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Comparing malleability of phonetic category
between [i] and [u]

Reiko Kataoka® and Hahn Koo
Department of Linguistics and Language Development, San José State University,
One Washington Square, San José, California 95192-0093, USA
reiko.kataoka@sjsu. edu, hahn.koo@sjsu. edu

Abstract: This study reports differential category retuning effect
between [i] and [u]. Two groups of American listeners were exposed to
ambiguous vowels ([i/u]) within words that index a phoneme /i/ (e.g.,
athl[ilu]t) (i-group) or /u/ (e.g., afternfiluJn) (u-group). Before and after
the exposure these listeners categorized sounds from a [bip]-[bup]
continuum. The i-group significantly increased /bip/ responses after
exposure, but the u-group did not change their responses significantly.
These results suggest that the way mental representation handles pho-
netic variation may influence malleability of each category, highlighting
the complex relationship among distribution of sounds, their mental
representation, and speech perception.

© 2017 Acoustical Society of America

[DDO]
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1. Introduction

Natural speech sounds exhibit a wide range of variation, thus understanding how lis-
teners adeptly interpret them into stable linguistic codes has been a central issue in
speech perception research. One approach to this question has been to examine the
role of phonetic categories in speech perception. Previous studies (e.g., Lisker and
Abramson, 1970) have shown that category boundaries found in categorization tasks
along a sound continuum (e.g., a VOT continuum from voiceless to voiced stops)
reflect the range of acoustic variation found in listener’s native language. Such findings
suggest that phonetic categories reflect distributional property of ambient speech
sounds, and these categories support stable speech perception. Previous studies also
show that these phonetic categories remain malleable throughout adulthood so that lis-
teners can adapt to on-going sound changes (e.g., Harrington et al, 2000) and newly
encountered pronunciation patterns (e.g., Norris et al., 2003).

An open question is whether all phonetic categories are equally malleable or
if there is a systematic difference in their malleability that is attributable to con-
straints of the speech perception system. Here, we tested a hypothesis that the more
variable speech sounds are, the less malleable their categories would be. Our hypothe-
sis is motivated by recent studies suggesting that adjustability of phonetic categories
may vary depending on structural properties of categories such as density
(Scharenborg and Janse, 2013) and variability of categories (Stevens et al., 2007). For
example, Stevens et al. (2007) reported lack of adjustability of category boundary
between [x] and [h] for Dutch listeners, and attributed this result to susceptibility of
[h] to coarticulatory variation, which would make the contrast between [x] and [h]
rather unclear.

While the above result may indicate lack of boundary adjustment between [x]
and [h], another possible interpretation is that the listeners resisted retuning both [X]
and [h] categories independently. Similar to /h/, phonetic forms of velar consonants
such as /x/ have been suggested to vary considerably depending on vowel contexts at
the articulatory as well as acoustic levels. For example, both in Swedish (Ohman,
1966) and American English (Kent and Moll, 1972), [g] is articulated with varying
tongue positions along the horizontal axis in symmetrical VCV sequences (e.g., [igi]).
Its place of constriction is more front adjacent to [i] and more back adjacent to [u]. As
an acoustic consequence, the F2 transition terminal frequency, which characterizes the
consonant’s place of articulation, also varies from high to low values depending on the
vowel context (Ohman, 1966).
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We further examined the potential relationship between category variability
and malleability by comparing American English vowels [i] and [u], which previous
studies have shown to have different degrees of variability. First, the extent of conso-
nant-to-vowel coarticulatory influence in terms of F2 variability is much greater in [u]
than [i] (Stevens et al., 1966) because the coaticulation mainly affects the front part of
the tongue (MacNeilage and DeClerk, 1969), changing F2 more in back vowels than
front vowels. Second, incomplete lip rounding with a nearby consonant would shorten
front cavity and raise F2 (Stevens et al, 1966), affecting [u] but not [i]. Third, there is
an on-going sound change of back vowel fronting in many parts of the US including
California (e.g., Labov et al, 2006). Finally, previous studies have also shown that
there is more individual variation in F2 in [u] than in [i] when produced in [hVd] sylla-
bles (e.g., Hillenbrand et al, 2001). If category malleability is related to variability,
then we expect [i] to be more malleable than [u].

We tested our prediction using a lexically guided perceptual learning para-
digm' following Norris et al. (2003). We put listeners into two groups (i-group and u-
group) and let them learn to map a sound that is ambiguous between [i] and [u]
(henceforth [i/u]) to either vowel by presenting it within English words, which reveal
the phonemic identity of the sound (/i/ for the i-group or /u/ for the u-group), allowing
the listeners to learn to accept the new sound [i/u] as an instance of [i] or [u] depending
on their group. The effect of learning was assessed by measuring changes in how listen-
ers categorize different sounds along the [i]-[u] continuum before and after the expo-
sure. If [u] is indeed less malleable than [i], we should see a weaker change in categori-
zation responses in the u-group than the i-group.

2. Methods
2.1 Participants

Sixty-eight students, who were between 19 and 49 years old, native speakers of
English, and with normal hearing, from San José State University participated for
course credit. Each participant was given a subject number by the order of attendance.
Even numbered participants were assigned to the i-group and the odd numbered
participants were assigned to the u-group.

2.2 Procedure

Each participant attended two experiment sessions which were at least a week apart
from each other. The first session consisted of pre-exposure (henceforth pre-test) trials
with categorization tasks: In each trial, the participants first listened to an auditory
stimulus from a nine-step [bip]-to-[bup] continuum in which vowels ranged from natu-
ral [i] to natural [u]. They were then asked to indicate whether they had heard “beep”
(/il-response) or “boop” (/ul-response).

The second session began with an exposure followed by a post-exposure
(henceforth post-test) trials, which were the same as the pre-test trials. During the
exposure phase, the participants performed auditory lexical decision tasks. In each of
200 trials, they listened to a different auditory stimulus and were asked to indicate
whether they had heard an actual word in English or not. Feedback was displayed on
a monitor after each response—a green dot for a correct response or a red dot for an
incorrect response. Of the 200 stimuli, 100 were actual words, and the other 100 were
non-words. Critically, the set of 100 word stimuli included twenty words that con-
tained an ambiguous vowel [i/u] to induce perceptual learning.

For all tasks, stimuli were presented from headphones in a different random
order for each participant, and the participants were asked to respond as quickly as
possible by pressing a key on the keyboard. When a response was made within three
seconds after stimulus presentation, the response was logged and a new stimulus was
presented one second later. If no response was made within three seconds, the next
stimulus was presented without the response logged.

2.3 Materials

Auditory stimuli for both categorization and lexical decision tasks were created by
source-filter re-synthesis using PRAAT (Boersma and Weenink, 2013). For both, the process
involved creating [i]-to-[u] continua with different consonantal contexts. Care was taken
to ensure that the vowels reflect natural coarticulatory effects. F2 in [u] varies consider-
ably across contexts, and due to the sluggishness of the lip rounding gesture (Stevens
et al., 1966, p. 131), [u] is expected to have longer transition to and from an adjacent con-
sonant than [i]. These two characteristics—formant frequencies and transition durations—
varied in all re-synthesized continua.
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Fig. 1. (a) F2 trajectories and (b) F3 trajectories in the eleven re-synthesized vowels.

Materials for the categorization tasks were syllables from a [bip]-[bup] contin-
uum. A male speaker recorded two syllables [bip] and [bup], which were then adjusted
to have the same pitch contours and durations. We then extracted the two vowels and
(1) obtained a time-varying LPC filter for each, (2) derived nine intermediate filter func-
tions by interpolating the two, (3) generated a source sound by applying the inverse
LPC filter to the original [i], and (4) created an eleven-step vowel continuum by apply-
ing all filters to the source. Finally, we inserted the first nine vowels between the origi-
nal [b] and [p] to create a nine-step syllable continuum ranging from [bip] to [bup].

Each filter consisted of stylized F1 to F5 and associated bandwidths. The F2
and F3 varied over the duration of the vowel to capture formant trajectories while the
other three formants remained stable. As shown in Fig. 1, the trajectories for the
intermediate vowels shifted with equal frequency intervals so that the resulting stimuli
gradually changed from [bip]-like to [bup]-like both in formant frequencies and
transition durations. Table 1 presents F2 and F3 values in the final set of nine vowels
(v0-v8) near the terminus.

Materials for the lexical decision task were 100 words and 100 non-words
selected following the criteria in Kraljic and Samuel (2005). The 100 words consisted
of forty critical words and sixty filler words. Half of the critical words were i-words,
each containing one /i/ but no /u/ (e.g., athlete). The other half were u-words, contain-
ing one /u/ but no /i/ (e.g., bamboo). The critical words were two to four syllables long,
with the critical vowels (/i/ or /u/) appearing in a stressed syllable in a later part of the
word, and without /1/ or /u/. The i-words and u-words were matched in syllable length
and mean log-frequency. Mean log-frequency in the Corpus of Contemporary
American English (Davies, 2008) was 7.101 for the i-words and 7.076 for the u-words,
which were not significantly different (#(38)=0.051, p =0.959). The sixty filler words
met the following criteria: (1) no instance of /i/, /1/, /u/, or /u/; and (2) each word
matching one pair of critical words in terms of stress pattern and number of syllables.
Finally, the 100 non-words were created by changing a few phonemes (without using
fil, I/, la/ or /ul) of each of the 100 real words.

These 200 exposure words were then recorded from the same male speaker.
Forty critical words were read twice, once with a natural vowel, and once with the crit-
ical vowel replaced by the other vowel (e.g., athlete as [®6lit] and [®6lut]). We then
synthesized an eleven-step continuum separately for each of the 40 pairs in the same
way as the [bip]-[bup] continuum. Extraction of the critical vowels ([i] and [u]) was
done by manually comparing the spectrograms and isolating the intervals where the
spectral characteristics before and after them were nearly identical between the two
words. Thus, when the vowel is adjacent to a sonorant, the extracted interval includes
a part of the sonorant to ensure natural transition. After synthesizing the forty [i]-[u]
word continua, one of the authors selected the most ambiguous token from each con-
tinuum to generate a set of forty ambiguous critical words. Figure 2 shows, using ath-
lete as an example, how the resulting ambiguous word differs from the original

Table 1. F2 and F3 near the terminus (0.139 s point) of each of the nine vowels used in the experiment.

Step # 1 2 3 4 5 6 7 8 9
F3 (Hz) 2500 2470 2440 2410 2380 2350 2320 2290 2260
F2 (Hz) 2400 2250 2100 1950 1800 1650 1500 1350 1200

EL44 J. Acoust. Soc. Am. 142 (1), July 2017 Reiko Kataoka and Hahn Koo


http://dx.doi.org/10.1121/1.4986422

Reiko Kataoka and Hahn Koo: JASA Express Letters [http://dx.doi.org/10.1121/1.4986422] Published Online 10 July 2017

(a) [=0lit] athiete (b) [201(i/u)t] (¢) [x0lut]

z)§
o
4

Frequency (H

Time (s) Time (s) Time (s)

Fig. 2. Spectrograms illustrating stimulus construction: (a) and (c) [i] and [u] in the original recordings (athlete
as [«0lit] and [@0lut]), respectively. (b) An ambiguous vowel [i/u] embedded in the [i]-frame ([&01(i)t]).

utterances. Finally, since the synthesis involved down-sampling of the original record-
ings to 10000 Hz, all natural stimuli were down-sampled to 10000 Hz.

The resulting auditory stimuli consisted of 200 sound files: twenty ambiguous
critical words, twenty natural critical words, sixty word fillers, and 100 non-word fill-
ers. The critical stimuli differed between the two groups. Listeners in the i-group heard
the i-words as ambiguous words (e.g., athlete as [®6l(i/u)t]) and the u-words as natural
words (e.g., bamboo as [be&mbu]), and listeners in the u-group heard the u-words as
ambiguous words (e.g., bamboo as [b&mb(i/u)]) and the i-words as natural words (e.g.,
athlete as [26lit]).

3. Analyses and results

Data from twelve participants were excluded from analyses: six did not complete and
six accepted the critical words as real words less than half the time. Below we discuss
results from the remaining 56 participants.

3.1 Lexical decision

Table 2 lists mean rates at which stimuli were accepted as real words. Our listeners did
not accept the ambiguous words as often as the natural critical words or filler words. But
they clearly differentiated the ambiguous words from the non-word fillers. It is worth not-
ing that listeners in the i-group accepted more ambiguous words than the u-group
[#(51)=3.664, p < 0.001]. Although explicit lexical decision is not a necessary condition
for perceptual learning (McQueen et al., 2006), this could mean they had different degrees
of exposure. However, this is unlikely to be an issue. First, the between-group difference
in acceptance rate progressively reduced over the course of trials [Fig. 3(a)], and for the
last ten trials the mean acceptance rates were no longer significantly different [0.779 for
the i-group vs 0.737 for the u-group: #49)=1.055, p=0.148]. Second, regression analyses
(see below) revealed that the acceptance rate was not a significant factor in explaining the
variance in pretest-posttest responses.

3.2 Categorization

We conducted mixed effects logistic regression analyses using r version 3.3.0 (R Core
Team, 2016). The choice was made for two reasons: We removed responses that took sub-
jects more than three seconds. We also wanted to examine the effect of exposure on the lis-
teners categorization behavior. Mixed effects models are robust to missing data (Baayen
et al., 2008) and regression analyses allow one to test effects easily via model comparison.
The dependent variable was a binary variable indicating whether the response is /i/ or not
(0="//, 1=1/). Fixed effects were phase (0= pre-test, 1 = post-test), group (—1 =u-group,
+1 =i-group), linear and quadratic terms for step? (coded as a continuous predictor cen-
tered on 0), as well as all possible interactions among phase, group, and the quadratic
term for step. For random effects, we included a random intercept for subjects and by-
subject random slopes for phase, the linear and quadratic terms for step, and the interac-
tion between phase and the quadratic term.

Table 3 shows the summary of the best model we found. There were significant
main effects of step (both linear and quadratic terms) as well as a significant interaction
between step (quadratic) and phase, reflecting that the effect of exposure is particularly

Table 2. Mean acceptance rate during exposure per subject group and stimulus type.

Natural critical Ambiguous critical Real word filler Non-word filler
/il-group 0.801 0.776 0.900 0.133
/u/-group 0.822 0.680 0.944 0.120
both groups 0.811 0.729 0.921 0.127
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Table 3. Summary of mixed-effects logistic regression analyses on the /i/-response data.

Fixed effects
Random effects (by subject)

Parameters Estimate f8 SE z p(>|z)) Variance
Intercept —3.487 0.277 —12.583 <0.001 3.524
Step 1.785 0.070 25.605 <0.001 0.169
Step2 0.341 0.028 12.317 <0.001 0.014
Phasepost 0.239 0.280 0.852 0.394 3.153
Group 0.284 0.273 1.041 0.298

Step® x Phasepost —0.117 0.047 —2.467 0.014 0.058
Step® x Group —0.038 0.027 —1.438 0.150

Phasepost X Group 0.860 0.279 3.079 0.002

Step” x Phasepost X Group —0.050 0.045 —1.102 0.270

strong in the middle range. More importantly, the interaction between phase and group
was significant. After exposure, listeners in the i-group responded with more /i/-responses
than before, while listeners in the u-group responded with less /i/-responses than before [Fig.
3(b)]. So their response patterns diverged although they were very similar before exposure.

Given the significant interaction between phase and group, we proceeded to a
planned comparison by fitting a model to each group’s data separately, using the same
set of predictors except for the group variable. Phase was a significant factor in the i-
group (f=1.128, SE=0.360, p=0.002) but not in the u-group (= —0.813, SE=10.460,
p=0.077). That is, there is evidence for category retuning through lexically guided per-
ceptual learning in the i-group but not in the u-group. However, one could argue that the
main effect of phase in the u-group is at least marginally significant given p=0.077.
Therefore, we also directly compared the degree of category boundary shift between the
two groups. Category boundary was obtained separately per subject and phase by fitting
the logistic function on the proportion of /i/-responses as a function of the step number
on the [bip]{bup] continuum and identifying its midpoint on the x axis. The resulting
boundary locations are summarized in Fig. 3(c). On average, the boundary shifted
towards the [u]-end of the continuum by 0.401 steps for the i-group, while it shifted
towards the [i]-end by 0.219 steps for the u-group. The extent of shift is marginally larger
for the i-group than the u-group [#(110)=1.430, p=0.078]. Taken together with the
results from the regression analyses, we argue that there is evidence that the i-group
shifted their responses more than the u-group.

We attribute the observed group difference to difference in inherent malleabil-
ity between [i] and [u]. As mentioned earlier (Sec. 3.1), another possibility is to attri-
bute it to difference in acceptance rate of the ambiguous words during the exposure
phase. But this alternative interpretation does not seem to explain our data any better:
We compared the model in Table 3 with two other models that included acceptance
rate as a continuous factor centered on its mean. The first model, in which acceptance
rate replaced the group factor of the original model, did not explain the data better; it
had a higher AIC (3705.1 vs 3691.6) and a lower log-likelihood (—1828.5 vs —1821.8).
The second model, which had acceptance rate in addition to all predictors in the origi-
nal model, had a slightly lower log-likelihood (—1819.8 vs —1821.8), but a likelihood-
ratio test revealed that the two models were not significantly different [7*(8)=4.003,
p=0.857]. Moreover, in both models, neither the main effect of acceptance rate nor its
interactions with the other predictors were significant, and in the second model, the
phase-by-group interaction remained significant (= 0.860, SE=0.279, p =0.002).
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Fig. 3. (Color online) (a) Acceptance rates in response to ambiguous words changing over exposure trials. (b)
Proportion of /i/-responses per step and subject group. Width of curve represents 2 standard errors. (c) Mean
boundary locations on the [bip]-[bup] continuum.
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4. Discussion and conclusion

We observed a larger exposure effect in the i-group than the u-group, which is
consistent with our hypothesis that [u] would be less malleable than [i] due to its
greater category variability. Relevance of the result to our hypothesis, however, is
contingent on whether the two groups had comparable exposure. Their responses
during exposure were different: the i-group initially accepted the ambiguous words
more than the u-group. Though our mixed effects analyses suggest that this is unlikely
to have been a significant factor, there may have been stimuli artifacts, which we plan
to reduce in future studies. First, in our [i]-[u] continua, F2 and F3 varied linearly
rather than logarithmically. Considering that frequency perception is better modeled
using the log scale, two stimuli equidistant from the two ends of our continua may not
have sounded equally aberrant: those near the [i]-end may have sounded less aberrant
than those near the [u]-end. Second, our synthetic stimuli may not have fully captured
dynamic properties such as transition duration and range of frequency change that
characterize coarticulation on [u]. We partly addressed these issues by creating an
ambiguous vowel for each critical word rather than using the same vowel for all 40
words. In future studies, we plan to control the naturalness of our stimuli better by con-
ducting a perceptual survey at a larger scale.

Assuming that the observed difference is not a mere stimulus artifact, findings
in the present study add to the literature possible sources of constraints on category
retuning. Previous studies have found that retuning can be modulated by the strength
of contextual evidence that doing so would benefit subsequent processing (e.g., Kraljic
et al, 2008), suggesting an evaluation process as one source of constraints. Findings
from our study, in line with others (Scharenborg and Janse, 2013; Stevens et al., 2007),
further suggest that the way phonetic categories are represented within the perception
system may also constrain the malleability of each category. Perhaps the mental repre-
sentation of a category reflects its normative range of phonetic variation and the repre-
sented category variability in turn constrains the degree of category malleability.

A remaining question is why highly variable categories would resist boundary
adjustment. One possibility is that such categories are mentally represented in a way to
tolerate deviation more, obviating boundary adjustment. For example, following
exemplar-based approaches (e.g., Johnson, 1997), one might argue that our subjects,
mostly from California, had more exemplars of [u] with high F2 values in their mental
lexicon than exemplars of [i] with low F2 values. To them, the ambiguous u-words
might have sounded less atypical and exerted less need for category retuning. Or, based
on the perceptual magnet model (Kuhl ef al., 1992), which assesses the category good-
ness of a sound based on its auditory distance from the category prototype, one might
argue for the opposite, that a deviant u-word would be more likely to be rejected as a
possible category member and therefore less effective in inducing retuning than a devi-
ant i-word. These scenarios imply that learning, in a sense of improved sound-to-pho-
neme mapping, can occur with or without changing existing phonetic category struc-
tures depending on whether listeners perceive new tokens as reasonable pronunciation
variants or extreme aberrations. A similar argument can be made based on the
Featurally Underspecified Lexicon model (e.g., Eulitz and Lahiri, 2004), which states
that some phonemic features of a sound are not stored in the mental lexicon and that
deviation in underspecified features is less detectable. Perhaps our ambiguous u-words
deviated in a fully specified feature (e.g., [back]), being perceived as more deviant, while
our ambiguous i-words deviated in an underspecified feature (e.g., [front]), being per-
ceived as more acceptable. Either way, whether this assumption of asymmetric sensitiv-
ity and/or acceptability holds for [i] vs [u] must be tested in future studies.

Another possibility, assuming comparable detection and assessment of devia-
tion between [i] and [u], is that the acoustic space of a category with higher variability
has a greater chance of overlap with other categories and this discourages the percep-
tual system from broadening the category space further. Such differential degree of
category overlap is suggested by different confusability between the two vowels.
According to confusion matrices compiled by Luce (1986), [u] is indeed more confusable
than [i]. At signal-to-noise ratios of +15, +5, and —5 decibels, [u] was misrecognized as
other vowels 28.22%, 50.22%, and 83.56% of the time, while [i] was misrecognized
9.33%, 7.78%, and 35.56% of the time. Our conjecture is also in line with an experimen-
tal study by Wade et al. (2007), who show that if non-native speakers pronounce a vowel
with much variability thereby raising its confusability with other vowels, native listeners
have trouble adapting to the foreign accent. We will further explore this idea in future
studies by examining the roles of auditory confusability and articulatory and acoustic
variabilities as constraints on perceptual learning.
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