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Abstract
The aim of this study was to obtain nanomechanical properties of living cells focusing on human 
amniotic fluid stem (hAFS) cell using nanoindentation techniques. We modified the conventional 
method of atomic force microscopy (AFM) in aqueous environment for cell imaging and 
indentation to avoid inherent difficulties. Moreover, we determined the elastic modulus of murine 
osteoblast (OB6) cells and hAFS cells at the nucleus and cytoskeleton using force–displacement 
curves and Hertz theory. Since OB6 cell line has been widely used, it was selected to validate and 
compare the obtained results with the previous research studies. As a result, we were able to 
capture high resolution images through utilization of the tapping mode without adding protein or 
using flxation methods. The maximum depth of indentation was kept below 15% of the cell 
thickness to minimize the effect of substrate hardness. Nanostructural details on the surface of 
cells were visualized by AFM and fluorescence microscopy. The cytoskeletal fibers presented 
remarkable increase in elastic modulus as compared with the nucleus. Furthermore, our results 
showed that the elastic modulus of hAFS cell edge (31.6 kPa) was lower than that of OB6 cell 
edge (42.2 kPa). In addition, the elastic modulus of nucleus was 13.9 kPa for hAFS cell and 26.9 
kPa for OB6 cells. Differences in cell elastic modulus possibly resulted from the type and number 
of actin cytoskeleton organization in these two cell types.

Keywords
Atomic force microscopy; Osteoblast; Human amniotic fluid stem cells; Nanoindentation; Elastic 
modulus

 1. Introduction
Finding mechanical properties of biological samples, especially living cells, has been of 
great interest to researchers. Analysis of cellular mechanical properties can lead us to 
discover new methods of identifying various forms of cancers (Brandão et al., 2003; Cross et 
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al., 2007; Lekka, 2012) and other diseases (Suresh, 2006). In tissue engineering, probing the 
elasticity and adhesion of live cells can provide physical insight into the mechanical and 
chemical properties of biomaterials and scaffold materials (Simon et al., 2004). Many 
methods including magnetic twisting cytometry, traction force microscopy, micro-pipette 
aspiration, optical trap, optical stretcher, micro- and nano-needle insertion and atomic force 
microscopy (AFM) have been used to find the mechanical properties of cells (Bao and 
Suresh, 2003; Lim et al., 2006). Compared to the other methods, AFM indentation has 
become the principal technique in measuring the cell mechanical properties of surface layers 
and especially cells with high spatial precision (Casuso et al., 2011; Quist and Lal, 2012). 
Although there are some limitations in using AFM for the measurement of cell mechanics 
such as lateral drag of the cell by the tip, the calibration (Kirmizis and Logothetidis, 2010) 
and not ideally sharp probes (Wu et al., 2012), this method is the most widely used.

The elastic modulus of a living cell is usually calculated by producing force–displacement 
curves with data from indentation tests. The common analysis models for cell indentation 
are based on the Hertz theory (Hertz, 1882; Sneddon, 1965). This model is based on 
perfectly elastic behavior of cells during indentation (Weisenhorn et al., 1993). In the 
application to the AFM measurements the generally considered indenter’s geometries are the 
conical and spherical ones. Although nanoindentation is widely used to investigate the stem 
cell mechanical properties (Darling et al., 2008), these properties for some new types of 
stem cells have not yet been fully discovered.

In last few decades, main advancement has been facilitated by the discovery of stem cells, 
capable of converting to various cell lineages. Stem cells have been isolated from 
embryonic, fetal, and adult tissues and more recently, also from umbilical cord, placenta and 
amniotic fluid. Among the source of stem cells that have been studied, human Amniotic 
Fluid Stem (hAFS) cells have arisen as an attractive source of stem cells since 2007 (Siegel 
et al., 2008), as its procurement does not raise the ethical concerns associated with the use of 
human embryonic stem cells (Rodrigues et al., 2012a, 2012b; Siegel et al., 2007). In 
addition, hAFS cells have the advantage of being primitive cells with little known 
antigenicity and great expansion capabilities. These cells can be induced to differentiate into 
cells that represent each germ layer, such as adipogenic, osteogenic, myogenic, endothelial, 
neuronal, hepatic, and chondrogenic lineages (Cananzi et al., 2009; Joo et al., 2012). hAFS 
cells are becoming an important source of cells for regenerative medicine and tissue 
engineering. In this way, it is necessary to characterize its mechanical properties. In other 
words, although hAFS cells have many properties that support their clinical usefulness 
(Skardal et al., 2012), little is known about the mechanical properties.

In this study, the aim was to determine the mechanical properties of hAFS cells and compare 
them to murine osteoblast (OB6) cells as a reference using AFM imaging and indentation 
with the Hertz model. Specifically, we chose OB6 cells as a reference cell source since our 
laboratory focuses on OBs for the bone regeneration studies. The OB6 cells are well known 
cells with the previously known mechanical properties (Charras and Horton, 2002; Darling 
et al., 2008) to verify the result of current technique and discuss the possible source of 
differences with other papers. Both nucleus and cytoskeleton play an important role in cell 
deformation and mechanical properties. Thus, indentation was done at nucleus and 
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cytoskeleton regions of the cells. The tapping mode was used for cell imaging in 
physiological aqueous environment without using fluid cell or any other specific 
equipments. In addition, this physiological aqueous environment provided the advantage of 
tapping mode without requiring adhesive proteins to attach cells on the substrate. In 
addition, images obtained from AFM were compared with fluorescence microscopy images 
to verify the viability of cells used for AFM studies. Generally, there were two aims in this 
paper. First, a new and simple technique of imaging and indenting for living cells in tapping 
mode was introduced. Secondly, the elastic modulus for hAFS cells, as an attractive new 
stem cell source, was determined using the above technique and validated using OB6 cells.

 2. Materials and methods
 2.1. Materials

The hAFS cells (passage 21) were kindly provided by Wake Forest Institute for Regenerative 
Medicine (Winston-Salem, NC, USA). Chang media containing alpha minimum essential 
medium (α-MEM) (GIBCO), 18% Chang Medium B (Irvine Scientific), 2% Chang Medium 
C (Irvine Scientific), 15% Fetal Bovine Serum (FBS) (GIBCO), and 1% Pen Strep (GIBCO) 
were used to prepare cell culture medium. OB6 cell vials were received from Dr. Lecka 
Czernik at the University of Toledo. α-MEM supplemented with 10% FBS and 1% 
penicillin–streptomycin was used to culture the cells. A LIVE/DEAD cell assay kit 
(Invitrogen) was used to identify cell viability and morphology. To prepare AFM samples, 
microscope slides with 1 mm thickness (Fisher Scientific) were used.

For consistency, we applied the same preparation procedures for both types of cells. Small 
pieces of microscope slides (1 cm × 1 cm) were cleaned with ethyl alcohol and deionized 
water and kept under UV light for 90 min. Approximately 10,000 cells were counted by a 
hemocytometer after trypsinization from the original plate and plated into 35 mm petri dish 
filled with small pieces of sterilized microscope slides. The petri dish was incubated (37 °C, 
5% CO2) for 36 h before experiment.

 2.2. Instruments
AFM indentation testing and imaging were performed with a commercial instrument Veeco 
Multimode with nanoscope V Controller with J scanner. The maximum Z range for this 
scanner was about 6 μm which is usually higher than the maximum height of cells (Charm et 
al., 2002; Costa, 2006; Fung et al., 2010). The NanoScope software V6.13 was used to 
control imaging and testing parameters. In this experiment, cantilevers B and D from probe 
SNL-10 (Bruker Co.) were used with a spring constant of 0.12 N/m and 0.06 N/m, 
respectively. The tip half opening angle was assumed to be 25° from the specifications of the 
manufacturer. This sharpened probe is suitable for performing experiments in both air and 
fluid while applied load is in a range of a few nanonewtons for better resolution (Vié et al., 
2000; Wu et al., 2012). Fluorescence microscopy (Olympus, FSX100) was used to obtain 
cell images when cells were treated as the LIVE/DEAD cell as previously described in detail 
(Jayasuriya and Bhat, 2010). Data were statistically analyzed with one-way ANOVA. p<0.05 
was considered as statistically significant.
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 2.3. AFM imaging and indentation test
To perform the AFM test, a small piece of microscope slide covered by cells was attached to 
a conductive metal plate on top of the AFM scanner. In order to minimize the viscosity 
effects, low scanning speed of 1 Hz was used for imaging (Costa et al., 2006; Rotsch and 
Radmacher, 2000). By indenting slowly enough, the viscous contributions will be very small 
(Zhu et al., 2011). Then, the force measurements will only be demonstrated by the elastic 
behavior of cell. In the first series of experiments, we tried to apply AFM contact mode in 
air and fluid using fluid cell to obtain better resolution. However, due to the lack of strong 
adhesion between cells and microscope slides, the cells were detached and the test could not 
be conducted completely as expected (Simon and Durrieu, 2006). Furthermore, air bubbles 
were a problem as they sit on the cantilever when fluid cell is used as expected from 
literature (Jena and Hörber, 2002). Fig. 1 shows an image captured in air using the contact 
mode. After some tip tracing–retracing movement, cells were detached from the glass 
substrate due to the low adhesion forces.

In the next step, as schematically shown in Fig. 2, the culture medium was injected on the 
cell surface by using a small syringe needle. A drop of culture medium covered the entire 
cell and cantilever. By applying this modified technique, cells were attached to the glass due 
to the adhesion force between the small drops of the culture medium and glass surface. Cell 
attachment to the surface is vital for cell survival and growth (Basson et al., 1992; 
Bourdoulous et al., 1998). Therefore, all parts of the experiment were completed within 1–2 
h before cells started to die and detach from the small pieces of the glass slides (Allison et 
al., 2010; Favre et al., 2011; Simon et al., 2003). By using a force mode modulus, an 
indentation with low applied loads was done on the surface of the cell to obtain its elastic 
modulus with the Hertz model. The AFM indentation experiment required monitoring the 
deflection of the cantilever probe as it indents the cell surface. The resulting interaction force 
bends the cantilever, which is detected by the motion of laser spot reflected off the back of 
cantilever onto a four-quadrant photodetector. For each kind of cell, the indentation test was 
done at least 20 times. Before plotting a force indentation curve, the sensitivity of the AFM 
cantilever should be calculated. Thus, we indented a glass substrate using the same tip. Glass 
is comparatively hard enough to be considered as a rigid substrate.

 2.4. Analysis of data
A simple model of quantifiying the elastic response of materials is based on the Hertz model 
which has been frequently used in previous cell study studies (Chen et al., 2010; Kelly et al., 
2011; Titushkin and Cho, 2007). The Hertz model predicts elastic modulus of the sample 
with the assumption of perfect elastic behavior and indenter shape of a rigid sphere or cone. 
Regarding the conical shape of the tip used in this set of experiments, the equation relating 
force and depth for indentation with a cone is given by

(1)
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In this equation, F is the load exerted by AFM tip, E is Young’s modulus of the cell, α is the 
half opening angle of cantilever tip and υ is Poisson’s ratio. Usually, υ = 0.5 is assumed for 
cells and other perfect elastic materials (Costa, 2003). Thus, cells are considered as an 
incompressible material.

 3. Results and discussion
 3.1. Cell imaging and characterization

Fig. 3 shows fluorescence microscopy images of hAFS and OB6 cells. Live and healthy cells 
were stained as green. Investigation of the hAFS cell morphology showed distinct regions. 
hAFS cells were well-elongated in one direction as expected (Kim et al., 2007; Kolambkar 
et al., 2010) and the length of cells were normally longer than 200 μm. hAFS cell area was 
significantly larger compared with OB6 cell. Microtubules and filamentous structures spread 
out over hundreds of micrometers prevented the capture of the image of a whole hAFS cell 
because the maximum length that can be covered by AFM scanner was 100 μm (Fig. 4A). In 
addition, the cell nucleus has been identified with an asterisk (*) in this figure. Fig. 4B 
demonstrates the height distribution of the cell along a line that is shown in Fig. 4A. By 
comparing the height profile of two cells (a and b) shown in Fig. 4A, it was clear that by 
increasing the distance from the nucleus, the cytoskeletal height of the cell decreases. 
Detailed cytoskeletal fiber height is shown in the sub-figure of Fig. 4B. These cytoskeletal 
filaments play an important role in measuring the mechanical properties of cells (Costa, 
2006). There were less than 10 filaments in a certain direction. According to this graph the 
approximate fiber height was around 50 nm. Generally, the nucleus portion of the cell 
constitutes its highest part (Haga et al., 2000). The approximate height of the hAFS cell 
nucleus was between 1 μm and 2.7 μm obtained by AFM.

Two elongated hAFS cells are shown in Fig. 4C obtained from AFM. Actin filaments and 
nucleus are visible in this figure. Thin and long actin filaments were also separately formed 
as indicated by arrows in this figure. In Fig. 4D, the three-dimensional image of Fig. 4C is 
presented. The average height for the nuclei was estimated around 1.3 μm for this cell which 
was the maximum thickness and height in the cell. In addition, the morphology of cells 
obtained with AFM imaging was consistent with fluorescence microscopy images asserting 
that cells were alive during the AFM test and the morphology has not been changed.

In tapping mode, taking good images is usually more difficult than in contact mode 
(Goldsbury et al., 2001). Although no external adhesive proteins or flxation methods were 
used to adhere cells to the glass, cells did not detach through AFM tapping mode. This was 
due to the injection of culture medium during the experiment. In this method, cell and tip 
were occupied by the big drop of cell culture medium which reduced the effect of capillary 
forces (Zitzler et al., 2002). The same method was applied for OB6 cells. Fig. 5 
demonstrates the cytoskeleton height of OB6 cells in two paths within the same cell. Path 1 
was selected closer to the cell nucleus compared with path 2. The average cell height in this 
path was larger than path 2 which means that as we get closer to the cell nucleus, the cell 
height increases and nucleus part was the highest cell part in both kinds of cell. The height 
of OB6 nucleus varied from 1.5 μm to 3.5 μm. OB6 cells had more actin filaments than 
hAFS cells. For OB6 cells, filaments had less height compared to hAFS cells and were more 
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scattered. In other words, the filaments of one OB6 cell were distributed over approximately 
25 nm while in hAFS cells the cell filaments were distributed over 10 nm. The data obtained 
in this part are in agreement with Simon et al. (2003, 2004) papers, despite the fact that they 
used human bone marrow stromal cells.

 3.2. Cell mechanical properties
Cells are soft and considered as the elastic materials under small loads and AFM indentation 
of live cells does not present evidence of cell plastic deformations. This is the main reason 
that usually very low force (~nN) is applied to the cell surface in order to obtain elastic 
modulus. A concern during the cell indentation experiment is to minimize the effect of glass 
substrate on force–displacement curves. To compensate for this, it is attempted to keep 
indentation depths equal to or less than 15% of the cell height (Jung et al., 2004; Mathur et 
al., 2001). In addition, we performed indentation tests at the nucleus and cytoskeleton of 
cells. Based on our findings, at the nucleus, cells were thicker than in the other parts. 
Another property of engaging indentation upon the nucleus is that the cytoskeletal structure 
is more homogeneous than the other parts of cell (Sirghi et al., 2008). Fig. 6A shows a 
schematic force–indentation curve of the nanoindentation experiment. As expected from the 
literature (Agnihotri and Siedlecki, 2005; Sen et al., 2005), adhesion jump occurred in both 
kinds of cells due to the adhesion. For hAFS cells this jump is higher than for OB6 cells.

Furthermore, Fig. 6B and C demonstrates a typical force–indentation curve for hAFS and 
OB6 cell nucleus indentation, respectively. At almost similar loads, indentation depth for 
hAFS cells was greater than for OB6 cells (approximately 1.6 times) and led to the lower 
elastic modulus based on the Hertz equation. Loading–unloading curves almost overlaped. 
This observation is in agreement with previous studies (Charras et al., 2001; Chen et al., 
2010; Favre et al., 2011; Svaldo Lanero et al., 2006).

All applied forces were between 0.6 nN and 0.9 nN depending on the cantilever used. The 
narrow load range is due to the small changes in sensitivity and spring constant of the AFM 
tip during the indentation test and the two different tip spring constants. Comparison 
between elastic modulus of hAFS cells at nucleus and cytoskeleton revealed Young’s 
modulus at edges consisting of actin filaments and microtubes were almost double the 
nucleus. It has been well established that the actin fibers promote overall cellular elasticity 
(Kagiwada et al., 2010; Sirghi et al., 2008).

Final results of elastic modulus are shown in Fig. 7. Cell population properties were well 
described by log-normal and Gaussian distributions. Both functions predicted approximately 
same value for elastic modulus of each case. Based on Gaussian fit, average elastic modulus 
of hAFS cells was 32.9±3.66 kPa at the cytoskeleton region and 13.9±2.25 kPa at the cell 
nucleus. Additionally, the average elastic modulus of OB6 was 26.9±3.41 kPa at nucleus 
region and 42.8±3.44 kPa for cytoskeleton. These values were in the range of elastic 
modulus previously reported for cells (Bao and Suresh, 2003). Based on the presented 
results, significant difference (p<0.05) was observed in the elastic modulus of nucleus and 
cytoskeleton for both kinds of cells.
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Although some papers reported the same range values of elastic modulus for cells 
(Collinsworth et al., 2002; Yourek et al., 2007), some of the previously published 
investigations showed significantly lower elastic modulus (Darling et al., 2006, 2008; Takai 
et al., 2005). For instance, the average reported value for murine osteoblast cells is 14 kPa at 
cell nucleus (Charras and Horton, 2002) which shows a significant difference from the 
present results. This discrepancy reflects intrinsic differences among both cell lines and 
experimental setup. The main reason can be attributed to variations in methodology. For 
instance, the spring constant of the cantilever and the applied force (Aryaei et al., 2012; Qian 
et al., 2005) impress the obtained Young’s modulus value. Furthermore, the method of 
testing has remarkable effects (Ruiz et al., 2012).

It has been demonstrated that (Nikkhah et al., 2011) culture conditions has a great influence 
on elastic properties of cells and composition of the growth medium can activate or 
deactivate certain proteins which subsequently promote focal adhesions and actin stress fiber 
formation that affect the overall cell elasticity. Moreover, it has been shown that stress 
relaxation (i.e. viscoelastic properties) of cells before AFM indentation has a great effect on 
the elastic modulus and a modified Hertz model (thin-layer model) is applied to describe the 
behavior (Darling et al., 2007).

The other factors are the indentation depth (Lekka et al., 2012; Pogoda et al., 2012) and 
AFM tip size/shape (Ng et al., 2007). Elastic modulus obtained based on small indentation 
depths is described as the regions rich in actin filaments while for large indentation depths, 
the modulus represents the stiffness of a whole cell which is usually lower than actin 
filaments network. In addition, using different shape and size of AFM tips has a significant 
effect on elastic modulus. Using sharper AFM tip in this study would be another source of 
difference with some other published results. Nanosized tips can sense actin filaments, 
mitochondrion and microtubules leading to higher elastic modulus of the cells. On the other 
hand microsized tips can contact the bigger area in many parts of cells. The measured elastic 
modulus is the average of the different parts of the cells.

 4. Conclusion
The goal of this article was to find the elastic modulus of hAFS cells as a novel source of 
stem cells and compare its mechanical properties and cell morphology with OB6 cells as one 
of the widely used cell lineages. In addition, we presented a new method for cell imaging 
and indentation in an aqueous environment. In the new method, we tried to eliminate the 
inherent concerns of the current method of cell imaging and indentation. Our results 
displayed that hAFS cells were well elongated cells at the selected timepoint and their 
nucleus heights are lower than those of OB6 cells. Moreover, OB6 cells demonstrated higher 
number of filaments compared with hAFS cells.

Using the Hertz model, the elastic modulus of hAFS cells was reported to be double at the 
cytoskeleton part compared with the nucleus region. Furthermore, the highest elastic 
modulus was obtained for OB6 cytoskeleton and the lowest one was for hAFS cell nucleus. 
However, there are several parameters than can affect the elastic modulus values and further 
investigations need to be done to verify the current results.
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Fig. 1. 
Detachment of OB6 cells observed during imaging with AFM contact mode. The arrow 
shows cell detachment line induced by the tip motion.
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Fig. 2. 
Test setup configuration for AFM imaging and indentation. During the imaging and 
indentation, the moisture was injected to the surface.
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Fig. 3. 
(A) Morphology of hAFS cells, (B) OB6 cells, treated with LIVE/DEAD cell assay. Arrows 
show the cell nuclei. Different parts of cells such as filaments, microtubes and nucleus are 
visible. (For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)
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Fig. 4. 
(A) Structural morphology of hAFS cells plated upon glass slides after 36 h, (B) height 
profile of the cell cytoskeleton throughout the indicated line, (C) cytoskeleton structure of 
hAFS cell, and (D) 3D image of hAFS cell. In the last two figures, the discrete actin 
filaments are shown by arrows.
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Fig. 5. 
(A) Structural morphology of OB6 cells plated on glass slides after 36 h and (B) height 
profile of cell cytoskeleton along the two indicated path lines.
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Fig. 6. 
(A) Schematic figure of force–indentation curve, typical force–indentation curve for (B) 
hAFS cell, and (C) OB6 cell.
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Fig. 7. 
Young’s modulus distribution of hAFS cells (A) at cytoskeleton region, (B) at nucleus 
region, and for OB6 cells (C) at cytoskeleton region, and (D) at nucleus region.
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