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Graph Classification with kernels and embeddings.
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Abstract—In the Graph classification problem, given is a
family of graphs and a group of different categories, and we
aim to classify all the graphs (of the family) into the given
categories. Earlier approaches, such as graph kernels and graph
embedding techniques have focused on extracting certain features
by processing the entire graph. However, real world graphs
are complex and noisy and these traditional approaches are
computationally intensive. With the introduction of the deep
learning framework, there have been numerous attempts to create
more efficient classification approaches. For the experiments, we
use eight publicly available real world datasets, ranging from
biological to social networks. For these datasets we provide results
using a graph kernel algorithm and a spectral decomposition of
Laplacian graph approach.

Keywords - Graph Classification, Graph Kernels, Spectral
decomposition, graph Laplacian

I. INTRODUCTION

Graphs can be used to represent most real-world data.
Objects can be denoted as nodes of the graph and edges can
be used to represent relationship between them. Graphs are
used almost in every field. In social networks, graphs are used
to provide online recommendations, implement newsfeed and
calculate page rank [16]. In the field of neuroscience, neurons
are denoted by nodes and connections between them as edges.
These graphs are then used to analyse the functionality of
brain networks [2]. In chemical engineering, covalent struc-
tures are represented as graphs [8]]. Hydrocarbon structure,
protein structure are represented in the form of graphs in
bioinformatics field [14]. There are many more applications
in other fields. These prove the importance of working with
graphs.

Graph mining involves various tasks such as node classifi-
cation, graph classification, link prediction, graph embedding,
community detection. Since the introduction of machine learn-
ing approaches, there have been many attempts to discover
useful information present within a graph. For applying such
algorithms to graph domain, there should exist meaningful
ways to compute similarity measures between graphs. Graph
problems are not easy to solve. For example, the problem of
finding maximum number of common subgraphs is computa-
tionally intractable. But graph similarity can be computed in
various ways and the similarity measures need not be exact
[7]. Approximate similarity measures are sufficient to work on
graph related tasks. Even though there is significant progress
in the field of graph mining, extracting graph features that
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truly represent the underlying graph structure still remains a
challenge.

Problem Statement Graph classification is the problem of
determining the category or target label of the graph. If we
have a dataset consisting of many input graphs, the problem
is to classify each of the graphs to their correct category or
target label. For example, in the case of chemical compounds,
nodes represent the atoms and edges represent bonds between
the atoms. The classification problem might be to determine if
the chemical compound is toxic or non-toxic by looking at its
structure. The model would be trained with known examples of
toxic and non-toxic compounds. When the model encounters
an unknown or new sample, it should predict whether it is
toxic or non-toxic.

Real world graphs are large and complex. They are known
to contain lot of noise elements as well. These noise elements
do not add any valuable information. It is crucial to eliminate
them, else they might introduce wrong insights. The classifier
model should be capable of handling large graphs as well has
eliminate insights obtained from noise elements. The model
should be robust, efficient to compute and not consume too
much space.

Given a dataset of input graphs G = {G1,G2,Gs,...,Gn},
and their corresponding labels, the task is to build a model
that learns from these graphs and predicts the label of new,
unseen graphs. Graph features are computed and compared
to make prediction for these new graphs. A popular approach
is the usage of graph kernels, which focuses on calculating
occurrences of different patterns in the input graphs. These
include counting shortest-paths, performing random walks
on the graphs, etc. Graphs which share lot of features are
considered as similar and are placed in the same category
[15].

Following are few of the challenges encountered during
the dataset processing: (i) If the dataset is partially labeled,
learning from the input graphs might lead to inaccurate in-
formation, (ii) If dataset is collected from multiple sources,
then aggregation can cause information inconsistency, (iii) If
the dataset is collected using some hardware instruments, care
must be taken to ensure these instruments are not faulty [11],
(iV) Dataset collected might be huge. Processing it efficiently
by eliminating noisy features might be difficult.

Applications of the Graph Classification problem. Some
of the applications of the graph classification problem are in:



Bioinformatics and Chemoinformatics, for predicting the func-
tion of a protein structure, predicting if the cells are cancerous
or not, predicting if a protein is enzyme or not, checking the
toxicity of a chemical compound. Social Network analysis,
where the users of social networking sites such as Facebook or
LinkedIn are represented as nodes and the interaction between
them is captured using edges. Such networks help in providing
recommendations for a page or user account to follow [16].
In this paper, we have performed experiments focusing on
improving the graph spectrum algorithm as well as kernel
graph convolutional neural networks. We compare our results
with a baseline algorithm using Weisfeiler-Lehman kernel as
well as related previous work.

II. RELATED WORK

Graphs have been of great interest for a long time. Most
earlier approaches dealt with identifying if two graphs are
identical or not. This problem is hard to solve and until
recently it was not known to be either tractable or intractable.
In 2016, the author of [1]], showed that graph isomorphism can
be solved in (exp((logn)?™M))) time. That is, we can compute
if graphs are identical or not in quasipolynomial time. In our
problem, we are not interested in knowing if two graphs have
same structure or not. We want to explore if two graphs are
similar. This paves path for finding a more faster, efficient
approach for our classification.

There are many approaches proposed for the task. Initial
approaches would make lot of assumptions about the dataset.
Most of them lacked a proper embedding technique. They
processed only few nodes which they assumed to be important
and also had certain assumptions about the graph data like
its labeled or unlabeled, weighted or unweighted. Embedding
techniques should be good enough to capture the relationship
between nodes and retain the structure of the graph [L1].
There are several graph embedding techniques. Using these
embeddings, the graphs are represented in the form of a
vector or group of vectors. Working on vectors are conve-
nient and easier than processing the entire graph. Also, most
programming languages support several packages to transform
vectors. Approaches like DeepWalk and Node2Vec [3] perform
random walks on the graph to capture information about their
neighborhood. The embeddings should capture meaningful
information from the graphs such as the interaction between
subgraphs and neighborhood information for a node.

In [9]], the authors define the normalized laplacian of a graph
inorder to extract features of the graph. This method is further
explained and extended in section [[II-B]

Other techniques focus on developing a greedy algorithm
for the comparison between two graphs. To compare two
graphs G and G, all we had to do is search each subgraph
from G in G’. If all the subgraphs are present, we would
declare they are similar else they are not similar. With the
advancements in machine learning, many attempts were made
to incorporate them to the field of graphs. The most famous
among these approaches is the use of graph kernel [12]]. The
kernel approach computes a similarity matrix internally and

passes this to a classification algorithm. There are several
kernels proposed over the past few years. We have wide
range of kernels ranging from Random walks, Shortest-path
to Weisfeiler-Lehman kernels [[18]].

Until recently, graph kernels dominated the graph classifi-
cation. All graph kernels are developed with the same generic
idea. They are represented in the form of a matrix which can
then be passed onto a kernel-based classifier. The challenge is
to develop a kernel function which can be computed relatively
faster. The similarity function need to be symmetric and
positive semidefinite.

Random walks kernels are one of the oldest graph kernels
proposed. The basic idea is to count the common walks in the
graphs and compare them [5]. Product is computed between
the two graphs called as direct product graph. But this method
is too slow and its complexity amounts to O(n). The walks
may iterate over the same nodes again and leads to tottering
effect. Many approaches were later proposed to improve the
random-walk kernel. Notable among them is the cyclic-pattern
kernel [4]. In this method, a graph is decomposed into many
cyclic patterns. We compare the two graphs by comparing the
number of cyclic patterns which appear in both the graphs.
Computation power involved is low, but it does not work well
for all the graphs. It works good only in the presence of simple
cycles.

Instead of focusing on walks, focus shifted to paths [17].
Label enrichment techniques were developed to improve run-
time for especially graphs will simple labels [10]. Also,
optimizations were performed using Singluar Value Decom-
position (SVD) to generate lower rank matrices. Linear-
algebra concepts were applied along with Kronecker product
to reduce complexity to O(n?). Another major graph kernel
developed was the shortest-path kernel. Computing all-path is
not tractable, but shortest path between all pair of vertices can
be computed in O(n3). For a given graph, its all-pair shortest
path matrix is computed. Another improvement made was to
compute only k-shortest paths instead. Though the runtime
was improved, it was still not fast enough.

The Weisfeiler-Lehman (WL) kernel by [[13], outperformed
all the graph kernels developed till then on most standard
datasets. Specifically, the subtree variant, compared each label
of the graph by using a compressed form. Computation was
low since the labels were compressed and hashing was done.
Desiging the kernel function dictates how fast the method
will perform. It’s crucial to develop a function which can
computed easily. Many other kernels where developed later
like the optimal assignment kernel and graphlet kernels.

III. METHODOLOGY

Given a collection of graphs G = {G1,G2,Gs,...,Gn},
where each G; = (V;, E;) has V; vertices and F; edges, and
their target labels, the graph classification problem aims to
classify unknown graphs into appropriate categories. We begin
each of our approach by building a model trained on the input
dataset. The model should capture the relationship between
the structure of a graph and its target label. When the model



is given an unlabeled graph as input, it should determine the
correct category of the graph.

A. Weisfeiler-Lehman Subtree Kernel

Graph kernels are one of the most important approaches
used for graph classification. There are several kernels avail-
able, but we will be using the WL Subtree kernel for our
experiments. Graph kernels make use of the kernel trick to
reduce dimensionality. In each step of the algorithm, labels
of the node are renamed with a set of labels formed by
combining the immediate neighbors. The labels are renamed
to a compressed version. The steps are repeated until the two
graph’s labels vary.

Graphs kernels are a supervised approach to perform classi-
fication. Typically, a kernel matrix is computed upon applying
a graph kernel. This matrix is passed to a kernel-based machine
algorithm like Support Vector Machines (SVM) to perform
classification. The WL Subtree kernel is based on WL test for
isomorphism between two graphs.

The WL Subtree kernel is an extension of the idea of the 1
dimensional WL test for graph isomporhism. We start with all
the input graphs in the dataset. Algorithm [I)is used to compute
the kernel.

Algorithm 1 One iteration of the Weisfeiler-Lehman subtree
kernel computation on N graphs

1: Multiset-label determination

o Assign a multiset-label M;(v) to each node v in G
which consists of the multiset {l;_1(u)|u € N(v)}.

2: Sorting each multiset
o Sort elements in M;(v) in ascending order and con-
catenate them into a string s;(v).
e Add l;_1(v) as a prefix to s;(v).
3: Label compression
e Map each string s;(v) to a compressed label, using
a hash function f : ¥* — ¥ such that f(s;(v)) =
f(s;(w)) if and only if s;(v) = s;(w).
4: Relabeling
e Set l;(v) := f(s;(v)) for all nodes in G.

In this case, the algorithm runs in O(hm) time. In the
first step, we compute the multiset label /; for all the N
graphs within the dataset. All the graphs are processed si-
multaneously and operations are performed in parallel in all
the h iterations. We obtain the neighborhood set for a given
node and concatenate all their names into a single string in
the second step. The neighbors of a node are sorted before
adding to the multiset using radix sort. Let f denote the
function that represents the mapping of neighborhood strings
to a compressed label. Functio f can also be implemented
using a perfect hash function. The time complexity would be
linear and is equal to O(Nn+ Nm) = O(Nm). This denotes
the sum of the length of the string an the current alphabet. In
the third and fourth step, we are compressing the label and
renaming it.

With this, we complete the first iteration in our h iterations.
At the end of each iteration, we would be computing a new
feature vector for both the graphs. We compare the original
graph with the new graph. We count the labels newly formed.
We initially set a threshold for the labels. If the labels vary
more than the given threshold, then the algorithm terminates
and we say that the graphs are not identical. If not, we continue
our iterations till we reach h iterations.

B. Graph Embedding using Laplacian Decomposition

Since a graph is non-linear, we need to extract features from
the graph that captures information within it.

There are mainly two kind of graph embeddings. One
focuses on embedding the entire graph and the other embeds
nodes. We will be working with the entire graph embedding
to perform classifications. We perform experiments using the
spectral features of a graph as descibed in [9]. We derive
features from the graph spectrum and pass it as input to a
classifier. We have experimented with various classifiers rang-
ing from Support Vector Machines to Multi-layer Perceptrons.

Assume we have a set of undirected and unlabeled collection
of graphs G = (V, E), given as a boolean adjacency matrix
A € {0, 1} which indicates 1 if there exists an edge between
two nodes or 0 otherwise. Similarly a degree matrix D is
constructed which contains degrees for each node. We assume
the graph is connected. If it is not, then we extract the largest
connected component from the graph.

In [9], the authors define the normalized laplacian of a graph
by L =I— D '/2AD1/2, where A is the adjacency matrix
and D is the degree matrix. The pseudocode for the model is
given in Algorithm 2] There are three steps involved to obtain
the spectral features.

Algorithm 2 Spectral decomposition of graph Laplacian

1: For graph G = (V, E) with V vertices and E edges, derive
the following:
« A boolean adjacency matrix A € {0, 1}VIxIVI,
e A degree matrix D = diag(Al) of node degrees.
2: Derive normalized laplacian for the graph
o If G is not connected, then extract the largest con-
nected component.
o Compute laplacian of G as: L = I — D~Y/2AD~1/2
3: Derive spectral features of the graph
o Perform eigenvector decomposition on the graph and
obtain k smallest positive eigenvalues of L.
« If graph has less than k nodes, pad zeroes to the right
end of the vector.

4: Provide the spectral features as input to the classifier.

The Laplacian matrix computed might be huge for large
graphs. Instead of considering the entire L matrix, we can
focus only on the relevant elements which give us information
about the graph. For this, we perform eigen decomposition of
the matrix. The L matrix is now split into eigenvectors and
eigenvalues. We chose the eigenvector which is the largest and



its corresponding eigenvalue. The spectral features are defined
by the eigenvlaues. These form the basis for comparison
between two graphs. If the graphs are similar, then their
corresponding eigenvectors are similar. They might just be a
permutation of one another.

The spectral features are crucial for detecting similarity be-
tween graphs. From the eigenvalue decomposition performed
earlier, we will choose only the k& smallest eigenvalues. These
eigenvalues need to be positive as well. If there are less than
k eigenvalues, we append required number of zeroes to the
vector. Finally, we sort the values. This vector represents the
information in the graph. This is provided as input to a chosen
classifier.

The method is fast and comparable with benchmark al-
gorithms. Since the eigenvalues of the laplacian matrix lies
between 0 and 2, preprocessing of the graph wouldn’t take
much time and therefore the model is fast.

IV. EXPERIMENTAL EVALUATION

Datasets

We will be working with eight publicly available real-
world datasets as summarized in Table [l Two of them are
social networks with movie collaborations (IMDB-BINARY
and IMDB-MULTI) and the rest are from Biology.

The above benchmark datasets for graph kernels are col-
lected from [6l], where n is the number of nodes, m is the
number of edges, and N is the number of graphs.

TABLE I: Dataset statistics and properties.

Dataset Graphs | Avg. Nodes | Graph labels
NCI-1 4110 29.8 2
MUTAG 188 17.9 2
PTC 344 25.5 2
ENZYMES 600 32.6 6
PROTEINS 1113 39.1 2
IMDB-BINARY 1000 19.77 2
IMDB-MULTI 1500 13 3
DD 1178 241 2

Results for the Weisfeiler-Lehman Subtree Graph Ker-
nel

The graph kernel approach is used as a baseline for our
experiments. There are many graph kernels available: Random
Walk, Shortest-Path, Weisfeiler-Lehman, Optimal Assignment,
Weighted Decomposition and many more. Among these ker-
nels, Weisfeiler-Lehman subtree kernel provides competitive
results. It’s accuracy levels are comparable to benchmark
models and its runtime is faster for smaller datasets. For the
above reasons, we have used Weisfeiler-Lehman (WL) subtree
kernel as our baseline algorithm.

For implementing this kernel, we used the popular Python
package "graphkernels”.

Table[Ml] provides a summary of accuracies achieved with the
WL subtree kernel. These results will be used as a baseline
for our graph embedding approach.

Results for the Graph Embedding using Laplacian
Decomposition

TABLE II: Experimental accuracy with Weisfeiler-Lehman
subtree Kernel.

Dataset NCI-1 MUT. PTC ENZ.
Accuracy 80.13 82.05 56.97 52.22
Dataset PROT. | IMDB-BIN. | IMDB-M. DD
Accuracy | 72.92 68.6 48.13 71.3

We have used the eight datasets described previously for
our experiments. For building the classifiers, we make use
of the machine learning library scikit-learn in Python. The
classifiers used for obtaining the results are: AdaBoost (AB)
Classifier, ultilayer Perceptron (MLP), k-Nearest Neighbors
(k-NN) Classifier, Gaussian Naive Bayes (GNB) Classifier,
Decision Tree (DT) Classifier,Random Forest (RF) classifier
and Support Vector Machine (SVM) Classifier.

Hyperparameters were tuned to obtain better results with
each classifier. The embedding dimension is set to the average
number of nodes for each dataset. To compute accuracy of
the model, k-fold cross validation is used. We have set k=10
for our experiments. This means the dataset is divided into
ten folds. Nine of the folds act as training set, while the
remining one is the test set. This is repeated for all the 10
folds and the accuracy of the model is the average value
across all the folds. The results for each of the classifier is
tabulated in Table [III

We can notice that Random Forest classifier gives very
good results. AdaBoost classifier was first constructed with
decision trees. But upon replacing it with Random Forest
as weak learner, we get better results. For getting the right
parameters, we focus on Random Forest classifier and vary the
depth, number of observations and estimators. We can choose
the exact value of each hyperparameter and pass this to our
AdaBoost classifier.

By performing the above experiments, we set the following
hyperparamters for the Random forest classifier within Ad-
aBoost: Number of estimators is 500, number of leaf samples
is 1 and maximum depth is 50. We notice that the AdaBoost
classifier outperforms other classifiers on six datasets.

V. CONCLUSIONS AND FUTURE WORK

We have performed extensive experiments on the graph
decomposition method using the graph laplacian. For the graph
decomposition method, we use several supervised learning
algorithms available in the scikit-learn package. Upon compar-
ing all the two methods, we conclude that the graph embedding
using laplacian decomposition performs well on five out of
eight datasets, see Table We obtained this result when we
used the AdaBoost classfier.

For future work, we can try to reduce the execution time by
introducing parallelism in the code. Also, we could perform
patch normalization using different combination of graph
kernels and try to increase the performance of the model.



TABLE III: Experimental accuracy of different models.

Model | NCI1 MT PTC EZ PF BIN | MUL DD Time
AB 7529 | 7529 | 75.72 | 7597 | 74.7 | 75.88 | 74.36 | 75.29 | 32531
MLP 67.29 | 85.66 | 5549 | 31.83 | 71.88 | 67.2 45 724 36.5
K-NN | 67.05 | 84.17 | 55.17 | 325 | 69.53 | 67.8 | 40.06 | 71.29 1.49
GNB 60.21 | 83.59 | 60.19 22 68.29 | 56.8 40.6 | 75.72 0.34
DT 68.12 | 86.72 | 59.90 33 66.03 | 69.4 472 | 68.49 5.04
RF 7523 | 88.39 | 62.79 | 43.67 | 73.59 | 72.6 | 4833 | 75.37 | 217.97
SVM 62.48 84.2 | 59.93 26 72.41 62.5 452 | 7597 | 20.95
LR 62.6 85.75 | 58.12 | 2633 | 71.16 | 614 442 | 73.93 6.41

TABLE IV: Comparison of accuracies from the methods: WL
subtree kernel, Graph embedding using spectral decomposi-

tion.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(1]

[12]

[13]

Dataset | WL subtree kernel | Graph embedding
NCI-1 80.13 75.29
MT 82.05 75.29
PTC 56.97 75.72
EZ 52.22 75.97
PF 72.92 74.7
BIN 68.6 75.88
MUL 48.13 74.36
DD 71.3 75.29
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