of the same size as the base virus. The reason for 

using cygwin utility files is that they are probably engaged in the same low-level operations as 

viruses. A morphed virus is ―close‖ to a normal program if its statistics, such as its opcode 

counts and opcode sequences, are more like normal files than those of an un-morphed virus. The 

notion of ―close‖ will be discussed in greater detail in the next section.  

The metamorphic engine should work on any assembly program. 

Generated viral copies should be capable of escaping HMM detection.  
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4.3 Code Obfuscation Techniques Used 
 

Our metamorphic engine leverages the code obfuscation techniques implemented in previous 

work [5]. However, viruses generated by the engine developed in [5] are still detectable by the 

HMM detector. We have analyzed the previous engine’s failure. We suspect that the reason for 

the failure is due to the fact that the engine applies code obfuscation techniques randomly. This 

randomness does not make the virus more like a normal program. Therefore, in our engine, we 

will apply the result of a code obfuscation operation only if it makes the virus more like a normal 

program. A scoring algorithm, namely the Dynamic Scoring Algorithm, has been developed for 

comparing the resulting virus code against the normal program code after each morph operation.   

 

4.3.1 Dynamic Scoring Algorithm 
 

To make a virus similar to a normal file, we developed an algorithm to calculate the score of 

similarity between the two files. The lower the score, the better the match. Since this algorithm 

will need to run each time we try to change an instruction, it must be as efficient as possible.  

The Dynamic Scoring Algorithm developed in this project need not compute the entire file each 

time. Instead, it only needs to compute the modified opcodes each time.  

4.3.1.1 Algorithm Initialization 

 

To initialize the dynamic scoring algorithm, two files will be passed into it as parameters. The 

first one is a virus, and the second one is a normal file.  

 

Algorithm initialization will generate four master lists: individual opcode counts of the virus file; 

opcode-pair counts of the virus file; individual opcode counts of the normal file; and opcode-pair 

counts of the normal file. For example, given two short files with five opcodes, as shown in 

Table 3, the initializing of the algorithm will generate four lists, as shown in Table 4. 

Virus opcode  Normal file opcode 
Mov Mov 

Add Mov 
Mov Sub 
Pop Pop 
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Retn Retn 

Table 3. Opcode sequences of virus file and normal files 

 
Virus opcode 

count list 
Normal file 

opcode count 

list 

difference Virus opcode-pair 

count list 
Normal file 

opcode-pair count 

list 

difference 

Mov (2) 
Add (1) 
Pop (1) 
Retn(1) 
Sub (0) 

Mov (2) 
Add (0) 
Pop(1) 
Retn(1) 
Sub (1) 

0 
1 
0 
0 
1 

Mov_add (1) 
Add_mov(1) 
Mov_pop(1) 
Pop_retn(1) 
Mov_mov(0) 
Mov_sub(0) 
Sub_pop(0) 

Mov_add (0) 
Add_mov(0) 
Mov_pop(0) 
Pop_retn(1) 
Mov_mov(1) 
Mov_sub(1) 
Sub_pop(1) 

1 
1 
1 
0 
1 
1 
1 

Table 4. Opcode and opcode-pair counts lists 

 

We also compute the initial score by summing the difference of each opcode and opcode-pair 

counts between the two files. In the above example, the initial score will be computed as 8. 

4.3.1.2 Scoring the Changes 

 

To check if a change will yield a better score, we only need to compute the score change by the 

opcode sequence change. It will take the old sequence and the new sequence as input and 

generate a score. A score less than 0 means the new sequence makes the two files closer to each 

other. A score greater than 0 means the new sequence makes the two files less similar to each 

other. A score of 0 means no change. This method only computes the score and does not make 

any changes to the master lists. For example, when we transpose “add, mov” to “mov, add,” we 

will pass the original subsequence and the new subsequence that includes one opcode before and 

one opcode after plus the change itself. In this example, the two subsequences pass to the scoring 

changes method will be “mov, add, mov, pop” (original subsequence) and “mov, mov, add, pop” 

(new subsequence).  

We then compute the changes in scores as follows: 

 

1. Compute and save the to-be-affected counts. 

2. Subtract the counts of the original subsequence from the master lists. 

3. Add the counts of the new subsequence to the master lists. 

4. Compute the affected counts against the normal file. 
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Table 5 shows the result of computing the original to-be-affected score (5 in this case). 

 
To-be-affected 

Virus opcode 

count list 

Normal file 

opcode count 

list 

Difference 

before 

changes 

To-be-affected 

Virus opcode-pair 

count list 

Normal file 

opcode-pair count 

list 

Difference 

before 

changes 
Mov (2) 
Add (1) 
Pop (1) 
 

Mov (2) 
Add (0) 
Pop(1) 

0 
1 
0 

Mov_add (1) 
Add_mov(1) 
Mov_pop(1) 
Mov_mov(0) 

Mov_add (0) 
Add_mov(0) 
Mov_pop(0) 
Mov_mov(1) 

1 
1 
1 
1 

Table 5. Saved original subsequence score 

 

Table 6 shows the subtraction and addition of the original subsequence and new subsequence. 

The final subsequence counts and the relative normal file counts are show in Table 5. The new 

score is also reflected as a difference in Table 7. Note that the “Add_pop” is a new counter. 

 
Subtract original 

subsequence 
Add new 

subsequence 
 Subtract original 

opcode-pair count list 
Add new subsequence 

opcode-pair count 
Mov (2-2=0) 
Add (1-1=0) 
Pop (1-1=0) 
 

Mov (0+2=2) 
Add (0+1=1) 
Pop(0+1=1) 

 Mov_add (1-1=0) 
Add_mov(1-1=0) 
Mov_pop(1-1=0) 
Mov_mov(0) 

Mov_add (0+1=1) 
Add_mov(0+0=0) 
Mov_pop(0+0=0) 
Mov_mov(0+1=1) 
Add_pop(1)  

Table 6. Subtract from old count and add new count 

 
New  Virus 

opcode count 

list 

Normal file 

opcode count 

list 

Difference 

after changes 
new Virus opcode 

sequence count 

list 

Normal file 

opcode sequence 

count list 

Difference 

after changes 

Mov (2) 
Add (1) 
Pop(1) 

Mov (2) 
Add (0) 
Pop(1) 

0 
1 
0 

Mov_add (1) 
Add_mov(0) 
Mov_pop(0) 
Mov_mov(1) 
Add_pop(1) 

Mov_add (0) 
Add_mov(0) 
Mov_pop(0) 
Mov_mov(1) 
Add_pop(0) 

1 
0 
0 
0 
1 

Table 7. New score after changes 

As shown in Table 7, the new score of the affected subsequence is 3, and the original score is 5 

(shown in Table 5). This tells us that if we do such transposition, we will make the virus file 

closer to the normal file by 2 points. 

4.3.1.3 Updating the Changes 

 



- 35 - 

 

This method is similar to the scoring-the-changes method except it will make permanent changes 

to the master lists.  

For the transpose change, as shown in the previous section, the master score will be decreased 

from 8 to 6 (since we improved the score by 2). The master lists of the virus file will be updated, 

as highlighted in Table 8.  

 

Virus opcode 

count list 
Normal file 

opcode count 

list 

difference Virus opcode-pair 

count list 
Normal file 

opcode-pair count 

list 

difference 

Mov (2) 
Add (1) 
Pop (1) 
Retn(1) 
Sub (0) 

Mov (2) 
Add (0) 
Pop(1) 
Retn(1) 
Sub (1) 

0 
1 
0 
0 
1 

Mov_add (1) 
Add_mov(0) 
Mov_pop(0) 
Pop_retn(1) 
Mov_mov(1) 
Mov_sub(0) 
Sub_pop(0) 
Add_pop(1) 

Mov_add (0) 
Add_mov(0) 
Mov_pop(0) 
Pop_retn(1) 
Mov_mov(1) 
Mov_sub(1) 
Sub_pop(1) 
Add_pop(0) 

1 
0 
0 
0 
0 
1 
1 
1 

Table 8. Updated opcode count lists 

 

4.3.2 Dead Code Insertion 
 

Instructions in our base virus are statistically different than normal programs. Previous work [5] 

has analyzed the statistics of virus instructions vs. normal program instructions. Their statistics 

are shown below in Figure 17 and Figure 18.   

 

 
Figure 17. Base virus opcodes and their frequencies [5] 
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Figure 18. Opcodes of normal files and their frequencies [5] 

  

In order to make our base virus more like a normal program, we will insert some dead code into 

the generated viruses. However, the set of dead codes that we built into our engine is finite. 

Applying these dead codes over and over will result in the HMM detector recognizing them.  

Therefore, we will also generate “dead codes” on the fly by copying blocks of instructions and 

subroutines from the normal program. Since the dynamically generated “dead codes” are “real 

codes” in the normal program, inserting them into our viruses will make our viruses look more 

like normal programs.  

4.3.2.1 Inserting Dead Code 

 

Our engine leveraged the build-in dead code library from the work done in [5]. However, instead 

of randomly inserting dead codes, we will try to insert some dead code before and/or after each 

instruction in a virus file only if that makes our virus more like a normal program. Our build-in 

dead code insertion algorithm is shown in Figure 19.  

For each instruction 

1. Insert dead code before and/or after it. 

2. Compute a score using the Dynamic Scoring Algorithm. 

3. If the score is better or remains the same, keep the changes and update the Dynamic 

Scoring Algorithm counters. 
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4. If the score worsens, discard the change made in step 1.  

 

Figure 19. Dead code insertion algorithm 

 

4.3.2.1 Inserting Dead Code Generated from a Normal File 

 

Since the build-in dead code library only included a limited set of instruction combinations, 

applying them into many virus copies will provide a pattern for HMM to detect the generated 

viruses. In order to overcome this limitation, we added logics into our engine to copy sets of 

instructions from normal files. Theoretically, this implementation will allow us to generate 

infinite sets of dead codes, since there is an infinite number of normal files.  

 

The instruction sets that we copied from a normal file can function as a block of five or more 

continuous instructions, or as a complete subroutine. If we are copying a block of continuous 

instructions, we will insert an unconditional “jmp” instruction before the block so that these 

instructions will not be executed. In addition to inserting a “jmp” instruction, we might also need 

to modify the operands of some instructions so that the generated virus assembly file can be re-

compiled by FASM [21]. For example, if an instruction contains a label that is only valid in the 

normal file, then we will need to replace that label with a label that is valid in the generated virus 

file.  

 

When copying a subroutine, we also need to modify the operands of some instructions. However, 

we do not need to insert jump instructions. The copied subroutine will be placed between two 

subroutines in the virus file. Since the copied subroutine never gets called, it will not impact the 

original behaviors of the virus. 

 

  

 

4.3.3 Equivalent Instruction Substitution 
 

Some opcodes, such as mov, push, and add instructions, appear more frequently in the base virus 

[5]. To make the generated virus’ opcode count statistically closer to normal programs, we 
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substitute equivalent instructions in place of these instructions. For example, “add instruction” 

can be replaced with “sub,” “lea,” or “not,” followed by “neg” instructions, as shown in Table 9. 

 

 

Table 9. Equivalent instructions for add [5] 

While substituting equivalent instructions, we also keep track of the score changes between virus 

copies and normal files. We only perform substitution if the score improves. Our algorithm for 

equivalent instruction substitution is shown in Figure 20 below: 

 
For each instruction 

1. Perform substitution if possible. 

2. Compute a score using the Dynamic Scoring Algorithm. 

3. If the score improves or remains the same, keep the change and update the Dynamic 

Scoring Algorithm counters. 

4. If the score worsens, discard the change made in step 1.  

 

 

Figure 20. Equivalent instruction substitution algorithm 

 

4.3.4 Transposition 
 

After generating dead code and performing equivalent instruction substitution, we perform 

transposition to make our virus even closer to a normal program. The transposition algorithm in 

[5] performs transposition randomly with a probability of 25%. We removed the randomized 

nature of that algorithm. Instead, we used the Dynamic Scoring Algorithm to perform 

transposition in order to make our virus closer to a normal program. Therefore, our final 

transposition algorithm is as shown in Figure 21: 

 

1. Read two instructions with two operands. 

2. To perform transposition: 
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a. Read third instruction 

b. If the third instruction is not any conditional jump instruction then 

i. If the to-operands of both instructions are not equal 

And 

If the to-operand of the first instruction is not equal to the from-operand 

of the second instruction 

and 

If the from-operand of the first instruction is not equal to the to-operand 

of the second instruction 

then 

Swap the two instructions. 

3. Compute the score of the transposition.  

4. If the score improves, keep the change. Otherwise, discard the change. 

 

Figure 21. Transposition algorithm 

 

4.4 Metamorphic Engine Algorithm 
 

The code obfuscation techniques described in section 4.3 are implemented as individual modules 

in our engine. We execute each module in sequence to generate our final virus copy. The overall 

engine algorithm is shown in Figure 22 below:   

 

1. Read in a base virus and a normal file. 

2. Initialize the Dynamic Scoring Algorithm. 

3. Insert dead code between each instruction if it makes the virus “closer” to the normal file. 

4. Perform equivalent instruction substitution for each instruction if it makes the virus 

closer to the normal file. 

5. Perform transposition for every instruction pair if it makes the virus closer to a normal 

file. 

6. For each instruction, generate a random number between 0 and 99: 

a. If random number < configured percentage for junk block, copy a junk block from 

normal file. 
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7. Between each subroutine, generate a random number between 0 and 99.  

a. If random number < configured percentage for junk function, copy a subroutine 

from normal file. 

 

Figure 22. Metamorphic engine algorithm 

 

5. Experiments 
 

We used the similarity test and HMM test tools developed in [2] to perform our test. After we 

successfully demonstrated that our engine was able to escape HMM-based detection, we 

repeated our test with different engine settings (i.e., reduced the number of dead code copied 

from the normal file to find the threshold at which the HMM detector began to fail.  

5.1 Base Virus 
 

To test our engine, we first used NGVCK to generate 200 virus files of the same family. These 

200 virus files served as our base viruses. We then constructed 40 normal files from cygwin 

utility files.  

 

After we generated our base viruses and normal files, we used the HMM detector to verify that 

viruses generated by NGVCK were still detectable. The procedures we executed with the HMM 

detector are the same as those in [2]. We first generated the HMM model with 160 viruses. We 

then generated the scores for the remaining 40 viruses against the HMM model. We also 

generated the scores for the 40 normal files against the same HMM model. 

 

If none of the normal files score higher than the viruses, then the HMM detector will be able to 

detect the family viruses, since there is a threshold that it could use to determine whether a given 

file is a virus (score higher than the threshold) or a normal file (score lower than the threshold). 

On the other hand, if some normal files score higher than some of the virus files, then the HMM 

detector will not have a good threshold to determine a given file. This means that some viruses 

will escape HMM-based detection.  
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Figure 23 shows the result of base viruses against normal files. All of the normal files score 

lower than virus files. Therefore, the base viruses we generated from NGVCK are detectable by 

the HMM detector. 

 

 

 

Figure 23. HMM results for base viruses generated by NGVCK 

 

After we generated base viruses, we used our engine to perform additional code obfuscation. Our 

engine will take one base virus and one normal file as inputs. It will apply additional code 

obfuscation techniques to the base virus so that the generated virus copy will be statistically 

closer to a normal file. In our experiment, we will make five virus copies closer to one normal 

file. For example, virus copies 1, 41, 81, 121, and 161 will look like normal file 1. Virus copies 

2, 42, 82, 122, and 162 will look like normal file 2.  
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5.2 Similarity Test 
 

The similarity test compares and reports the percentage of similarity among two assembly 

programs [5]. Since our engine will make a virus file closer to a normal file, we will compare the 

similarity of a virus file with its peer normal file as we increase the percent of dead code copied 

from the normal file. 

 

We first compared a base virus against a normal file, and there was no similarity between them at 

all. Then we ran the two files through our engine without any dead code copying configured. We 

were able to obtain a similarity score of 13.8% between the two files. After that, we copied dead 

code from the normal file into the virus and computed the similarity score again. The more dead 

code we copied from the normal file into the virus, the higher the similarity score, which is what 

we expected. Table 10 shows the table format of the similarity scores as we increased the file 

sizes by copying more dead codes.  

 

Morphed virus without copying 
dead codes from normal file

Copy junk block with 35% 
chance and junk function with 
30% chance

 
Figure 24. Similarity score for morphed virus against normal files 

 

 

 File size Similarity Score 

Base virus 17K 0 

Morphed virus without copying dead codes 

from normal file 
21.8K 13.8% 
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Copy junk block with 10% chance 23.2K 15.8% 

Copy junk block with 25% chance 23.8K 16.2% 

Copy junk block with 35% chance 24.3K 15.0% 

Copy junk block with 35% chance and junk 

function with 5% chance 
25.8K 16.5% 

Copy junk block with 35% chance and junk 

function with 15% chance 
26.3K 16.6% 

Copy junk block with 35% chance and junk 

function with 20% chance 
28.5K 17.2% 

Copy junk block with 35% chance and junk 

function with 30% chance 
28.6K 18.1% 

Table 10. Similarity score of virus and its peer normal file 

 

Since dead code blocks copied from the normal file were of different sizes, we will use the file 

size for the x-axis of our graphs to show our experiment results for the rest of this report. Figure 

25 shows the similarity scores for the generated viruses against normal files. As more dead code 

was copied from the normal file, the virus file size increased. The similarity score between the 

virus and normal file also increased as expected. 

 

 
 

Figure 25. Similarity score of virus and normal file 
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5.3 HMM 
 

As expected, similarity tests show that copying more dead code from a normal file into a virus 

makes the virus closer to the normal file. We will perform HMM tests for each set of viruses that 

we generate. The idea is to see how much dead code we need to copy from normal files in order 

to make our viruses undetectable.  

 

We executed HMM tests on our viruses with a number of hidden states from 2 to 5. However, 

based on the previous work [2, 5] and our results, it appears that the number of hidden states will 

not affect the results. Therefore, we will focus on analyzing the results for the HMM tests with 

three hidden states. We will include some results with different numbers of hidden states in 

appendix A.  

 

For all our tests, we constructed the HMM model from 160 virus files. Then, we compared the 

remaining 40 virus files against the HMM model. We also compared the 40 normal files against 

the HMM model.  

 

5.3.1 Zero Percent Dead Code 
 

This set of viruses was generated by applying our engine without any dead code copying from 

normal files. With this setting, the average file size increase from 17KB to 21.8KB. The 

similarity score also increase from 0% to 13.8%.  

 

0% dead code with N=3 

Family Viruses Normal Files 

N120 -3.82742 
N121 -2.60846 
N122 -2.74388 
N123 -2.93378 
N124 -2.74935 

N125 -2.83254 
N126 -2.649 
N127 -2.76175 
N128 -2.7331 
N129 -3.01979 
N130 -4.03604 
N131 -2.57982 

N140 -2.64343 
N141 -2.78598 
N142 -3.07189 
N143 -2.74519 
N144 -2.70781 

N145 -2.71075 
N146 -2.6337 
N147 -2.77156 
N148 -2.68296 
N149 -3.92464 
N150 -2.7027 
N151 -2.75938 

IDAR0 -8.62106 
IDAR1 -5.98894 
IDAR2 -13.8067 
IDAR3 -18.3758 
IDAR4 -4.98846 

IDAR5 -9.09981 
IDAR6 -12.527 
IDAR7 -12.4914 
IDAR8 -8.16147 
IDAR9 -9.20784 
IDAR10 -10.5268 
IDAR11 -6.27038 

IDAR20 -12.8004 
IDAR21 -8.56907 
IDAR22 -15.1685 
IDAR23 -16.5805 
IDAR24 -8.55813 

IDAR25 -8.41451 
IDAR26 -8.22832 
IDAR27 -8.6588 
IDAR28 -8.21336 
IDAR29 -8.49555 
IDAR30 -10.7358 
IDAR31 -8.62145 
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N132 -2.75932 

N133 -2.75863 
N134 -2.57266 
N135 -2.73927 
N136 -2.63524 
N137 -2.72739 
N138 -3.91962 
N139 -2.91821 

 

N152 -2.64362 

N153 -4.08823 
N154 -2.49181 
N155 -2.81595 
N156 -2.79971 
N157 -2.73247 
N158 -2.61171 
N159 -2.62985 

 

IDAR12 -6.27038 

IDAR13 -14.3691 
IDAR14 -11.6093 
IDAR15 -8.44406 
IDAR16 -16.2526 
IDAR17 -11.8591 
IDAR18 -12.5659 
IDAR19 -15.9829 

 

IDAR32 -8.18047 

IDAR33 -9.47778 
IDAR34 -8.41929 
IDAR35 -8.75353 
IDAR36 -8.53441 
IDAR37 -11.3747 
IDAR38 -11.1086 
IDAR39 -23.4772 

 

Min Score = -4.088 Max Score = -4.988 

0 viruses with scores < -4.988 0 normal files with scores > -4.088 

Table 11. HMM Results with 0% dead code copied 

 

Figure 26. HMM result with 0% dead code copied 

 

 

5.3.2 Copying Blocks of Dead Code from Normal File  
 

This set of viruses was generated by applying our engine with a probability of 10% to 35% for 

copying dead code blocks into viruses for each virus instruction. With this setting, the average 

file size increased from 17KB to 24.3KB.  
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Even with the higher percentage setting at 35%, the HMM was still able to recognize the family 

virus. However, we observed that the maximum score of normal files increased as we increased  

the percentage. Figure 27 shows the maximum score of the normal files as we increased the 

percentage of dead code copied. The HMM results for 35% dead code copied are shown in 

Figure 28 and Table 12. 

 

 

Figure 27. Maximun normal file scores vs. percentage increase 

 

 

 

 

35% dead code copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.540 
IDAN121 -1.930 
IDAN122 -2.051 
IDAN123 -2.439 
IDAN124 -2.138 
IDAN125 -2.171 

IDAN126 -2.129 
IDAN127 -2.383 
IDAN128 -2.444 
IDAN129 -2.309 
IDAN130 -2.707 
IDAN131 -2.091 
IDAN132 -2.497 

IDAN140 -2.044 
IDAN141 -2.102 
IDAN142 -2.405 
IDAN143 -2.386 
IDAN144 -2.387 
IDAN145 -2.397 

IDAN146 -2.392 
IDAN147 -2.384 
IDAN148 -2.372 
IDAN149 -2.938 
IDAN150 -2.343 
IDAN151 -2.467 
IDAN152 -2.241 

IDAR0 -8.529 
IDAR1 -5.906 
IDAR2 -13.798 
IDAR3 -18.345 
IDAR4 -4.889 
IDAR5 -9.212 

IDAR6 -12.640 
IDAR7 -12.589 
IDAR8 -8.299 
IDAR9 -9.151 
IDAR10 -10.643 
IDAR11 -6.190 
IDAR12 -6.190 

IDAR20 -12.926 
IDAR21 -8.473 
IDAR22 -14.865 
IDAR23 -16.304 
IDAR24 -8.460 
IDAR25 -8.316 

IDAR26 -8.131 
IDAR27 -8.563 
IDAR28 -8.117 
IDAR29 -8.400 
IDAR30 -10.617 
IDAR31 -8.527 
IDAR32 -8.084 
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IDAN133 -2.479 

IDAN134 -2.032 
IDAN135 -2.268 
IDAN136 -2.079 
IDAN137 -2.085 
IDAN138 -3.301 
IDAN139 -2.331 

 

IDAN153 -2.970 

IDAN154 -2.155 
IDAN155 -2.295 
IDAN156 -2.472 
IDAN157 -2.411 
IDAN158 -2.418 
IDAN159 -2.082 

 

IDAR13 -14.500 

IDAR14 -11.527 
IDAR15 -8.563 
IDAR16 -16.196 
IDAR17 -11.622 
IDAR18 -12.509 
IDAR19 -15.686 

 

IDAR33 -9.386 

IDAR34 -8.328 
IDAR35 -8.663 
IDAR36 -8.440 
IDAR37 -11.259 
IDAR38 -11.030 
IDAR39 -23.439 

 

Min Score = -3.301 Max Score = -4.889 

0 viruses with scores < -4.889 0 normal files with scores > -3.301 

Table 12. HMM results with 35% dead code copied 

 

Figure 28. HMM results with 35% dead code copied 

 

 

5.3.3 Copying Subroutines and Blocks of Dead Code from Normal File 
 

We continued our experiment by adding subroutines copied from the normal files into our 

viruses. We first configured the sub-routine copying probability to 5% and ran our test. We 

repeated our tests with different sub-routine copying probabilities of 15%, 20%, and 30%.  
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Even with a small probability of 5%, we started to see some viruses score lower than the 

maximum score of the normal files.  

 

Table 13 and Figure 29 show the scores of family viruses and normal files against the HMM 

model. Sixteen viruses score lower than the maximum normal file score. This means that if the 

HMM threshold is set to the maximum normal file score, 16 viruses will be undetectable by the 

HMM. On the other hand, if the HMM threshold is set to the minimum virus file score, then 

three normal files will be classified as viruses. 

 

 

 

35% dead code block, and 5% subroutine copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.441 
IDAN121 -1.960 
IDAN122 -2.014 
IDAN123 -2.482 
IDAN124 -2.170 
IDAN125 -2.140 
IDAN126 -2.154 
IDAN127 -2.431 

IDAN128 -2.474 
IDAN129 -2.275 
IDAN130 -2.720 
IDAN131 -2.115 
IDAN132 -2.492 

IDAN133 -2.515 
IDAN134 -2.079 
IDAN135 -2.311 
IDAN136 -2.191 
IDAN137 -2.123 
IDAN138 -2.643 

IDAN139 -2.514 
 

IDAN140 -2.069 
IDAN141 -2.111 
IDAN142 -2.432 
IDAN143 -2.431 
IDAN144 -2.388 
IDAN145 -2.421 
IDAN146 -2.379 
IDAN147 -2.413 

IDAN148 -2.368 
IDAN149 -2.940 
IDAN150 -2.395 
IDAN151 -2.554 
IDAN152 -2.162 

IDAN153 -2.980 
IDAN154 -2.233 
IDAN155 -2.322 
IDAN156 -2.527 
IDAN157 -2.456 
IDAN158 -2.406 

IDAN159 -2.122 
 

IDAR0 -3.700 
IDAR1 -3.506 
IDAR2 -4.533 
IDAR3 -3.541 
IDAR4 -3.286 
IDAR5 -3.281 
IDAR6 -3.292 
IDAR7 -4.321 

IDAR8 -3.268 
IDAR9 -3.103 
IDAR10 -3.731 
IDAR11 -3.212 
IDAR12 -3.212 

IDAR13 -4.459 
IDAR14 -2.882 
IDAR15 -3.187 
IDAR16 -4.355 
IDAR17 -4.114 
IDAR18 -3.057 

IDAR19 -7.818 
 

IDAR20 -3.193 
IDAR21 -3.040 
IDAR22 -7.914 
IDAR23 -7.806 
IDAR24 -3.021 
IDAR25 -3.013 
IDAR26 -3.008 
IDAR27 -3.019 

IDAR28 -3.009 
IDAR29 -3.017 
IDAR30 -2.428 
IDAR31 -3.018 
IDAR32 -3.007 

IDAR33 -3.029 
IDAR34 -3.016 
IDAR35 -3.033 
IDAR36 -3.006 
IDAR37 -2.424 
IDAR38 -3.658 

IDAR39 -8.249 
 

Min Score = -2.980 Max Score = -2.242 

16 viruses with scores < -2.242 3 normal files with scores > -2.980 

Table 13. HMM results with 35% dead code blocks and 5% subroutine copied 
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Figure 29. HMM result with 35% dead code blocks and 5% subroutine copied 

5.3.4 Copying Subroutines Only from Normal File 
 

Based on the results shown in the previous section, we noticed copying subroutines from normal 

files significantly impacted our scores. Therefore, we conducted additional experiments by 

copying only subroutines into our base viruses without additional code obfuscation. The results 

showed that even with as little as 5% subroutines copied from the normal files, we were able to 

make the HMM detector misclassify some of our viruses. 

5% subroutine copying model with N=3 

Family Viruses Normal Files 

IDAN120 -3.465 
IDAN121 -2.731 
IDAN122 -2.671 
IDAN123 -2.708 
IDAN124 -2.595 
IDAN125 -2.623 
IDAN126 -2.585 

IDAN140 -2.644 
IDAN141 -2.785 
IDAN142 -2.720 
IDAN143 -2.640 
IDAN144 -2.748 
IDAN145 -2.628 
IDAN146 -2.557 

IDAR0 -5.886 
IDAR1 -4.786 
IDAR2 -8.619 
IDAR3 -4.688 
IDAR4 -4.428 
IDAR5 -4.530 
IDAR6 -4.509 

IDAR20 -4.098 
IDAR21 -5.566 
IDAR22 -12.088 
IDAR23 -11.677 
IDAR24 -5.344 
IDAR25 -5.349 
IDAR26 -5.328 
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IDAN127 -3.659 

IDAN128 -2.664 
IDAN129 -2.634 
IDAN130 -4.252 
IDAN131 -2.550 
IDAN132 -2.521 
IDAN133 -2.718 
IDAN134 -2.670 
IDAN135 -2.701 
IDAN136 -2.714 
IDAN137 -2.662 
IDAN138 -2.441 

IDAN139 -2.683 
 

IDAN147 -2.634 

IDAN148 -2.472 
IDAN149 -4.361 
IDAN150 -2.665 
IDAN151 -2.700 
IDAN152 -2.586 
IDAN153 -3.779 
IDAN154 -2.599 
IDAN155 -2.720 
IDAN156 -4.330 
IDAN157 -2.550 
IDAN158 -2.531 

IDAN159 -2.543 
 

IDAR7 -5.763 

IDAR8 -4.524 
IDAR9 -6.294 
IDAR10 -5.150 
IDAR11 -6.259 
IDAR12 -6.259 
IDAR13 -5.937 
IDAR14 -3.276 
IDAR15 -4.149 
IDAR16 -10.162 
IDAR17 -5.931 
IDAR18 -5.649 

IDAR19 -11.896 
 

IDAR27 -5.324 

IDAR28 -5.323 
IDAR29 -5.472 
IDAR30 -5.253 
IDAR31 -5.309 
IDAR32 -5.306 
IDAR33 -5.275 
IDAR34 -5.426 
IDAR35 -5.295 
IDAR36 -5.266 
IDAR37 -5.318 
IDAR38 -6.460 

IDAR39 -12.879 
 

Min Score = -4.361 Max Score = -3.276 

6 viruses with scores < -3.276 3 normal files with scores > -4.361 

Table 14. HMM results with 5% subroutine copied 

 

Figure 30. HMM results with 5% subroutine copied 

Additional experiment results can be found in Appendix A.  
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6. Detection Technique for Our Engine 
 

The engine developed in this project copies a fair amount of dead codes and subroutines from 

normal files. Dead codes are usually surrounded by a “jmp label_name” instruction and a 

label_name. Subroutines copied were not executed in the viral copies..  

 

To detect viruses generated by this engine, we can develop a utility to remove these copied dead 

codes prior to using the HMM detection tool. The utility logic should be as follows: 

 

1. Scan the file and record a block for each “jmp” and label pair. In addition, write down the 

names of all subroutines. 

2. For each block, scan the file to see if other instructions might branch into it. If no 

instruction branches into it, remove it. 

3. For each subroutine, scan the file to see if this subroutine is called by outside instructions. 

If not, remove it. 

 

After a virus is pre-processed by the utility, it will be detectable by the HMM.  

 

We experimented with our detection technique by developing a simple java program to remove 

the dead code copied from normal files. We first generated the morphed viruses by copying 30% 

subroutines from normal files. Then we used our program to remove the subroutines copied from 

normal files. We were able to obtain the same results, as we never copied any subroutines. Note 

that we trained our HMM model from files with subroutines removed. In other words, we 

reverted portions of what our engine did in order to detect viruses generated by our engine. 

 

Since our detection method only scans unexecuted codes, virus writers can easily enhance the 

engine by including code to execute these dead codes with very small probability. For example, 

virus writers can embed code to first generate two large random numbers, then call the 

subroutine copied if the two random numbers are equal. The probability of two large consecutive 

generated random numbers being equal is almost 0, but it will make the copied subroutines 

harder to remove, since these subroutines will now appear as they “might” be used. 
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7. Conclusions 
 

By making our viruses closer to normal files, we were able to make them undetectable using an 

HMM-based detector. The HMM-based detector began to fail when we copied 5% of subroutines 

from normal files. With our highest setting of 35% dead code blocks and 30% subroutines, most 

of the scores for viruses and normal files were very close to each other. as shown in Figure 38 of 

Appendix A.   

 

We also observed that as we increased the amount of dead codes copied, the average scores for 

viruses and normal files were also closer to each other. In addition, the deviation of normal file 

scores decreased as more dead codes were copied into virus files. Figure 31 shows the average 

HMM scores of normal files and family viruses as we increased the percentage of subroutines 

copied from normal files. With 5% of subroutines copied, the average score of normal files is       

-6.15, and the average score of family viruses is -2.83. As we increased to 30% subroutines 

copied, the average score of normal files increased to -3.8, and the average score of family 

viruses remained almost constant at -2.83. 
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Figure 31. Ave. scores vs. subroutines copied 

 

 

Figure 32 shows the average HMM scores as we increased the percentage of dead code (not 

subroutines) copied from normal files. Unlike subroutine copying, more dead code copying did 
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not seem to change the average scores of normal files. This might be an indication that HMM 

favors long identical opcode sequences over short identical opcode sequences.  
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Figure 32. Average scores vs. percent of dead code copied 

 

8. Future Works   
 

Based on previous projects [5] and this project, we concluded that in order to escape HMM-

based detection, our metamorphic engine must generate viruses that are highly morphed so that 

similarities of viruses in the same family are low. However, at the same time, we must maintain 

some similarity between the viruses and normal files. In order to achieve this goal, we copied 

some codes from normal files. When inserting the copied code into the virus, we simply used 

unconditional jump instructions to bypass the copied code so that it would not affect the virus 

operation. These dead codes could easily be detected and removed. More complicated techniques 

for copying dead codes from normal files are needed in order to prevent virus detectors from 

detecting and removing dead codes before scanning.  

 

In this project, we showed that the HMM detector was not able to detect all of our viruses. The 

logical next step would be to enhance the HMM detector. One possible technique would be to 

first remove dead codes from a virus before computing that virus’ HMM score. Another possible 
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technique would be to avoid detecting normal files as family viruses by creating more intelligent 

HMM thresholds. 
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Appendix A: Additional HMM results 
 

This section contains the HMM results (with state N=3) for different amounts of dead code block 

and dead functions copied from normal files. 

 

 

10% dead code copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.794 
IDAN121 -2.173 

IDAN122 -2.281 
IDAN123 -2.924 
IDAN124 -2.411 
IDAN125 -2.522 
IDAN126 -2.263 
IDAN127 -2.621 
IDAN128 -2.658 
IDAN129 -2.669 
IDAN130 -3.388 
IDAN131 -2.255 
IDAN132 -2.617 

IDAN133 -2.597 
IDAN134 -2.288 
IDAN135 -2.372 
IDAN136 -2.300 
IDAN137 -2.378 
IDAN138 -3.642 
IDAN139 -2.737 

 

IDAN140 -2.299 
IDAN141 -2.426 

IDAN142 -2.790 
IDAN143 -2.540 
IDAN144 -2.565 
IDAN145 -2.574 
IDAN146 -2.502 
IDAN147 -2.639 
IDAN148 -2.479 
IDAN149 -3.526 
IDAN150 -2.617 
IDAN151 -2.647 
IDAN152 -2.425 

IDAN153 -3.493 
IDAN154 -2.413 
IDAN155 -2.594 
IDAN156 -2.622 
IDAN157 -2.526 
IDAN158 -2.558 
IDAN159 -2.439 

 

IDAR0 -8.588 
IDAR1 -5.966 

IDAR2 -13.791 
IDAR3 -18.344 
IDAR4 -4.949 
IDAR5 -9.099 
IDAR6 -12.520 
IDAR7 -12.485 
IDAR8 -8.165 
IDAR9 -9.174 
IDAR10 -10.509 
IDAR11 -6.220 
IDAR12 -6.220 

IDAR13 -14.365 
IDAR14 -11.565 
IDAR15 -8.438 
IDAR16 -16.226 
IDAR17 -11.811 
IDAR18 -12.528 
IDAR19 -15.952 

 

IDAR20 -12.797 
IDAR21 -8.513 

IDAR22 -15.138 
IDAR23 -16.552 
IDAR24 -8.505 
IDAR25 -8.360 
IDAR26 -8.175 
IDAR27 -8.606 
IDAR28 -8.160 
IDAR29 -8.442 
IDAR30 -10.659 
IDAR31 -8.569 
IDAR32 -8.127 

IDAR33 -9.426 
IDAR34 -8.368 
IDAR35 -8.704 
IDAR36 -8.482 
IDAR37 -11.299 
IDAR38 -11.062 
IDAR39 -23.438 

 

Min Score = -3.642 Max Score = -4.949 

0 viruses with scores < -4.949 0 normal files with scores > -3.642 

Table 15. HMM results with 10% dead code copied 
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Figure 33. HMM results with 10% dead code copied 

 

 

25% dead code copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.459 
IDAN121 -1.915 
IDAN122 -2.023 
IDAN123 -2.589 
IDAN124 -2.197 
IDAN125 -2.180 
IDAN126 -2.083 
IDAN127 -2.473 
IDAN128 -2.451 

IDAN129 -2.421 
IDAN130 -2.804 
IDAN131 -2.045 
IDAN132 -2.496 
IDAN133 -2.504 
IDAN134 -2.173 
IDAN135 -2.241 

IDAN140 -2.054 
IDAN141 -2.140 
IDAN142 -2.404 
IDAN143 -2.478 
IDAN144 -2.390 
IDAN145 -2.468 
IDAN146 -2.403 
IDAN147 -2.451 
IDAN148 -2.401 

IDAN149 -2.943 
IDAN150 -2.295 
IDAN151 -2.479 
IDAN152 -2.219 
IDAN153 -3.099 
IDAN154 -2.172 
IDAN155 -2.334 

IDAR0 -8.564 
IDAR1 -5.949 
IDAR2 -13.793 
IDAR3 -18.363 
IDAR4 -4.919 
IDAR5 -9.133 
IDAR6 -12.549 
IDAR7 -12.514 
IDAR8 -8.203 

IDAR9 -9.181 
IDAR10 -10.538 
IDAR11 -6.213 
IDAR12 -6.213 
IDAR13 -14.397 
IDAR14 -11.555 
IDAR15 -8.473 

IDAR20 -12.830 
IDAR21 -8.501 
IDAR22 -14.762 
IDAR23 -16.202 
IDAR24 -8.492 
IDAR25 -8.347 
IDAR26 -8.162 
IDAR27 -8.593 
IDAR28 -8.147 

IDAR29 -8.430 
IDAR30 -10.623 
IDAR31 -8.557 
IDAR32 -8.115 
IDAR33 -9.415 
IDAR34 -8.357 
IDAR35 -8.694 
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IDAN136 -2.091 

IDAN137 -2.043 
IDAN138 -3.240 
IDAN139 -2.448 

 

IDAN156 -2.563 

IDAN157 -2.401 
IDAN158 -2.489 
IDAN159 -2.053 

 

IDAR16 -16.212 

IDAR17 -11.631 
IDAR18 -12.530 
IDAR19 -15.586 

 

IDAR36 -8.470 

IDAR37 -11.264 
IDAR38 -11.051 
IDAR39 -23.424 

 

Min Score = -3.24 Max Score = -4.918 

0 viruses with scores < -4.918 0 normal files with scores > -3.24 

Table 16. HMM results with 25% dead code copied 

 

Figure 34. HMM results with 25% dead code copied 

 

 

 

35% dead code copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.540 

IDAN121 -1.930 
IDAN122 -2.051 
IDAN123 -2.439 
IDAN124 -2.138 
IDAN125 -2.171 
IDAN126 -2.129 
IDAN127 -2.383 

IDAN140 -2.044 

IDAN141 -2.102 
IDAN142 -2.405 
IDAN143 -2.386 
IDAN144 -2.387 
IDAN145 -2.397 
IDAN146 -2.392 
IDAN147 -2.384 

IDAR0 -8.529 

IDAR1 -5.906 
IDAR2 -13.798 
IDAR3 -18.345 
IDAR4 -4.889 
IDAR5 -9.212 
IDAR6 -12.640 
IDAR7 -12.589 

IDAR20 -12.926 

IDAR21 -8.473 
IDAR22 -14.865 
IDAR23 -16.304 
IDAR24 -8.460 
IDAR25 -8.316 
IDAR26 -8.131 
IDAR27 -8.563 
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IDAN128 -2.444 

IDAN129 -2.309 
IDAN130 -2.707 
IDAN131 -2.091 
IDAN132 -2.497 
IDAN133 -2.479 
IDAN134 -2.032 
IDAN135 -2.268 
IDAN136 -2.079 
IDAN137 -2.085 
IDAN138 -3.301 
IDAN139 -2.331 

 

IDAN148 -2.372 

IDAN149 -2.938 
IDAN150 -2.343 
IDAN151 -2.467 
IDAN152 -2.241 
IDAN153 -2.970 
IDAN154 -2.155 
IDAN155 -2.295 
IDAN156 -2.472 
IDAN157 -2.411 
IDAN158 -2.418 
IDAN159 -2.082 

 

IDAR8 -8.299 

IDAR9 -9.151 
IDAR10 -10.643 
IDAR11 -6.190 
IDAR12 -6.190 
IDAR13 -14.500 
IDAR14 -11.527 
IDAR15 -8.563 
IDAR16 -16.196 
IDAR17 -11.622 
IDAR18 -12.509 
IDAR19 -15.686 

 

IDAR28 -8.117 

IDAR29 -8.400 
IDAR30 -10.617 
IDAR31 -8.527 
IDAR32 -8.084 
IDAR33 -9.386 
IDAR34 -8.328 
IDAR35 -8.663 
IDAR36 -8.440 
IDAR37 -11.259 
IDAR38 -11.030 
IDAR39 -23.439 

 

Min Score = -3.301 Max Score = -4.889 

0 viruses with scores < -4.889 0 normal files with scores > -3.301 

Table 17. HMM results with 35% dead code copied 

 

 

Figure 35. HMM results with 35% dead code copied 
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35% dead code block, and 15% subroutine copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.433 
IDAN121 -1.904 
IDAN122 -1.965 
IDAN123 -2.398 
IDAN124 -2.071 
IDAN125 -2.109 
IDAN126 -2.039 
IDAN127 -2.421 
IDAN128 -2.439 
IDAN129 -2.242 

IDAN130 -4.095 
IDAN131 -2.080 
IDAN132 -2.443 
IDAN133 -2.572 
IDAN134 -2.018 
IDAN135 -2.212 
IDAN136 -2.104 
IDAN137 -2.076 
IDAN138 -2.573 
IDAN139 -2.458 

 

IDAN140 -1.992 
IDAN141 -2.103 
IDAN142 -2.361 
IDAN143 -2.464 
IDAN144 -2.372 
IDAN145 -2.400 
IDAN146 -2.351 
IDAN147 -2.361 
IDAN148 -2.353 
IDAN149 -2.879 

IDAN150 -2.341 
IDAN151 -2.412 
IDAN152 -2.100 
IDAN153 -2.893 
IDAN154 -2.636 
IDAN155 -2.247 
IDAN156 -2.435 
IDAN157 -2.486 
IDAN158 -2.363 
IDAN159 -2.085 

 

IDAR0 -4.287 
IDAR1 -3.415 
IDAR2 -4.419 
IDAR3 -3.465 
IDAR4 -3.200 
IDAR5 -3.193 
IDAR6 -3.189 
IDAR7 -4.436 
IDAR8 -3.167 
IDAR9 -3.724 

IDAR10 -3.618 
IDAR11 -3.165 
IDAR12 -3.165 
IDAR13 -4.511 
IDAR14 -2.824 
IDAR15 -3.089 
IDAR16 -4.977 
IDAR17 -4.049 
IDAR18 -3.538 
IDAR19 -8.236 

 

IDAR20 -3.224 
IDAR21 -2.993 
IDAR22 -8.343 
IDAR23 -8.195 
IDAR24 -2.974 
IDAR25 -2.966 
IDAR26 -2.961 
IDAR27 -2.971 
IDAR28 -2.961 
IDAR29 -2.966 

IDAR30 -3.360 
IDAR31 -2.971 
IDAR32 -2.960 
IDAR33 -2.980 
IDAR34 -2.968 
IDAR35 -2.984 
IDAR36 -2.958 
IDAR37 -3.594 
IDAR38 -3.454 
IDAR39 -6.864 

 

Min Score = -4.095 Max Score = -2.824 

3 viruses with scores < -2.824 31 normal files with scores > -4.095 

Table 18. HMM results with 35% dead code blocks and 15% subroutine copied 
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Figure 36. HMM results with 35% dead code blocks and 15% subroutines copied 

 

35% dead code block, and 20% subroutine copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.336 
IDAN121 -1.881 
IDAN122 -1.989 
IDAN123 -2.431 
IDAN124 -2.077 

IDAN125 -2.198 
IDAN126 -2.068 
IDAN127 -2.415 
IDAN128 -2.449 
IDAN129 -2.220 

IDAN130 -2.664 
IDAN131 -2.093 
IDAN132 -2.565 
IDAN133 -2.531 
IDAN134 -1.985 
IDAN135 -2.230 
IDAN136 -2.071 

IDAN140 -2.028 
IDAN141 -2.073 
IDAN142 -2.363 
IDAN143 -2.459 
IDAN144 -2.358 

IDAN145 -2.373 
IDAN146 -2.376 
IDAN147 -2.543 
IDAN148 -2.333 
IDAN149 -2.902 

IDAN150 -2.351 
IDAN151 -2.379 
IDAN152 -2.086 
IDAN153 -2.973 
IDAN154 -2.143 
IDAN155 -2.355 
IDAN156 -2.396 

IDAR0 -3.551 
IDAR1 -3.334 
IDAR2 -4.352 
IDAR3 -3.396 
IDAR4 -3.130 

IDAR5 -3.121 
IDAR6 -3.122 
IDAR7 -4.162 
IDAR8 -3.103 
IDAR9 -2.943 

IDAR10 -3.557 
IDAR11 -3.066 
IDAR12 -3.066 
IDAR13 -4.282 
IDAR14 -2.718 
IDAR15 -3.025 
IDAR16 -4.178 

IDAR20 -3.028 
IDAR21 -2.884 
IDAR22 -6.927 
IDAR23 -6.878 
IDAR24 -2.865 

IDAR25 -2.858 
IDAR26 -2.853 
IDAR27 -2.863 
IDAR28 -2.853 
IDAR29 -2.859 

IDAR30 -2.263 
IDAR31 -2.861 
IDAR32 -2.852 
IDAR33 -2.871 
IDAR34 -2.862 
IDAR35 -2.875 
IDAR36 -2.853 
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IDAN137 -2.046 

IDAN138 -2.544 
IDAN139 -2.380 

 

IDAN157 -2.513 

IDAN158 -2.434 
IDAN159 -2.080 

 

IDAR17 -3.953 

IDAR18 -2.874 
IDAR19 -6.850 

 

IDAR37 -2.259 

IDAR38 -3.357 
IDAR39 -6.793 

 

Min Score = -2.973 Max Score = -2.2594 

16 viruses with scores < -2.2594 18 normal files with scores > -2.973 

Table 19. HMM results with 35% dead code blocks and 20% subroutines copied 

 

 

Figure 37. HMM results with 35% dead code blocks and 20% subroutines copied 

 

 

35% dead code block, and 30% subroutine copying model with N=3 

Family Viruses Normal Files 

IDAN120 -2.294 
IDAN121 -1.891 
IDAN122 -2.043 
IDAN123 -2.520 
IDAN124 -2.100 
IDAN125 -2.455 
IDAN126 -2.088 

IDAN140 -2.029 
IDAN141 -2.101 
IDAN142 -2.364 
IDAN143 -2.437 
IDAN144 -2.482 
IDAN145 -2.429 
IDAN146 -2.388 

IDAR0 -2.856 
IDAR1 -2.727 
IDAR2 -3.754 
IDAR3 -2.971 
IDAR4 -2.595 
IDAR5 -2.880 
IDAR6 -2.885 

IDAR20 -2.849 
IDAR21 -2.708 
IDAR22 -6.352 
IDAR23 -6.339 
IDAR24 -2.693 
IDAR25 -2.686 
IDAR26 -2.682 
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IDAN127 -2.443 

IDAN128 -2.479 
IDAN129 -2.256 
IDAN130 -2.708 
IDAN131 -2.102 
IDAN132 -2.449 
IDAN133 -2.531 
IDAN134 -2.035 
IDAN135 -2.233 
IDAN136 -2.128 
IDAN137 -2.019 
IDAN138 -2.549 

IDAN139 -2.439 
 

IDAN147 -2.487 

IDAN148 -2.317 
IDAN149 -2.813 
IDAN150 -2.324 
IDAN151 -2.464 
IDAN152 -2.153 
IDAN153 -2.874 
IDAN154 -2.127 
IDAN155 -3.993 
IDAN156 -2.426 
IDAN157 -2.489 
IDAN158 -2.401 

IDAN159 -2.103 
 

IDAR7 -3.922 

IDAR8 -2.881 
IDAR9 -2.692 
IDAR10 -3.351 
IDAR11 -2.853 
IDAR12 -2.853 
IDAR13 -4.071 
IDAR14 -2.508 
IDAR15 -2.828 
IDAR16 -3.978 
IDAR17 -3.762 
IDAR18 -2.659 

IDAR19 -6.286 
 

IDAR27 -2.691 

IDAR28 -2.682 
IDAR29 -2.689 
IDAR30 -2.119 
IDAR31 -2.691 
IDAR32 -2.682 
IDAR33 -2.700 
IDAR34 -2.693 
IDAR35 -2.704 
IDAR36 -2.685 
IDAR37 -2.116 
IDAR38 -3.191 

IDAR39 -6.628 
 

Min Score = -3.993 Max Score = -2.116 

30 viruses with scores < -2.116 35 normal files with scores > -3.993 

Table 20. HMM results with 35% dead code blocks and 30% subroutines copied 
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Figure 38. HMM results with 35% dead code blocks and 30% subroutines copied 

 

 

15% subroutine copying model with N=3 

Family Viruses Normal Files 

IDAN120 -4.380 

IDAN121 -2.435 

IDAN122 -2.589 

IDAN123 -4.017 

IDAN124 -2.640 

IDAN125 -2.750 

IDAN126 -2.480 

IDAN127 -3.909 

IDAN128 -2.633 

IDAN129 -2.821 

IDAN130 -4.276 

IDAN131 -2.358 

IDAN132 -2.562 

IDAN133 -2.717 

IDAN134 -2.630 

IDAN140 -2.445 

IDAN141 -2.740 

IDAN142 -2.735 

IDAN143 -2.606 

IDAN144 -2.706 

IDAN145 -2.624 

IDAN146 -2.505 

IDAN147 -2.689 

IDAN148 -2.632 

IDAN149 -4.411 

IDAN150 -2.804 

IDAN151 -2.624 

IDAN152 -2.642 

IDAN153 -3.834 

IDAN154 -2.441 

IDAR0 -4.382 

IDAR1 -4.047 

IDAR2 -4.971 

IDAR3 -3.784 

IDAR4 -3.759 

IDAR5 -3.105 

IDAR6 -3.098 

IDAR7 -4.146 

IDAR8 -3.031 

IDAR9 -3.202 

IDAR10 -3.957 

IDAR11 -3.348 

IDAR12 -3.348 

IDAR13 -4.222 

IDAR14 -2.934 

IDAR20 -2.943 

IDAR21 -3.104 

IDAR22 -14.217 

IDAR23 -13.655 

IDAR24 -3.078 

IDAR25 -3.076 

IDAR26 -3.068 

IDAR27 -3.074 

IDAR28 -3.069 

IDAR29 -3.075 

IDAR30 -2.627 

IDAR31 -3.073 

IDAR32 -3.066 

IDAR33 -3.072 

IDAR34 -3.066 
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IDAN135 -2.747 

IDAN136 -2.514 

IDAN137 -2.704 

IDAN138 -2.504 

IDAN139 -2.882 
 

IDAN155 -2.746 

IDAN156 -3.204 

IDAN157 -2.596 

IDAN158 -2.581 

IDAN159 -2.524 
 

IDAR15 -2.976 

IDAR16 -4.420 

IDAR17 -5.026 

IDAR18 -3.066 

IDAR19 -13.979 
 

IDAR35 -3.073 

IDAR36 -3.060 

IDAR37 -2.615 

IDAR38 -3.702 

IDAR39 -7.980 
 

Min Score = -4.411 Max Score = -2.615 

26 viruses with scores < -2.615 33 normal files with scores > -4.411 

Table 21. HMM results with 15% subroutines copied 
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Figure 39. HMM results with 15% subroutines copied 

 

30% subroutine copying model with N=3 

Family Viruses Normal Files 

IDAN120 -3.415 

IDAN121 -2.206 

IDAN122 -2.641 

IDAN123 -4.149 

IDAN124 -2.502 

IDAN125 -2.711 

IDAN126 -2.427 

IDAN127 -3.693 

IDAN140 -2.404 

IDAN141 -2.760 

IDAN142 -2.765 

IDAN143 -2.606 

IDAN144 -2.619 

IDAN145 -2.653 

IDAN146 -2.508 

IDAN147 -2.770 

IDAR0 -4.316 

IDAR1 -3.961 

IDAR2 -5.483 

IDAR3 -3.720 

IDAR4 -3.683 

IDAR5 -3.061 

IDAR6 -3.051 

IDAR7 -4.099 

IDAR20 -2.901 

IDAR21 -3.030 

IDAR22 -8.602 

IDAR23 -8.422 

IDAR24 -3.003 

IDAR25 -3.001 

IDAR26 -2.994 

IDAR27 -2.999 
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IDAN128 -2.606 

IDAN129 -3.111 

IDAN130 -5.471 

IDAN131 -2.301 

IDAN132 -2.679 

IDAN133 -2.748 

IDAN134 -2.632 

IDAN135 -2.769 

IDAN136 -2.586 

IDAN137 -2.702 

IDAN138 -2.549 

IDAN139 -2.707 
 

IDAN148 -2.563 

IDAN149 -3.975 

IDAN150 -2.626 

IDAN151 -2.648 

IDAN152 -2.397 

IDAN153 -3.717 

IDAN154 -2.461 

IDAN155 -2.839 

IDAN156 -2.985 

IDAN157 -2.581 

IDAN158 -2.532 

IDAN159 -2.530 
 

IDAR8 -2.991 

IDAR9 -3.123 

IDAR10 -3.573 

IDAR11 -3.280 

IDAR12 -3.280 

IDAR13 -4.179 

IDAR14 -2.855 

IDAR15 -2.935 

IDAR16 -4.698 

IDAR17 -4.285 

IDAR18 -2.989 

IDAR19 -8.480 
 

IDAR28 -2.994 

IDAR29 -3.000 

IDAR30 -2.420 

IDAR31 -2.998 

IDAR32 -2.991 

IDAR33 -2.997 

IDAR34 -2.992 

IDAR35 -2.998 

IDAR36 -2.985 

IDAR37 -2.411 

IDAR38 -3.488 

IDAR39 -7.071 
 

Min Score = -5.471 Max Score = -2.411 

36 viruses with scores < -2.411 35 normal files with scores > -5.471 

Table 22. HMM results with 30% subroutines copied 
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Figure 40. HMM results with 30% subroutines copied 
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Appendix B: Selected HMM models 
 

Table 23. HMM parameters (A, B, π) of the base virus with N = 3 

N=3, M=73, T=66244 
π:  
0.00000000000000 1.00000000000000 
0.00000000000000 
A: 
0.80454192898191 0.00000000000000 
0.19545807101810 0.66390684899439  
0.03930561042629 0.29678754057936  
0.00000000000000 0.97054063542234  
0.02945936457764  
B: 
call 0.03926694759773 0.20431470057355 0.00000000000000  
pop 0.02438402763040 0.21185069328542 0.00213671767186  
sub 0.06302726222401 0.00000000000000 0.03772599914325  
mov 0.34690705188975 0.00000000077741 0.00262771240722  
push 0.02582556566454 0.13630720773186 0.41419763794012  
or 0.00651875442997 0.00000000000000 0.02158114819045  
jz 0.00000000000000 0.18888668026439 0.00000000000000  
lea 0.02075606611344 0.00506254058497 0.01312094475559  
neg 0.00462031582456 0.00000000000000 0.00000000000000  
not 0.00598486505772 0.00000000000000 0.00000000000000  
dec 0.01474263146102 0.00000000000000 0.04881216933356  
add 0.22077478530833 0.00000000000000 0.01419482179363  
cmp 0.00000000000000 0.00008344196438 0.20866347338960  
jnz 0.00000000000000 0.13270041420210 0.00000000000000  
inc 0.02250586606442 0.00032105013350 0.01585002333567  
xor 0.02488896727332 0.00030084773963 0.00802107526509  
shr 0.00215096528101 0.00114739274865 0.00797190834412  
rcr 0.00000000000000 0.00487869169861 0.00000000000000  
jnb 0.00313606929025 0.00000000000000 0.00000000000000  
rol 0.00417608939050 0.00102096728348 0.00000000000000  
popa 0.02219187963404 0.00000000000000 0.00000000000000  
retn 0.01591399543235 0.00894794152082 0.11330336701740  
jmp 0.02585992370857 0.00000000000000 0.02922783775542  
shl 0.01234775469242 0.00026094037689 0.00000000000000  
pusha 0.00238322121666 0.04269195579033 0.01079525374719  
and 0.01915015919805 0.00061518155219 0.00439455725426  
jb 0.00842914483402 0.00727378117346 0.00439033612996  
movzx 0.00991093653559 0.00000000000000 0.00000000000000  
ja 0.00000000000000 0.00609836462326 0.00000000000000  
adc 0.00371564502868 0.00339785532065 0.00271116030700  
xchg 0.00248970386401 0.00000000000000 0.00000000000000  
div 0.00207147435775 0.00589267069450 0.00000000000000  
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imul 0.00383031363694 0.00000000000000 0.00000000000000  
rep 0.00126879139224 0.00000000000000 0.00000000000000  
lodsw 0.00107727571039 0.00000000000000 0.00000000000000  
stosw 0.00100545732970 0.00000000000000 0.00000000000000  
clc 0.01149094091083 0.00000000000000 0.00000000000000  
stc 0.00381651698490 0.01305670552198 0.00000000000000  
test 0.00000000000000 0.00000000000000 0.03154629933991  
cld 0.00388283886887 0.00307752411317 0.00155738131141  
start 0.00020179056938 0.00572008164448 0.00634401538749  
jno 0.00002393946023 0.00000000000000 0.00000000000000  
rcl 0.00548213639288 0.00000000000000 0.00000000000000  
movsb 0.00270515900609 0.00000000000000 0.00000000000000  
lodsb 0.00062242596600 0.00000000000000 0.00000000000000  
stosb 0.00064636542623 0.00000000000000 0.00000000000000  
sar 0.00140238727500 0.00082913628495 0.00042902930886  
sbb 0.00115428773412 0.00130111848997 0.00006419363985  
ror 0.00400373046040 0.00282606560572 0.00000000000000  
jbe 0.00000000000000 0.01024525256707 0.00000000000000  
bound 0.00002950068107 0.00006242257420 0.00000000000000  
loop 0.00045484974439 0.00000000000000 0.00000000000000  
lodsd 0.00088576002854 0.00000000000000 0.00000000000000  
stosd 0.00155606491501 0.00000000000000 0.00000000000000  
js 0.00002393946023 0.00000000000000 0.00000000000000  
in 0.00001859403840 0.00026209056734 0.00000000000000  
std 0.00004787892046 0.00000000000000 0.00000000000000  
fld 0.00002393946023 0.00000000000000 0.00000000000000  
popf 0.00002393946023 0.00000000000000 0.00000000000000  
jnp 0.00000000000000 0.00008023980862 0.00008323461630  
ins 0.00000000000000 0.00000000000000 0.00008215182120  
fnstenv 0.00000000000000 0.00008131152831 0.00000000000000  
scasb 0.00002393946023 0.00000000000000 0.00000000000000  
retf 0.00000000000000 0.00016079666922 0.00008399708292  
cmc 0.00002393946023 0.00000000000000 0.00000000000000  
aad 0.00002393946023 0.00000000000000 0.00000000000000  
enter 0.00000000000000 0.00008131152831 0.00000000000000  
movsd 0.00002353094247 0.00000000000000 0.00008355371070  
jp 0.00002393946023 0.00000000000000 0.00000000000000  
repe 0.00004787892046 0.00000000000000 0.00000000000000  
jns 0.00000000000000 0.00008131152831 0.00000000000000  
fild 0.00002393946023 0.00000000000000 0.00000000000000  
fidiv 0.00000000000000 0.00008131152831 0.00000000000000  
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Table 24. HMM parameters (A, B, π) of the virus without dead code copying with N = 3 

N=3, M=87, T=136741 
π:  
0.00000000000000 0.00000000000000 1.00000000000000  
A: 
0.92839338311941 0.07160661688059 0.00000000000000  
0.03585375542259 0.89850624506005 0.06563999951736  
0.00005823039915 0.09313151352666 0.90681025607417   
B: 
call 0.00000000000000 0.00441613382699 0.08576566304392  
pop 0.00000000000000 0.05408490232953 0.05470811237037  
sub 0.09757405621157 0.06099135705007 0.04217142357619  
jz 0.00000000000000 0.00000000000000 0.05154796043242  
lea 0.00000000000000 0.02442545039823 0.02060407599871  
mov 0.16928513688234 0.47381033417281 0.11182579930031  
neg 0.00000000000000 0.00045499459038 0.00361345332983  
jnz 0.00000000000000 0.00000000000164 0.03572404187886  
xor 0.00070419389245 0.01384404338478 0.02770564839415  
rol 0.00000000000000 0.00128466709759 0.00250427493075  
dec 0.00000000000000 0.00673225742317 0.02323511407867  
cmp 0.00076220306220 0.00446994170610 0.05457530812780  
jmp 0.00920961259212 0.06712556797858 0.03978500846568  
push 0.00000000000000 0.07394660818842 0.16762059542512  
test 0.00362804675980 0.01030608264306 0.01127425058831  
add 0.00000000000000 0.12298870624639 0.06515733830152  
adc 0.00016071752857 0.00162484582109 0.00371605238089  
retn 0.00000000000000 0.00000000000000 0.04838775672754  
sar 0.00000000000000 0.00023215165513 0.00141081845623  
movzx 0.00020593375645 0.01168520500205 0.00476719183819  
and 0.10302654901066 0.01360798070885 0.01954835478095  
or 0.10372842051875 0.00863662107323 0.00322952878411  
fldcw 0.00000000000000 0.00270988889517 0.00000000000000  
pusha 0.00000000000000 0.00008297594549 0.01641601919164  
shl 0.10383141500605 0.01015828235549 0.00259894510714  
popa 0.00000000000000 0.00000000000000 0.02035812386691  
jb 0.00000000000000 0.00000000000000 0.01131261326238  
imul 0.00000000000000 0.00258084656682 0.00000000000000  
clc 0.00000000000000 0.00000000000000 0.01101491291337  
rcl 0.00000000000000 0.00007976046229 0.00515377097507  
rep 0.00000000000000 0.00139486863262 0.00008072016029  
shr 0.10029123647780 0.00251187295511 0.00269186633729  
sbb 0.00027961770664 0.00243569428346 0.00083147993406  
lodsd 0.00000000000000 0.00011831713882 0.00070222725899  
stosd 0.00000000000000 0.00000000000000 0.00018320021478  
stc 0.00000000000000 0.00000000000000 0.00732800859101  
cld 0.00000000000000 0.00210012848363 0.00203357265544  
inc 0.00000000000000 0.01129816855698 0.01402782855571  
div 0.00000000000000 0.00274214947725 0.00000000000000  
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jbe 0.00000000000000 0.00000000000000 0.00290830340956  
ja 0.00000000000000 0.00000000000000 0.00171750201352  
jnb 0.00000000000000 0.00000000000000 0.00302280354379  
ror 0.00000000000000 0.00056090070663 0.00389819989411  
movsb 0.00000000000000 0.00018853953071 0.00232003518421  
not 0.00000000000000 0.00139475046273 0.00353879197888  
start 0.00000000000000 0.00000000000000 0.00352660413443  
xchg 0.00000000000000 0.00144231485576 0.00042556167394  
lodsw 0.00000000000000 0.00000000000000 0.00103050120811  
rcr 0.00000000000000 0.00000000000000 0.00137400161082  
stosw 0.00000000000000 0.00000000000000 0.00096180112757  
loop 0.00000000000000 0.00010759967769 0.00028234223057  
movsx 0.00000000000000 0.00072586309692 0.00000000000000  
repe 0.00012309451679 0.00101902501266 0.00000000000000  
lodsb 0.00000000000000 0.00000000000000 0.00059540069802  
repne 0.00000000000000 0.00006452116417 0.00000000000000  
fld 0.00023001612580 0.00039654791766 0.00002903242821  
fstp 0.00045602501776 0.00019079257682 0.00000000000000  
shrd 0.00000000000000 0.00004839087313 0.00000000000000  
fmul 0.10584841949022 0.00028346239424 0.00000000000000  
fdiv 0.09838969982380 0.00019947028372 0.00000000000000  
stosb 0.00000000000000 0.00001170077347 0.00014368870672  
js 0.00000000000000 0.00000000000000 0.00002290002685  
in 0.00000000000000 0.00000000000000 0.00009160010739  
std 0.00000000000000 0.00000000000000 0.00004580005369  
jno 0.00000000000000 0.00000000000000 0.00002290002685  
popf 0.00000000000000 0.00009951793682 0.00001901548210  
bound 0.00000000000000 0.00000000000000 0.00004580005369  
jnp 0.00000000000000 0.00000000000000 0.00004580005369  
ins 0.00000000000000 0.00000000000000 0.00002290002685  
fnstenv 0.00000000000000 0.00001613029104 0.00000000000000  
scasb 0.00000000000000 0.00001613029104 0.00000000000000  
retf 0.00000000000000 0.00000000000000 0.00006870008054  
cmc 0.00000000000000 0.00000000000000 0.00002290002685  
fldz 0.00002121763590 0.00002162466282 0.00000000000000  
fadd 0.10201907433146 0.00002543691095 0.00000000000000  
leave 0.00003224337824 0.00000000000000 0.00002285376964  
aad 0.00000000000000 0.00000000000000 0.00002290002685  
enter 0.00000000000000 0.00000000000000 0.00002290002685  
movsd 0.00000000000000 0.00000000000000 0.00004580005369  
jp 0.00000000000000 0.00000000000000 0.00002290002685  
jns 0.00000000000000 0.00000000000000 0.00002290002685  
fild 0.00000000000000 0.00000000000000 0.00002290002685  
fidiv 0.00000000000000 0.00000000000000 0.00002290002685  
mul 0.00000000000000 0.00020969378355 0.00000000000000  
fst 0.00012871351642 0.00000000000000 0.00000000000000  
fdivr 0.00006435675821 0.00000000000000 0.00000000000000  
cmpsb 0.00000000000000 0.00009678174626 0.00000000000000  
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Table 25. HMM parameters (A, B, π) of the virus with most dead code copied with N = 3 

N=3, M=112, T=267955 
π:  
0.00000000000000 1.00000000000000 0.00000000000000 
A: 
0.90961917297138 0.08975476506203 0.00062606196659  
0.16278844214058 0.83662974533219 0.00058181252720  
0.00203565693629 0.00296737275980 0.99499697030392    
B: 
call 0.03340242052570 0.04112728877600 0.00000000000000  
pop 0.00049247351741 0.10069227451024 0.00205579749002  
sub 0.03198883708658 0.04453184519874 0.10149690582470  
or 0.00569552099412 0.00253280176145 0.10358288110428  
jmp 0.06844018056837 0.10773195666644 0.00117652102598  
push 0.00000000000000 0.26050410814581 0.00197780928625  
mov 0.60610920663406 0.18000930781713 0.17679799939390  
test 0.02007972208643 0.00110474220929 0.00154098572633  
lea 0.02556527840958 0.01489172008426 0.00000000000000  
neg 0.00029985676599 0.00137469233387 0.00000000000000  
movzx 0.01555110743423 0.00143847222504 0.00000000000000  
and 0.01099206987873 0.00990765183504 0.10019727020307  
fldcw 0.00088329378899 0.00044872875468 0.00000000000000  
jnz 0.01065089462651 0.00457439163072 0.00000000000000  
xor 0.01071385431240 0.01624638002724 0.00099218176261  
rol 0.00071916443324 0.00092202907328 0.00000000000000  
jz 0.02033761800840 0.00229533890581 0.00000000000000  
add 0.03929308400474 0.10671411456195 0.00183696532896  
adc 0.00089512511402 0.00209742585973 0.00013729369729  
retn 0.00000000000000 0.02598057250550 0.00000000000000  
sar 0.00024024157282 0.00077685174143 0.00000000000000  
rep 0.00069560725696 0.00022368202161 0.00000000000000  
shr 0.00505894290636 0.00130804841768 0.09956814041538  
shl 0.00858122482443 0.00309136464802 0.10079222536899  
jb 0.00140896880094 0.00401375032847 0.00006992784722  
imul 0.00020914018121 0.00190338137329 0.00000000000000  
dec 0.00590430588669 0.00911428841993 0.00000000000000  
clc 0.00000000000000 0.00565715499101 0.00000000000000  
rcl 0.00000000000000 0.00270508450714 0.00000000000000  
inc 0.01724803646332 0.00521405951870 0.00000000000000  
div 0.00046665719136 0.00088479927294 0.00000000000000  
sbb 0.00068920872227 0.00158769228981 0.00024058451061  
lodsd 0.00002161329984 0.00040783226498 0.00000000000000  
stosd 0.00000000000000 0.00009408989590 0.00000000000000  
stc 0.00000000000000 0.00376359583602 0.00000000000000  
cld 0.00130775685529 0.00099820664519 0.00000000000000  
popa 0.00000000000000 0.00815053723237 0.00000000000000  
pusha 0.00020005665856 0.00643612690604 0.00000000000000  
cmp 0.03913069912941 0.00202135521526 0.00000000000000  
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jbe 0.00117038365878 0.00000000000000 0.00000000000000  
ja 0.00090379626984 0.00000000000000 0.00000000000000  
jnb 0.00046571010328 0.00166275403349 0.00000000000000  
ror 0.00018295571818 0.00208011816837 0.00000000000000  
not 0.00072067122422 0.00126037942031 0.00000000000000  
jle 0.00135894547048 0.00000000000000 0.00000000000000  
jg 0.00048115772639 0.00000000000000 0.00000000000000  
jl 0.00056568543508 0.00000000000000 0.00000000000000  
js 0.00014569740258 0.00000696691874 0.00000000000000  
movsb 0.00027918621954 0.00082401994636 0.00000000000000  
start 0.00000000000000 0.00181123049608 0.00000000000000  
xchg 0.00014639238523 0.00061729413806 0.00000000000000  
lodsw 0.00000000000000 0.00052925566444 0.00000000000000  
rcr 0.00000000000000 0.00070567421925 0.00000000000000  
stosw 0.00000000000000 0.00049397195348 0.00000000000000  
loop 0.00000000000000 0.00022346350276 0.00000000000000  
setnz 0.00040313214914 0.00000000000000 0.00000000000000  
movsx 0.00361406683318 0.00177796950003 0.00000000000000  
repe 0.00141096252198 0.00000000000000 0.00000000000000  
jge 0.00051366838358 0.00000000000000 0.00000000000000  
setz 0.00013076523961 0.00003397663227 0.00000000000000  
jns 0.00005201705150 0.00000000000000 0.00000000000000  
cdq 0.00013654476019 0.00000000000000 0.00000000000000  
jp 0.00002629541291 0.00001124230748 0.00000000000000  
lodsb 0.00000000000000 0.00030579216168 0.00000000000000  
leave 0.00000000000000 0.00027050845071 0.00000000000000  
outsd 0.00000000000000 0.00004704494795 0.00000000000000  
shld 0.00003251065719 0.00000000000000 0.00000000000000  
outsb 0.00000000000000 0.00012937360686 0.00000000000000  
repne 0.00005201705150 0.00000000000000 0.00000000000000  
fstp 0.00017621498694 0.00034822065477 0.00031892825968  
fst 0.00006429696744 0.00000120624953 0.00003462852496  
fld 0.00013824276517 0.00045017479467 0.00008453276497  
shrd 0.00003901278863 0.00000000000000 0.00000000000000  
mul 0.00024057886319 0.00000000000000 0.00000000000000  
stosb 0.00000000000000 0.00008232865891 0.00000000000000  
in 0.00000000000000 0.00004704494795 0.00000000000000  
std 0.00000000000000 0.00002352247398 0.00000000000000  
jno 0.00000000000000 0.00001176123699 0.00000000000000  
idiv 0.00004551492006 0.00000000000000 0.00000000000000  
setl 0.00001905485471 0.00001257799443 0.00000000000000  
popf 0.00000000000000 0.00008232865891 0.00000000000000  
bound 0.00000000000000 0.00002352247398 0.00000000000000  
jnp 0.00000000000000 0.00001583199924 0.00002244459866  
ins 0.00000000000000 0.00000000000000 0.00003432509083  
fnstenv 0.00000000000000 0.00000000000000 0.00003432509083  
scasb 0.00000000000000 0.00000000000000 0.00003432509083  
retf 0.00000000000000 0.00003528371096 0.00000000000000  
cmc 0.00000650213144 0.00000000000000 0.00000000000000  
fldz 0.00001565117786 0.00004488848794 0.00006097059344  
fadd 0.00099439591424 0.00073438598041 0.10416377678639  
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fmul 0.00104298879866 0.00074563300951 0.10263872476798  
jo 0.00000000000000 0.00001176123699 0.00000000000000  
insd 0.00000000000000 0.00003528371096 0.00000000000000  
outsw 0.00000000000000 0.00001176123699 0.00000000000000  
arpl 0.00000000000000 0.00001176123699 0.00000000000000  
aad 0.00000000000000 0.00001176123699 0.00000000000000  
enter 0.00000000000000 0.00001176123699 0.00000000000000  
movsd 0.00000000000000 0.00002352247398 0.00000000000000  
fdivr 0.00001950639431 0.00000000000000 0.00000000000000  
fdiv 0.00111380342971 0.00081453028268 0.09945510750901  
fild 0.00000000000000 0.00004704494795 0.00000000000000  
fidiv 0.00000000000000 0.00001176123699 0.00000000000000  
fxch 0.00000000000000 0.00001099193210 0.00010522048362  
fucompp 0.00000000000000 0.00000000000000 0.00010297527248  
fnstsw 0.00000000000000 0.00000000000000 0.00017162545414  
sahf 0.00000000000000 0.00000000000000 0.00017162545414  
fnstcw 0.00000650213144 0.00000000000000 0.00000000000000  
fist 0.00001300426288 0.00000000000000 0.00000000000000  
fsub 0.00000000000000 0.00000000000000 0.00003432509083  
fucom 0.00000000000000 0.00000000000000 0.00003432509083  
fucomp 0.00000000000000 0.00000000000000 0.00003432509083  
cmpsb 0.00000000000000 0.00007056742193 0.00000000000000   
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Appendix C: Built-in Dead code instructions 
 

Built-in dead code leveraged from [5] 
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Appendix D: Equivalent instruction substitution 
 

Following equivalent instruction substitutions are leveraged from [5]. 
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