
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2006

A Meaningful MD5 Hash Collision Attack A Meaningful MD5 Hash Collision Attack

Narayana D. Kashyap
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kashyap, Narayana D., "A Meaningful MD5 Hash Collision Attack" (2006). Master's Projects. 21.
DOI: https://doi.org/10.31979/etd.fm5j-tzcm
https://scholarworks.sjsu.edu/etd_projects/21

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/21?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A Meaningful MD5 Hash Collision Attack

A Writing Project Presented to the Faculty of the

Department of Computer Science

San Jose State University

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

By

Narayana D Kashyap

Aug 2006

Dedicated to

My parents Hema and Datha

And my sweet Grandma Ajji

 i

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his guidance, insights and immense patience, without

which my project would have been impossible to complete. His suggestions and his work in this

field helped me tremendously in understanding and working on the topic. Dr. Stamp also

provided appropriate research papers, including his own book, which aided me in identifying the

areas to concentrate and consequently write a sound project statement.

I would also like to thank Dr. Sami Khuri and Prof. David Blockus for agreeing to be the

committee members to review and certify my project.

Finally, I would like to express my gratitude to Asif, Vinod, Venkat, Bharath, Joshi, Vamsi,

Karan, Lakshmi, Amulya, Pavan, Chakki, Manu, my brothers Chythanya and Vinay and all my

other friends and family members who have supported me immensely both in technical and

moral spheres.

 ii

ABSTRACT
It is now proved by Wang et al., that MD5 hash is no more secure, after they proposed an attack

that would generate two different messages that gives the same MD5 sum. Many conditions need

to be satisfied to attain this collision. Vlastimil Klima then proposed a more efficient and faster

technique to implement this attack. We use these techniques to first create a collision attack and

then use these collisions to implement meaningful collisions by creating two different packages

that give identical MD5 hash, but when extracted, each gives out different files with contents

specified by the atacker.

Keywords: MD5, hash, collision, Wang, attack

 iii

Table of Contents
1 Introduction to cryptography .. 1

2 Cryptosystems and Public key cryptography... 3

2.1 Outline of some cryptographic algorithms ... 3

2.1.1 Diffie-Hellman (DH) public-key algorithm:... 3

2.1.2 RSA... 4

2.1.2.1 Algorithm.. 4

2.1.2.2 RSA Security .. 5

3 Hash Functions.. 6

3.1 Application of Hash Functions ... 7

3.1.1 Digital Signature ... 7

3.1.2 Password Protection.. 7

4 MD5.. 8

5 Wang’s Attack on MD5.. 11

5.1 Differential cryptanalysis.. 11

5.2 Wang’s Differentials for MD5 Attack .. 13

5.3 The Outline of the Attack ... 14

5.4 Reverse Engineering Wang’s Attack .. 15

5.5 Message Modification... 19

5.5.1 Single Step Modification .. 19

5.5.2 Multi-Step Modification ... 21

5.6 Klima’s technique ... 23

5.7 Implementation of Wang’s Attack.. 25

6 A Practical Attack on MD5 by Constructing Meaningful Collisions............................. 26

6.1 Poisoned Message Attack ... 26

6.2 Other document file formats ... 27

7 Implementation of a Practical Attack .. 28

7.1 A practical scenario of the attack.. 29

8 Conclusion and Future Work .. 31

9 References.. 32

 iv

Appendix A.. 34

Wang’s Output Differentials.. 34

Appendix B .. 37

Add-differences provided by Hawkes et al... 37

 v

Table of Illustrations
Figure 1: The principle behind timing attack ... 5

Figure 2: Merkle-Damgard Construction ... 7

Figure 3: MD5 processing of a single 512-bit block.. 10

Figure 4: Packager program asking for the name of the final output file................................. 28

 - 1 -

1 Introduction to cryptography
The evolution of cryptography was led by the idea of information security, i.e., cryptography is

the science of securing the information. It involves encryption and decryption of messages.

Encryption is the process of converting a plain text into cipher text and decryption is the process

of getting the original message back from the encrypted text. Cryptography also provides

Integrity, Authentication, and Non-repudiation, in addition to confidentiality [2].

There are many known cryptographic algorithms. The basis of any cryptographic algorithm is the

“key” used for encrypting/decrypting the information. Many of the cryptographic algorithms are

available publicly, though some believe in having a secret algorithm. The general method has

been to use a publicly known algorithm while maintaining a secret key [7].

Based on the key used, there are two categories of cryptosystems: Symmetric and Asymmetric. In

Symmetric Key Cryptosystems, the same key is used for both Encryption and decryption. i.e. if

K and M were the key and the message, then, we have DK(EK(M)) = M where D and E denotes

decryption and encryption. Advantages of this system are speed and security based on the

strength of key.

There are some disadvantages too. Exchange and administration of the key gets complicated and

non-repudiation is impossible. Examples: DES, 3-DES, RC4, RC5 etc [2][7].

In Asymmetric, also called shared key or Public key cryptosystems, two different but

interchangeable keys are used for encryption and decryption. The two keys are linked

mathematically. One of the keys is made public (shared) while the other is kept secret. i.e. if k1

and k2 are public and private keys, respectively and M be the message, then Dk2(Ek1(M)) =

Dk1(Ek2(M)) = M [2].

Public key systems are considered to be very secure and encourages non-repudiation. Key

exchange is not required thus minimizing the key administration. But the ciphertext tend to be

much bigger than plaintext and is much slower than Symmetric systems.

Examples: Diffie-Hellman, RSA and Elliptic Curve Cryptography.

 - 2 -

The idea of using Elliptic curves in cryptography was first suggested by Victor Miller and Neal

Koblitz. This was introduced as an alternative to established public-key systems such as RSA

and DSA. The Elliptical curve Discrete Log Problem (ECDLP) makes it more complicated to

break an ECC as compared to RSA and DSA where the problems of the discrete log problem or

factorization can be solved in sub-exponential time. This implies that ECC can be built with

much smaller parameters than in other systems like RSA and DSA [27].

 - 3 -

2 Cryptosystems and Public key cryptography
The word “cryptography” is derived from the Greek word “kryptos”, which means “secret

writing”. Cryptography has been around for over a thousand years and the Romans were thought

to be the masters of cryptography since they used simple cipher techniques to conceal the real

meaning conveyed by the messages [12].

Cryptographic systems are generally categorized on the following basis:

1. Method used for encryption: Most encryption algorithms are based on two principles,

a. Substitution, in which each character in plain text is replaced by some other

character to get the cipher text

b. Transposition, in which characters in plain text are reorganized to get cipher text.

2. Processing of Plain text: A Stream cipher processes the input characters continuously

producing the output. A Block cipher processes the input one block at a time, with one output

block for each input block.

3. Number of keys used: If a single key is used by both the sender and receiver, then it is

called a Symmetric or conventional system. If different keys are used, then it is an

Asymmetric or public-key system [7].

2.1 Outline of some cryptographic algorithms

2.1.1 Diffie-Hellman (DH) public-key algorithm:

This was the first public-key algorithm invented in 1976. The discrete logarithm problem forms

the basis of this algorithm. Alice and Bob both agree on two large prime numbers n and g such

that g is primitive mod n, over an unprotected channel. This is the basic algorithm:

1. Alice chooses a large random number a and sends Bob x = ga.

2. Bob picks another large random integer b and sends Alice: y = gb

3. Alice computes k from y, k = ya

4. Similarly, Bob computes k’ = xb

 - 4 -

k and k’ both will be = gab mod n. An evesdropper Eve would have the knowledge of only n,

g, x and y. She cannot get a and b due to the Discrete Logarithm problem. The security depends

on picking large values of g and n.

If random number generators are used whose outputs are not entirely random but are

predictable, then the task for Eve becomes easy. This is susceptible to “Man in the Middle

Attack” which can be explained as follows –

When Alice asks Bob for his public key, Eve can intercept Bob’s key and sends another public

key to Alice for which she has a private key. Alice encrypts her message with Eve’s key and

sends the ciphertext to Bob which is again intercepted by Eve who decrypts it with her key and

encrypts again with Bob’s key and sends it to Bob who believes was sent to him by Alice.

This attack can be significantly defeated by using digital signatures [4].

2.1.2 RSA

RSA is a public-key cryptosystem invented by – Rivest, Shamir and Adleman from MIT in 1977.

It has endured extensive cryptanalysis for many years. It is used in many secure communications

over the internet. It is a block cipher in which the original message and ciphertext are integers

between 0 and n – 1 for some integer n. The difficulty in factoring large numbers builds the

security of RSA [16].

2.1.2.1 Algorithm

Choose two large random prime numbers p and q of almost equal length. Let n = pq. Get the

Euler’s Totient function φ(n) which is computed as φ(n) = (p – 1)(q – 1). Select two keys a and b

such that, ab ≡ 1 (mod φ(n)). One of them is made public while the other secret.

The message M is encrypted as C = Ma mod n.

C is decrypted back to M by using M’ = Cb mod n.

So, M’ = (Ma)b mod n = Mab mod n = Mkφ(n) + 1 mod n (as ab ≡ 1 (mod φ(n)))

Therefore M’ = M . Mkφ(n) mod n = M mod n

(Fermat’s Little Theorem aφ(n) ≡ 1 (mod n)) [6]

 - 5 -

2.1.2.2 RSA Security

Three potential attacks to the RSA are:

• Mathematical attacks: Basically factoring the two primes.

• Brute Force: Attempting all likely private keys.

• Timing attacks: Based on the running time of decryption algorithm.

Timing Attack
 A cryptosystem takes different amounts of time to process different inputs in giving the

outputs. This depends on optimization techniques, instruction processing and branching and

other various reasons. Here the input parameters are the plain text and the encryption key or the

ciphertext and decryption key. This non-constancy of running times, when carefully analyzed,

can reveal significant information about the secret key. Measuring carefully, the amount of time

taken for various known data by the vulnerable systems and studying meticulously the statistics

acquired, an attacker can extract the hidden secrets of the system and gain control over it [8].

This idea was first propounded by Kocher[11]. According to him, a 512 bit key can be broken in

a few minutes if three hundred thousand timing measurements can be obtained [8].

Figure 1: The principle behind timing attack

 Source: [8] J.-F. Dhem et al.

Timing attack on RSA: RSA operations on private key is a simple modular exponentiation of the

form R = yx mod n, where n is public and y can be found out. The objective of an attacker is to

figure out x. If a new x is chosen for every operation, this attack fails. This attack can be made to

work with any implementation that runs in non-constant time, but is first drafted using the simple

modular exponentiation algorithm that computes R = yx mod n. The exponent bits can be found

by running the algorithm as many number of times as the number of bits of the exponent [11].

 - 6 -

3 Hash Functions
A hash h is generated by a hash function H of the form

 h = H(M)

where M is a message of variable length and H(M) is the hash value of fixed length.

A hash function should satisfy the following properties to be useful:

1. A hash function can be applied to a data block of any size.

2. It always produces an output of fixed length.

3. It must be easy and efficient to compute H(x) for any given x. Though the effort depends

 on the length of x, it should not be a function of its length.

 4. One-way: It should not be possible to find x for any given value h such that h = H(x).

 5. Weak collision resistance: Given x, it is computationally infeasible to find y ≠ x such

 that H(y) = H(x).

 6. Strong collision resistance: It is computationally infeasible to find any pair (x,y) such

 that H(x) = H(y) [10].

All hash functions are operated using the following principle: The input is divided into sequence

of n-bit blocks and is then processed one block at a time iteratively which produces an m-bit

hash value. A simple hash function is bitwise exclusive-OR of every block [2].

Generally, the message is padded before processing by the hash function so that the message can

be split into blocks of equal size. Most hash functions use Merkle-Damgard construction in

which the input message M is partitioned into L blocks of fixed size, say b bits. If needed, the

final block is padded to make it b bits long. The value of total length of the input message is also

included in the final block [3].

A compression function, f, is used repeatedly in the hash algorithm, that takes two inputs, an n-

bit input called the chaining value, from the previous step, and a b-bit block, and gives out an n-

bit output. The chaining value has an initial value, specified by the algorithm, at the start of the

first iteration. Generally, n< b, and hence the term compression.

This can be summarized as given below:

CV0 = IV = initial value

CVi = f(CVi-1, Yi-1) 1 ≤ i ≤ L

H(M) = CVL

 - 7 -

where the input message M is divided into blocks Y0, Y1,…..YL-1.

Figure 2: Merkle-Damgard Construction

Source: [3] Wikipedia

3.1 Application of Hash Functions
Hash functions are used in different contexts, like digital signatures, password protection,

message authentication codes and as pseudo-random number generators.

3.1.1 Digital Signature

Digital signatures are used for various purposes including the following:

To guarantee authenticity: The recipient is assured that the message was indeed sent by the

claimed sender.

To avoid repudiation: The sender cannot claim that he did not sign that message.

Generally, a message is first hashed before signed so as to reduce the size of the signature [26].

3.1.2 Password Protection

Passwords are stored after hashing instead of plaintext for obvious reasons. When a password is

typed, the newly computed hash is compared with the existing hash and if it matches, then the

password is declared correct [26].

 - 8 -

4 MD5
MD5 is a hash function that operates on 512-bit blocks of data and gives a 128-bit hash value.

The message is padded to get the length in bits to be congruent to 448 modulo 512. It’s always

padded even if the message is of the desired length. The length of the original message in bits is

represented by 64 bits and is appended to the padded message to make it an integer multiple of

512 bits [3].

The 128-bit initial values IV for the compression function of MD5 are:

Q-3 = 0x67452301

Q-2 = 0x10325476

Q-1 = 0x98badcfe

Q0 = 0xefcdab89

The compression function also takes as input, a 512-bit message block split into 16 words of 32

bits. It involves 64 steps and in each step i, an additive constant Ki, is used. This is computed

using the following formula

 Ki = ⌊232 X abs(sin(i +1))⌋
where i is in radians [2].

Each step involves a bitwise function fi(X,Y,Z) which takes the form of one of the following four

functions:

F(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z) for 0 ≤ i ≤ 15

 G(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z) for 16 ≤ i ≤ 31

 H(X, Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ i ≤ 47

I(X, Y, Z) = Y ⊕ (X ∨ ¬Z) for 48 ≤ i ≤ 63

Where X, Y, and Z are 32-bit words, and ¬∧∨⊕ ,,, denote XOR, OR, AND, and NOT operations

respectively.[3] The steps 0 to 15 is often referred as Round 1, steps 16 to 31 as Round 2, steps

32 to 47 as Round 3 and steps 48 to 63 as Round 4 [10].

 - 9 -

The order of message word mi that is processed in each of the 64 steps is given by the following

formula [26]. If Wi is the word used in step i, then Wi = mi where i is:

 i for 0 ≤ i ≤ 15

 (5i + 1) mod 16 for 16 ≤ i ≤ 31

 (3i + 5) mod 16 for 32 ≤ i ≤ 47

 7i mod 16 for 48 ≤ i ≤ 63

Every step also has a rotation or shift value Si which is derived from the following table:

Si i mod 4

 0 1 2 3

0 7 12 17 22

1 5 9 14 20

2 4 11 16 23

i div 16

3 6 10 15 21

Table 4.1: Shift value for each step i in the MD5 compression function [26]

The compression function can now be summarized as follows:

Algorithm for the compression function of MD5 [26]

Input: m0,……,m15 and (Q-3, Q-2, Q-1, Q0) = IV

 for i = 0 to 63 do

 Qi+1 = Qi + (fi(Qi, Qi-1, Qi-2) + Qi-3 + ki + Wi) <<< Si

 end

 return (Q61 + Q-3, Q62 + Q-2, Q63 + Q-1, Q64 + Q0)

Figure 3 illustrates the MD5 processing of a single 512-bit block [2], where

CVq denotes the chaining variable processed with the qth message block

Yq is the qth 512-bit block

 - 10 -

Figure 3: MD5 processing of a single 512-bit block.

Source: [2] William Stallings

 - 11 -

5 Wang’s Attack on MD5
Cryptanalysis of hash functions concentrates on the structure of the compression function

and is based on finding techniques to create collisions for a single execution of the function. It

should also take into account the initial values. The attack involves analyzing the changes in bit

pattern from round to round.

Three types of attacks are often considered on a hash function. They are:

Collision attack: Finding two different messages that gives the same hash value

Preimage attack: Finding a message that maps to a given hash value

Second Preimage attack: Finding another message that hashes to the same value as the given

message [26].

The MD5 attack explained here, proposed by Wang [20], finds a pair of 1024-bit messages, that

gives the same MD5 hash value. The two messages are denoted by M = (M0, M1) and M’ = (M’0,

M’1), where each Mi and M’i is a 512-bit block having 16 words of 32 bits each.

Initially, a collision was given by Wang without explaining any underlying technique. This led to

a remarkable attempt to reverse engineer Wang’s method and this has provided the foundation

for further improvements in the attack.

5.1 Differential cryptanalysis
Wang’s MD5 attack is a differential attack. The basic kind of difference operator is the modular

difference which is subtraction modulo 232. Wang’s attack uses this for inputs. Nonetheless,

some parts of the attack require a more elaborate information than modular subtraction offers.

This calls for the use of “precise differential” [20] which includes modular difference as well as

XOR difference and also provides extra information beyond what these two standard

differentials offer [10] .

Consider the pair of bytes x’ = 01010010 and x = 01000010 and the pair y’ = 10100011 and y =

10110011. We have

 x’ – x = y’ – y = 00010000 = 24

which implies that these two pairs are similar as far as modular difference is concerned. But,

MD5 attack requires more information to clearly distinguish even between these kinds of pairs.

Though XOR difference provides information on the differing bit positions, we require more

 - 12 -

information than the combined effect of these two differences. To be specific, we need to know

whether the positional difference in bit is a +1 or a -1 [10].

Let y = (y0, y1,…..,y7) and y’ = (y’0, y’1,…..,y’7) where each yi and y’i is a bit. Now, working on

the same examples given above

 y’ – y = 24

and

 y’ ⊕ y = 10110011 ⊕ 10100011 = 00010000

The non-zero bit in the XOR difference is because y’3 = 1 and y3 = 0. But, this would result in

the same XOR difference if y’3 = 0 and y3 = 1. Wang’s attack requires even this difference to be

distinguished. For this purpose, signed difference is used which is basically a signed version of

XOR difference. That is, if the ith bit of the XOR difference is 1, then we put a “+” if y’i = 1 and

yi = 0 and a “-“ implies y’i = 0 and yi = 1. We use a “.” if the bit if y'i = yi, i.e., the XOR

difference is 0. The signed difference is denoted by ∇ y1 and modular difference as Δ y. So now,

Δ y = 24 and ∇ y = “…+….” [10].

Now consider

 x’ – x = 00101000 – 00011000 = 24

and

 x’ ⊕ x = 00101000 ⊕ 00011000 = 00110000

Therefore, ∇ x = “..+-….”.

From ∇ x, the XOR difference can be easily derived and although ∇ x contains all the necessary

difference information, modular difference is still retained for convenience.

For a specified ∇ x, each “+” denotes a 1 in the corresponding bit of x’ and 0 in x and similarly,

a “-“ indicates the presence of 0 in x’ and 1 in x. But for any bit position which is neither a “+”,

nor a “-“, the bits in x’ and x should agree but the value is arbitrary. Both can be either 1 or 0.

Therefore, it should be noted that while the signed differential is more restrictive then the

standard differentials, it however allows for significant freedom in choosing the values that

satisfy a given differential [10].

1 The name of the symbol ∇ is nabla. It is also called by the names del and grad. It is used as a vector differential

operator in Vector Calculus. On the lighter side, the author likes to call it oolta, which means “upside down” in the

author’s language.

 - 13 -

5.2 Wang’s Differentials for MD5 Attack
Input Differential Pattern:

Let the MD5 initial values be denoted as IV = (A, B, C, D) and the vector for the second block

M1 be IV1 = (A1, B1, C1, D1). Then,

 IV1 = (A1, B1, C1, D1) = (Q61, Q64, Q63, Q62) + (A, B, C, D)

where (Q61, Q64, Q63, Q62) = MD51..64(IV, M0). Then the hash value of (M0, M1) is

 h = MD51..64(IV1, M1) + (A1, B1, C1, D1).

Similarly, define IV’1 and h’ for M’0 and M’1. The input modular differences for Wang’s attack

are specified as

 ΔM0 = M’0 – M0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)

 ΔM1 = M’1 – M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, -215, 0, 0, 231, 0)

This implies that the messages M0 and M’0 differ only in words 4, 11 and 14 and similarly does

M1 and M’1 differ. It is also required that,

 Δ IV1 = IV’1 – IV1 = (231, 225 + 231, 225 + 231, 225 + 231)

 Δ h = h’ – h = (0, 0, 0, 0).

Intermediate collisions can be observed in both the blocks from step 23 to 34. This implies

Qi = Q’i for 24 ≤ i ≤ 35 in both iterations [10].

Output Differential Pattern:

Wang’s output differentials are provided in the Appendix A in Tables A-1 and A-2. The

following description of the columns facilitates the reading of the two tables: The column j

specifies the step, Output refers to the output while processing M0 and M1 respectively, Wj is the

data element used at step j, ΔWj is the modular difference in the outputs for M’0 and M0 in A-1

and M’1 and M1 in A-2, ΔOutput is the modular difference between the input for M’0 and M0 in

A-1 and M’1 and M1 in A-2 and ∇Output is the signed difference corresponding to ΔOutput

[10].

Wang did not provide much information about many critical points in her attack and it appears

from the brief descriptions she provided, that her approach was a very intuitive one. The real

essence in Wang’s attack lies in the choice of difference patterns. The selection of input

differences was made in such a way so as to behave nicely in later rounds. The bigger mystery

lies in the choice of the output differences. There is no proven method of constructing effective

 - 14 -

difference patterns. Daum [14] proposes building a “tree of difference patterns”, that includes

both input and output differences. Enumerating the input difference pattern will limit the

branching to something manageable, but the tree should still be trimmed to stop the exponential

growth. Since most branches will have low probabilities, a cost function that uses probability can

be used to trim the tree. Daum suggested to use a meet-in-the-middle approach to find the inner

collisions and these could be woven together to create collision for a whole message block.

Nevertheless, neither this approach nor any other technique has yet generated a useful difference

pattern, apart from Wang’s intuition [10].

5.3 The Outline of the Attack
Let us first distinguish between input differences and output differences. Input differences are the

modular differences between input words of the two messages M and M’, while output

differences are differences between corresponding intermediate values Qi and Q’i. Wang’s attack

is a pure differential attack [10]. It thoroughly specifies the input differences and applies tight

constraints on the output differences.

The general idea behind the attack is:

a) Generate a random 512-bit message block M0.

b) Perform the step operation for each step and modify M0 to make sure that all the

 conditions on the step variable are satisfied. If some of the conditions cannot be satisfied,

 then start again.

c) Verify that all the required differences are satisfied and if so, then we have found M0 that is

 needed for the attack.

d) Use the MD5 output obtained after processing M0, to set the initial values for M1.

e) After M0 is found, generate a random 512-bit message block M1.

f) Perform the step operation for each step and modify M1 to make sure that all the

 conditions on the step variable are satisfied. If some of the conditions cannot be satisfied,

 then start again.

g) Verify that all the required differences are satisfied and if so, then we have found a

 collision.

 - 15 -

h) Calculate M’0 = M0 + ΔM0 and M’1 = M1 + ΔM1.

i) The MD5 hash of M = (M0, M1) will be equal to the MD5 hash value of M’ = (M’0, M’1)

 [10] [26].

5.4 Reverse Engineering Wang’s Attack
Wang and her team did not supply any information on how the collision was achieved,

which led Hawkes, Paddon and Rose [24] to do some investigation based on the only collision

presented. This is a significant work since the most effective attacks are based on this work

rather than the consequent details Wang provided. Carefully analyzing the differential conditions

at every step, they obtained conditions on outputs that, if satisfied, can yield a collision. Let us

consider a few steps for the first message block [10].

Let us define

 Tj = fj(Qj, Qj-1, Qj-2) + Qj-3 + kj + Wj

 Rj = Tj <<< Sj

 Qj+1 = Qj + Rj

If Δ is the notation for modular difference modulo 232, then

 ΔTj = Δ fj(Qj, Qj-1, Qj-2) + ΔQj-3 + kj + ΔWj

 ΔRj = (ΔTj)<<< Sj

 ΔQj+1 = ΔQj + ΔRj

and

 Δ f(Qj, Qj-1, Qj-2) = f(Q’j, Q’j-1, Q’j-2) - f(Qj, Qj-1, Qj-2) = Δ fj

The authors of [24] calculated Δ Qj, Δ fj, Δ Tj and Δ Rj for every j. Then they obtained the

conditions on Δ Tj bits to make sure that the preferred differential path is maintained. The

conditions for the first round of M0 block are given in Table B-1 in Appendix B. For the purpose

of saving space, the table has a “+” or “—“ on top of n to represent 2n or -2n and “± ” to indicate

the number that can be 2n or -2n [10].

Let us examine the first few rows of the table to ascertain the conditions on Tj that makes sure

the rotation yields the desired result:

 - 16 -

ΔTj = Tj’ - Tj, which implies

(ΔTj) <<< Sj = (Tj’) <<< Sj – (Tj) <<< Sj = ΔRj

But, this may not hold true always, if a carry propagates from the lower- order bits past

(31 – Sj)th bit or a carry from higher-order bits goes past the 31st bit and hence proper measures

must be taken so that the carries are not propagated [26].

Suppose, T’ = 220 and T = 219 and S = 10, then ΔT = T’ – T = 219 and

 (ΔT) <<< S = (T’ – T) <<< S = (T’ <<< S) – (T <<< S) = 229

Now, consider this:

T’ = 218 and T = 219 and S = 9. Then,

(ΔT) <<< S = (T’ <<< S) – (T <<< S)

 = 227 – 228

 = -227

But, if S = 18, then

 (ΔT) <<< S = -25

but, (T’ <<< S) – (T <<< S) = 24 – 25 = -24

Thus, with ΔT given, different values can still be obtained for ΔR = ΔT <<< S because of

many restrictions on T [10].

Now, we will look into a few steps where the restrictions on Tj are deduced from the collision

given. Before that, note should be made that -231 = 231 (mod 232) and 231 + 231 = 0 (mod 232).

Let us consider step 5 in Table B-1, where

Δ f5 = 219 + 211, ΔQ5 = -26 and ΔQ6 = ± 231 + 223 - 26

So,

 ΔR5 = ΔQ6 - ΔQ5 = ± 231 + 223

We have S5 = 12 and therefore, we would like to have

 ΔR5 = ΔT5 <<< 12 = ± 231 + 223

which implies that ΔT5 = 219 + 211 will not propagate any carry into higher-order bits.

Now consider step 6 where

 Δ f6 = -214 – 210 and since S6 = 17, we would like to have

ΔR6 = ΔT6 <<< 17 = ΔQ7 - ΔQ6 = ± 231 - 227 – 20

 - 17 -

However, a simple rotation of ΔT6 = -214 – 210 by 17 positions will give us -231 – 227, which

does not equal the desired result. Therefore, ΔT6 must be modified in such a way that a bit

wraps around into the 0th position. Thus ΔT6 = -215 + 214 – 210 [10].

[24] explains in complete detail how to obtain all the conditions on Tj that should be met for the

differential to hold.

Conditions on Qj

Let us now consider the conditions for the outputs, Qj. The efficiency of the eventual attack

depends on the number of these conditions being satisfied. Analysis of output differences

requires the use of “signed difference”, ∇X which provide more information than the combined

information that modular and XOR differences provide [10].

The authors of [24] computed the values of ΔQj, ∇Qj, Δ fj and ∇ fj for all the steps of MD5

collision provided by Wang. Those values for the first round of first block M0 are given in Table

6.1.

Table 6.1: Propagation of differences through the functions fj in the first round of the first block

for the collision provided by Wang et al. [24]. 2

The first round uses the function F which is

 F(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z).

2 Notice that the symbol δ is used in place ofΔ . There is no distinction between the two symbols in this context.

 - 18 -

This function makes use of the bits in X to decide between the corresponding bits of Y and Z. If

ith bit of X is 1, then the ith bit of F is ith bit of Y; else it is the ith bit of Z. The conditions on the

bits of Qj can be derived by using the information in Table 6.1 along with the definition of the

function F.

Let us consider step 5 where the attacker has ΔQ3 = 0, ΔQ4 = 0 and ΔQ5 = -26 and wants

Δ f5 = 219 + 211. The only way to achieve this from the differences available is if the carry in

ΔQ5 = -26 propagates into higher order bits. The relevant information for f5 can be observed in

Table 6.2.

Table 6.2: Computation of f5 [24]

From ∇Q5, we have Q5[22] = 1 and Q5[21 – 6] = 0. The bits 6, 7, …, 21 are called the non-

constant bits and the remaining bits are called constant bits. That is Q5 = Q’5 for constant bits

and Q5 ≠ Q’5 on non-constant bits [10].

Consider the constant bits first: The function F(Q5, Q4, Q3) selects bits of Q4 or Q3 depending on

the bit of Q5. From ∇Q5, we have Q5 [i] = Q’5 [i] for bit i = [0..5, 23..31] and

If Q5[j] = 1, then F5[j] = Q4[j] and F’5[j] = Q’4[j]

If Q5[j] = 0, then F5[j] = Q3[j] and F’5[j] = Q’3[j].

Now, for the non-constant bits: For ∇ F5 to have the value specified in Table 6.2, we need

F’5[6..10, 12..21] = F5[6..10, 12..21]. However, we have Q’5[6..10, 12..21] = 1 such that

F’5[6..10, 12..21] = Q’4[6..10, 12..21]. Since Q5[6..10, 12..21] = 0, we have F5[6..10, 12..21] =

Q3[6..10, 12..21]. And since Q4 = Q’4, for the conditions of ∇ F5 to hold for bits 6 through 10, 12

through 18, 20, 21, the conditions Q4[6..10, 12..21] = Q3[6..10, 12..21] are enough [10] [24].

To consider the non-constant bits 11 and 19, we need F’5[11, 19] = 1 and F5[11, 19] = 0. From

∇Q5, we have Q’5[11, 19] = 1 and Q5[11, 19] = 0 which in turn means that

 - 19 -

F’5[11, 19] = Q’4[11, 19] and F5[11, 19] = Q3[11, 19]. From ∇ F5, we wish to have F’5[22] =

F5[22]

Since Q3 = Q’3, it is required to have the condition Q3[22] = Q4[22].

Thus, the summary of conditions derived from this step 5 is:

Q5[6..21] = 0 Q5[22] = 1

Q4[11, 19] = 1 Q3[11, 19] = 0

Q3[6..10, 12..21] = Q4[6..10, 12..21]

5.5 Message Modification
The authors of [24] have obtained a set of conditions on the outputs Qj by continuing the

method described in the previous section. A collision will result if all these conditions are met.

And luckily, these conditions in the first round (initial 16 steps) can be met by simple

modifications of the message words, called the Single Step Modification. Then the technique

Multi Message Modification is applied to satisfy the conditions on Qj for j > 15, while all the

conditions for j < 16 still hold. The two techniques of message modification are elaborated in the

following sections.

5.5.1 Single Step Modification

This approach is also known as single-message modification. This technique is based on

the fact that each of the 16 messages appears once in the first 16 steps, and that the output Qj can

be changed by modifying a message word Wj.

 For example, a message block is randomly selected. Using the single-step modification

technique, the message words are modified to force all the conditions on Qj to hold,

for j = 0, 1, …, 15. It is important to note that if M0 = (X0, X1, …, X15), Wi = Xi,

for i = 0, 1, …, 15.

 Suppose),...,,(15100 XXXM ′′′=′ was randomly selected as the first message block, and let

iW ′ , for i = 0,1, …, 63 be the corresponding input words to the MD5 algorithm. The goal is to

modify M0 to obtain a message block),...,,(15100 XXXM = for which all of the first round

output conditions hold, i.e., all of the conditions on Qi, for i < 16 hold [10].

 - 20 -

 Considering step 2 with an assumption that X0 and X1 have been found, and that IV consists

of (Q-4, Q-3, Q-2, Q-1). Then, using 0M ′ , we have

2222112)(sKWQFQQ <<<+′+++=′ −
The idea is to change Q’2 to Q2 such that bits of Q2 and Q’2 are identical, ensuring that

.0 25,20,122 〉=〈Q i.e., the 12th, 20th and 25th bits of Q2 are 0. For i = 0, 1, …, 31, let Ei be a 32-bit

word defined by

 iiE 〉=〈 1 and jiE 〉=〈 0 for ij ≠ ,

i.e., Ei is 0 except for bit i, which in this case is 1. Thus, Ei = 231 - i.

Furthermore, let the bits of 2Q′ be

),...,,,(312102 qqqqQ =′ .

Also let 252520201212 EqEqEqD −−−= . Thus, to satisfy the desired condition on Q2, let

 DQQ +′= 22 .

Suppose that 2W ′ in the above equation is replaced with the value of W2 for which

 2222112)(sKWQFQQ <<<++++= − .

This value of W2 can be algebraically determined as,

 221212))((2 KQFsQQW −−−>>>−= − .

Notice that from the above equation Q2 is known, and all terms on the right-hand side of the last

equation are known. Therefore, W2 is now known. Furthermore, by letting X2 = W2, the value of

Q2 can be determined, thereby satisfying the output conditions at step 2.

 Applying similar process to steps 0 through 15 results in the message M0 = (X0, X1, …, X15)

for which all the output conditions in these steps will hold. The remaining conditions are tested

to see if they all hold. If they do hold, it means that a collision has been identified. However,

there might be a case when a condition beyond step 15 does not hold. In such a scenario, a new

 - 21 -

random number 0M ′ is selected and the entire process is repeated. Given the fact that the

probability of each condition being held is about 1/2, an attack can be expected with a work

factor of about 2c, where c is the number of conditions in steps 16 through 63.

 Thus, single-step modification provides an effective shortcut for simulating an attack,

although a multi-step modification could further reduce the work factor as can be seen in the next

section [10].

5.5.2 Multi-Step Modification

When it is required to satisfy some of the conditions in steps beyond 15, a multi-step

modifications (or multi-message modifications) can be adopted. However, care must taken to

ensure that when using this technique the outcomes from previous steps are not violated. This

renders the multi-step modification technique more complicated and rigorous that the single-step

modifications technique. Sometimes a multi-step modification technique could be not

deterministic to a certain extent, i.e., a condition could fail with a small probability. The paper by

Daum [14] provides a good description of several such techniques [10].

 Let),...,,(15100 XXXM ′′′=′ be the first message block after the single-step modifications.

Assuming that the desired output condition 016 0〉=〈Q should hold, for step 16 we have

 16161612151516)(sKWQfQQ <<<+′+++=′ ,

where 116 XW ′=′ and),,(13141515 QQQGf = .

Also, let),...,,(311016 qqqQ =′ and 00 EqD −= , where iiE 〉=〈 1 and jiE 〉=〈 0 for ij ≠ . These

two variables can be used to show that DQQ +′= 1616 will satisfy the required condition at step

16. Again, replacing 16W ′ with 16W results in

 16161612151516)(sKWQfQQ <<<++++= .

 16121516151616))((KQfsQQW −−−>>>−=⇒ .

However 116 XW = , and therefore it much be ensured that all of the conditions in the first round

involving X1 hold. The fact that Qi, for i = 1, 2, 3, 4, 5, also depend on X1 calls for each of these

steps to be analyzed, except Q1, since no condition was initially specified for the same [10].

 - 22 -

 Applying the single-step modification with the new input at step 16, i.e., 161 WX = ,

 1113001)(sKXQfQQ <<<+′+++= − .

Thus,

 111300)(sKXQfQZ <<<++++= − .

In other words, the modified X1 from step 16 gives a new value for Q1, which is the Z.

 Also,

 222210112)),,((sKXQQQQfZQ <<<+′+++= −− .

Again, choosing X2 such that,

 22221012)),,((sKXQQQZfZQ <<<++++= −−

 221011222),,(())((KQQQZfsZQX −−−>>>−=⇒ −− .

It is important to notice that using X2 in the above form eliminates any effect on the output

condition from step 2 when modification is made in X1 selection process. In other words, all of

the conditions on Q2, before and after the single-step modification process, hold true [10].

Similarly, choosing

 310223233),,(())((KQQZQfsQQX −−−>>>−= −

 402334344),,(())((KQZQQfsQQX −−−>>>−=

 523445455),,(())((KZQQQfsQQX −−−>>>−= .

Notice that any other Xi need not be modified, since Z – the new Q1 – is not used in calculating

any other Qi.

 Thus, all the conditions on step 16 have been deterministically satisfied, while maintaining all

of the conditions on steps o through 15 resulting from the single-step modifications. There are

several other multi-step modification techniques than the one explained above that have reduced

work factor of Wang’s attack. While Wang’s attack is currently highly efficient, and it has been

very difficult to find improvised multi-step modifications, there are some advanced modification

 - 23 -

techniques although their effectiveness and efficiencies hold low probabilities. As such, further

advancements in this area are expected to be incremental [10].

5.6 Klima’s technique
Vlastimil Klima published a paper [33] that explained some changes to find the first block of the

collision, utilizing the pattern Wang et al. found. It has been proven that the first block collisions

can be found in a few minutes, much faster than the original Wang’s approach [26].

The outline:

A smart use of the fact that no conditions are specified for Q1 and Q2 in the first block, is made

by Klima. He therefore lets Q17 and Q20 to decide the values of m0 and m1. This also makes sure

that the condition on Q20 is held and the selection of new values for Q17, which determines Q18

and Q19, till all the conditions on the three values are satisfied, leaves us with thirty-three

conditions to take care of. There will be 31 bits of Q20 that are free to try and this means that we

will be required, on an average, to select new values for Q1 to Q19 four times prior to obtaining a

near collision. So, the time required to choose the first 19 Q values and calculate the appropriate

message words will be very negligible [26].

This simple technique is best described in the form of Algorithm 5.1.

A few conditions on the step variables in second iteration can be modified to improve the attack

by a small factor. First, it is not necessary to have ∇Q64 = -225 ± 231. The previous step variable

needs this requirement to make it possible to control the distribution of bit differences through

the compression function. Nevertheless, Q64 is never used in an f function and only the modular

difference -225 + 231 is required so that this is cancelled out while calculating the final addition

with the chaining variables. Thus, the process can be speeded up by a factor of 2, by discarding

the condition Q64[25] = 1.

The condition on Q63[25] can also be discarded as the compression function in the 63rd step is

I(Q63, Q63, Q61), and Q61[25] = 1 is required to hold true. If Q63[25] = 1, then the 25th bit of the

output of I will not be affected by the changes on the 25th bit of Q63 and Q62 because of the fact

that

 I(1,1,1) = I(0,0,1) = 0.

 - 24 -

Algorithm 5.1: Klima’s technique of MD5 attack [26]

Make sure that M and M′ with the difference defined form a near-collision
repeat

Arbitrarily choose Q3,Q4, . . . ,Q16, but fulfilling conditions, including T-conditions [24]
Compute m6,m7, . . . ,m15 from the just chosen Q-values
repeat

Arbitrarily choose Q17, but fulfilling the conditions
Q18 ←Q17+(G(Q17,Q16,Q15)+Q14+m6+k17)<<<9
Q19 ←Q18+(G(Q18,Q17,Q16)+Q15+m11+k18) <<<14

until all conditions on Q17, Q18 and Q19 are fulfilled
m1 ←(Q17−Q16) >>>5 − G(Q16,Q15,Q14)−Q13−k16
if Q19[31] = 0 then
 Q20 = 0
 Z = 231 − 1
else
 Q20 = 231
 Z = 232 − 1
end if { To make sure that the single condition on Q20 is met}
while Q20 ≤ Z and all the conditions are not yet met do

m0 = (Q20 − Q19)>>>20 − G(Q19,Q18,Q17) − Q16 − k19
Q1 = Q0+(F(Q0,Q−1,Q−2)+Q−3+m0+k0)<<<7
Q2 ←Q1+(F(Q1,Q0,Q−1)+Q−2+m1+k1)<<<12
Calculate m2,m3,m4,m5 according to steps 2 to 5
Calculate all the remaining step variables. If a condition is not met, then
let Q20 = Q20 + 1 and continue

end while
until all the conditions are met

The 25th bit of I’s output will still not change if Q63[25] = 0 instead of 1, since

 I(0,1,1) = I(1,0,1) = 1.

Here, subtracting 225 from Q63 will propagate a carry to bit 26 or higher. Suppose it propagates to

bit s, which can be any bit between and including bit 26 and 31. Then, the output of I does not

change unless 1 ∈ Q61[s – 26], as every time Q61[i] = 0, Q63[i] will not have any effect. Hence, if

Q63[25] = 0, then we need Q61[i] = 0, for i increasing from 26 and Q63[i] remains 0. It should still

be 0 for the first i where Q63[i] = 1. This will make the possibility of the requirements being met,

improve from ½ to 2/3.

If the carry is propagated to bit 31 and stops, then Q63[31] = 1, and as we need Q63[31] = Q61[31],

we have Q61[31] = 1. This case is a success since we need a difference in the 31st bit of I’s

output, and this is accomplished because

 - 25 -

 I(1,A,1) = ¬ I(1, ¬A,0)

for any value of A.

Care should be taken to see that the carry is not propagated past 31, because

 I(0,A,0) = I(0, ¬A,1)

for any value of A.

The complexity of finding the second block is reduced by a factor of 3/8 with these

improvements [26].

5.7 Implementation of Wang’s Attack
An optimal implementation of Wang’s MD5 attack would constitute two parts: first one being

the finding of first block, optimally implemented by using Klima’s algorithm [33], and the

second part is finding the second block using the approach of Wang et al.. The two blocks can

definitely be found by different techniques since they are independent of each other, but for the

chaining values used in the second part which are generated during the first iteration. Any first

block that satisfies the conditions will also satisfy the conditions on those chaining values and

hence, this can be used to find the second block [26].

Our attack has been implemented in Java. The program was run on a desktop computer with

AMD64 3000+ (1.83 GHz) on Windows XP as well as a virtual machine with Fedora Core 4 on

the same computer. We could find 25 collisions in little less than 10 hours which averages out to

24 minutes for one collision. The first part took an average of 17 minutes and the second one

needed 7 minutes. The fastest find took 11 minutes and the slowest was of 101 minutes. The

variations in the timing can be attributed to the arbitrariness of the random number generator

used in the program.

 - 26 -

6 A Practical Attack on MD5 by Constructing Meaningful

Collisions
Collision resistant hash functions are one of the very important elements of modern day

cryptography. Hash function produces a fixed size output for variable length inputs. Collision

resistance implies that it is not feasible to generate two messages which give the same hash

value. Although, many collisions do exist, it must not be possible to really find a collision [15].

Nevertheless, there are cases where security vulnerability may be created by using an

apparently useless collision. Magnus Daum and Stefan Lucks [19] described a method called

Poisoned Message Attack, to exploit the programming language constructs of some standard

documents (postscripts in this example) to create meaningful collisions that, when viewed using

a standard viewer of that file format, look very genuine.

6.1 Poisoned Message Attack
The core idea of the poisoned message attack is to exploit the “if-then-else” constructs

available in most of the advanced document languages. For instance, in postscript, the command

 (A1) (A2) eq {B1}{B2} ifelse

executes B1 string if the two strings A1 and A2 are equal, else executes the string B2.

Aware of the weakness of all the hash functions that involves iteration, that with a collision

obtained h(X) = h(X’), all extensions XS and X’S by a random common string S also collide, a

meaningful collision can be created in postscript documents, the procedure [14] for which is

explained below –

Let W be the first 64 bytes of the file, which means that W contains all bytes up to and including

the opening “(“ in “(A1) (A2) eq {“. The hash value MD50..63(IV, W) is the result of the initial

block of the file compressed. Using Wang’s attack on MD5, a collision is found where this hash

value is used as the IV. The two colliding messages will be named M and M’.

Let C be the file got by replacing “(A1) (A2) eq {“ with “(M) (M) eq {“ and C’ be the file got by

replacing “(A1) (A2) eq {“ with “(M’) (M) eq {“. Since the two strings before the “eq” are same

(M in both) in C, the postscript interpreter displays only the contents of the first file. But, the two

strings before the “eq” are not the same (M’ and M) in C’, and this causes the postscript

interpreter to display only the contents of the second file. It should be noted that the hashes of the

 - 27 -

two files C and C’ are identical because M and M’ have same MD5 hash value as a result of

having W as the initial block in both the files.

 Of course, the forgery can be easily perceived if one inspects the source code of the

documents. But one generally trusts the viewer that displays a particular document type and thus

makes the probability of such an attack higher [10] [14].

6.2 Other document file formats
Gebhardt, Illies and Schindler [29] investigated Merkle-Damgard hash functions and

various other file formats to construct meaningful hash collisions. They first showed how it was

constructed in postscript format as explained above and went on to examine PDF, TIFF and MS

Word 97 (.doc) file formats. They also touched upon executables and packages. They

summarized the strategy to construct meaningful collisions as follows: Find a suitable string a,

such that for a significant segment of pair b and b’, which are the outputs of a collision search, a

string c exists such that

 M = a||b||c, M’ = a||b’||c

Represent meaningful messages for the file format specified. The pair (b, b’) is a universal

collision if it is possible to pick a string c such that M and M’ have any predetermined meaning

[29].

The threat this attack brings upon is that if anyone creates two documents with same hash

values and if he gets one of them to be digitally signed by a person, then he can obtain a valid

signature for the other document and this could pose serious threat to the signer in the future.

Likewise, an insincere signer can create two such documents, sign one of them and claim that he

signed the other [29].

Unlike Postscript, there are no programming language features like control constructs and

procedures in PDF because of which, finding a collision in more difficult. [29] explains that the

color strings in PDF are used to create poisoned messages.

TIFF (Tagged Image File Format) is a standard image file format used for scanning paper

documents and the pages of a TIFF document are described by Image File Directories(IFD). [29]

explains the method of constructing poisoned messages in TIFF by using the offsets to the IFDs.

 - 28 -

7 Implementation of a Practical Attack
From the above attack on MD5 proposed by Wang et al., it is inferred that MD5 hash is no more

a secure way of confirming a file’s integrity, in view of the fact that colliding files/messages can

be generated that give the same MD5 hash.

Here, we will use the colliding messages generated by our implementation of Wang’s MD5

attack, to create two meaningful files with matching hash. This is also implemented in Java and

the program creates two packages that contain any files of attacker’s preference. The two

packages created will give the same MD5 hash, although when extracted gives different files,

with the same name suggested by the attacker. The inputs for the program are two different files

specified by the attacker which are supposed to be later extracted from the packages the program

creates. The attacker will also suggest a name for the output file. Figure 4 illustrates this. The

program then creates two packages which are different but still gives the same MD5 sum. There

is another program which is used to extract these packages and when this is run on the two

packages separately, each will extract a file with the name specified for the output file and the

contents will be that of the two input files, respectively.

Figure 4: Packager program asking for the name of the final output file

When the two packages are given to two different users with the extraction program, both

believe that they have received the same file since the MD5 sum matches, but when extracted,

using the extraction program, each gets a different file. This idea of collision attack can be used

in many practical purposes [30].

The idea behind this attack is simple. Each of the packages contains one of the colliding blocks

at the beginning. The colliding blocks are obtained from the output of the Wang’s attack which

gives two 1024-bit messages. The rest of the data in both the packages are similar. They actually

contain the contents of both the input files and also the information about the length of each file,

the name of the output file and the length of the name. That explains the matching of MD5 hash

 - 29 -

for both the packages. The two packages created are then renamed to a standard name that is

readable by the extractor program and is stored in separate folders. When the extraction program

is then executed on either of the packages, it reads the package file and looks for a specific bit in

the colliding block as a pointer to select which file to extract. We know from Wang’s theory that

ΔM0 = M’0 – M0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)

 ΔM1 = M’1 – M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, -215, 0, 0, 231, 0)

This means that the first difference between the two colliding strings will be available in the 32nd

bit of the fifth word, i.e., the MSB of the 20th byte. Therefore, the program uses two variables

colliding_byte = 19 and collision_bitmask = 0x80, which indicate the position and the mask of

the differing bit. Using these two values, the extractor decides which file to extract and seeks the

right position in the package to get the contents of that file and the right amount of bytes are

extracted onto the output file.

Here is the blueprint of the package file:

BYTES 128 1 lenOut 10 10 size1 size2

Info Collision

block

Length of

the output

file name

– lenOut

Name of

the output

file to be

extracted

Size of

file 1 in

integer –

size1

Size of

file 2 in

integer –

size2

Contents

of file 1

Contents

of file 2

Table 7.1: Layout of the package

7.1 A practical scenario of the attack
Let us first create two files we want to be extracted. One of them will have the genuine contents

and the other will have the contents of attacker’s choice. Let us for example assume the contents

of file 1 to be “I owe Mr. Moonlight $100 and will pay this amount on or before 12/25/2006” and

the contents in file 2 to be “I owe Mr. Moonlight $1000 and will pay this amount on or before

12/25/2006”. When these two files are submitted as input for the packager program, it creates

two packages, which when extracted will give out a file with the name specified by the attacker

with the contents of file 1 and file 2 respectively. If the first package is sent out to the person

 - 30 -

who owes the money and get him to digitally sign the document, the attacker can then claim that

he signed the second document using the fact that the two packages give the same hash value.

Another practical example will be this: A company distributes its product through package

that consists of the installation files of that product which will be later extracted and installed on

the client site. If there is a corrupt packager, he can create packages with defective files using the

above mentioned attack, so that it gives the same MD5 sum when passed through the quality

control department, and the responsibility falls upon the testing department as it was they who

certified the product as genuine. This could also play heavily on the client as the company may

charge the client extra for the maintenance and troubleshooting of the defect [30].

 - 31 -

8 Conclusion and Future Work
We have shown that MD5 is no more secure and foolproof, thanks to Wang et al. They provided

a set of conditions, which when satisfied, will create two different message blocks that give the

same MD5 sum. We then showed how these colliding strings can be used to create meaningful

collisions by creating two colliding packages that extracts to different files. Therefore, we can

conclude that –

• MD5 should not be used anymore, especially in places where collisions are a serious

threat to the security. It should be gradually phased out

• Further research on hash functions should be encouraged to understand the existing

weaknesses and come up with better hash designs

• Alternatives and/or fixes to the Merkle-Damgard construction technique should be

developed [26]

It will be very interesting and challenging to follow the progress of hash functions and their

defense in the next few years.

Improvements may be achieved with respect to the speed in calculation of the colliding blocks

by probably using a better random number generator. One could also attempt at combining or

reducing the number of conditions required to be satisfied in Wang’s attack using the example

given in section 5.6.

With respect to the packager or meaningful attacks, one could try to get a colliding pair of files

like PDF, WORD or even executables (EXE) that perform different actions of attacker’s choice

[30], although having same MD5 hash. The packages that are created in our program are actually

native to the program. One could explore the possibility of creating a pair of colliding .zip or .tar

files that can be distributed and extracted globally without the aid of the attacker’s program.

 - 32 -

9 References
[1] B.Schneier. Applied Cryptography. John Wiley and Sons, second edition, 1996

[2] William Stallings, Cryptography and Network Security-Principles and Practice, Third

edition, Prentice Hall publications 2004.

[3] Wikipedia http://www.wikipedia.org

[4] WordIQ http://www.wordiq.com/

[5] Ross J. Anderson, Security Engineering

[6] Wolfram Math World http://mathworld.wolfram.com/

[7] Kumar, Satish and Zabeer, Design and Analysis of Algorithms – ECC, ASU, 2004.

[8] J.F.Dhem et al., A Practical Implementation of the Timing Attack

[9] Mah et al., Timing Attack on ECC

[10] M. Stamp and R. M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real

World, Wiley 2007.

[11] Paul C. Kocher, Timing Attacks on Implementations of Diffie-Hellman,RSA, DSS and other

systems

[12] Michael Rosing, Implementing Elliptic Curve Cryptography, Manning Publications Co.,

1998

[13] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, HP Labs, Elliptic Curves in

Cryptography, Cambridge University Press, 1999

[14] Magnus Daum, Cryptanalysis of Hash Functions of the MD4 Family, 2005

[15] The Poisoned Message Attack Website, http://www.cits.rub.de.MD5Collisions/

[16] Trappe and Washington, University of Maryland, Introduction to Cryptography with

Coding Theory, Prentice Hall, 2002.

[17] Sun Microsystems http://research.sun.com/projects/crypto/

[18] Certicom Corp. http://www.certicom.com/

[19] S. Lucks and M. Daum, The Story of Alice and her Boss. Presented at the rump session of

Eurocrypt '05, May 2005

[20] X. Wang and H. Yu, How to Break MD5 and Other Hash Functions.

[21] http://world.std.com/~franl/crypto.html

 - 33 -

[22] X. Wang, D. Feng, X. Lai, H. Yu, Collisions for Hash Functions MD4, MD5, HAVAL-

128 and RIPEMD, rump session, CRYPTO 2004, Cryptology ePrint Archive, Report

2004/199, http://eprint.iacr.org/2004/199

[23] Rivest, R.: "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,

ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt

[24] P. Hawkes, M. Paddon, and G. G. Rose. Musings on the Wang et al.

MD5 Collision. Cryptology ePrint Archive, Report 2004/264, 2004.

[25] Robert Milson, “Introduction to Public Key Cryptography and Modular Arithmetic”

[26] Soren Steffen Thomsen, Cryptographic Hash Functions, 2005.

[27] V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology - CRYPTO'85,

LNCS 218, 1986.

[28] Soren Steffen Thomsen, MD5 Collison Finder,

http://www2.mat.dtu.dk/people/S.Thomsen/wangmd5/

[29] M. Gebhardt, G. Illies., and W. Schindler, A Note on the Practical Value of Single Hash

Collisions for Special File Formats, 2005.

[30] Ondrej Mikel, Practical Attacks on Digital Signatures Using MD5 Message Digest, 2004.

[31] Marc Stevens, Fast Collision Attack on MD5, 2006

[32] Vlastimil Klima, Tunnels in Hash Functions: MD5 Collisions Within a Minute, 2006

[33] Vlastimil Klima, Finding MD5 Collisions on a Notebook PC Using Multi-message

Modifications, 2005

[34] Ondrej Mikel, Practical Attacks on Digital Signatures Using MD5 Message Digest,

http://cryptography.hyperlink.cz/2004/collisions.htm

 - 34 -

Appendix A

Wang’s Output Differentials

 - 35 -

Table A-1: Wang’s ΔM0 Differential. [10]

 - 36 -

Table A-2: Wang’s ΔM1 Differential. [10]

 - 37 -

Appendix B

Add-differences provided by Hawkes et al.

Table B-1: First Block of the differential. [24]

	A Meaningful MD5 Hash Collision Attack
	Recommended Citation

	Microsoft Word - cs298report.doc

