Automatic Transmit Power Control of a Digital Fixed Wireless Link with Co-Channel Interference

Robert H. Morelos-Zaragoza
San Jose State University, robert.morelos-zaragoza@sjsu.edu

Kyoung-Whoan Suh
Kangnam University

Joo-Hwan Lee
Electronics and Telecommunications Research Institute (ETRI)

Follow this and additional works at: https://scholarworks.sjsu.edu/ee_pub

Part of the [Electrical and Computer Engineering Commons](https://scholarworks.sjsu.edu/ee_pub)

Recommended Citation

Automatic Transmit Power Control of a Digital Fixed Wireless Link with Co-Channel Interference

Robert H. Morelos-Zaragoza, Kyoung-Whoan Suh, and Joo-Hwan Lee

Abstract— In this paper, a study is presented of the dynamic behavior of an automatic transmit power control (ATPC) loop in a single fixed wireless system (FWS) link subject to multipath fading and an uncorrelated co-channel interferer that does not use ATPC (this represents a so-called non-ATPC FWS link or a fixed satellite link). Fundamental questions include the sensitivity of an ATPC loop to multipath interference and the co-channel interference that may be caused by a non-ATPC interferer. In the context of the present project, a good example of a non-ATPC interferer is a fixed satellite to which one antenna in a fixed microwave link has partial view. A computer model was developed that constitutes a useful tool in describing; simulating and analyzing an ATPC loop in a single FWS link. With the aid of this model, results are presented on the sensitivity of an ATPC loop in a FWS link with respect to channel conditions, non-ATPC interference and parameter settings.

Index Terms—Power Control, Fixed Wireless.

I. INTRODUCTION

Traditionally, automatic transmit power control (ATPC) techniques have been utilized in microwave radio links in order to combat rain fading (attenuation). This is also sometimes referred to as power diversity. Initially, the link is designed such that the transmitter power is sufficiently large to achieve a given quality of service goal, such as bit error rate, under clear sky conditions. When the link experiences an attenuation due to rain, the transmit power is increased gradually and up to the maximum transmission power limit set by a government authority. The particular technique used in increasing or decreasing power at the transmitter, and the method of estimating power at the receiver, can be used to differentiate ATPC techniques or algorithms. To illustrate [27] the fundamental ideas behind the use of ATPC techniques in fixed wireless systems, consider the case of two FWS links.

Under non-rainy conditions, each link has a nominal transmitted power that is required in order to achieve a given quality. This quality measure can be for example the bit error rate (BER). Suppose now that link A is subject to rain fading while at the same time link B remains under clear-sky conditions. The presence of an ATPC loop in link A will increase the transmitted power in order to overcome the drop in received power and subsequent loss of quality (for example, an increase in bit error rate value). This will work fine on link A. However, it is also possible that link B will receive some of the power sent by the transmitters in link A and therefore will suffer co-channel interference (CCI). The introduction of a different (uncorrelated) signal power in link B will give as a result a loss of link quality (as another example, this could be an increased outage time).

A. The use of ATPC techniques in wireless networks

In recent years, the use of ATPC techniques to increase the reliability and efficiency of wireless networks and fixed microwave links has increased substantially. In 2001, the Federal Communications Commission (FCC) approved the use of ATPC in Broadcast Auxiliary Services operating in the 2 GHz, 7 GHz and 13 GHz bands [3]. Since 1996 when the Commission amended its Part 101 rules, ATPC has been used successfully in the FS microwave bands. With respect to the maximum transmit power limit, the FCC rules in part 74.535, for the 2 GHz, 6.4 GHz, 7 GHz, 13 GHz and 18 GHz bands, that “The EIRP of transmitters that use Automatic Transmitter Power Control (ATPC) shall not exceed the EIRP specified on the station authorization. The EIRP of non-ATPC transmitters shall be maintained as near as practicable to the EIRP specified on the station authorization.” [4].

In a 2003 report [5], it is stated that ATPC allows transmitters to operate with a certain “nominal power” during normal propagation conditions. If the receiver detects a drop in received signal level, the transmit power is incrementally or instantaneously increased to the maximum allowable power level, depending on the manufacturer’s design. Radios equipped with ATPC have the following advantages over their non-ATPC equipped counterparts:

1) Simplified frequency coordination in congested areas
2) Less power consumption
3) Increased MTBF (Mean time between failures)
The application of ATPC techniques in fixed wireless links operating in the 70/80 GHz bands is presented in [7]. Most recently, in the U.S.A., the Advanced Television Systems Committee (ATSC) has proposed a new standard that incorporates the use of ATPC techniques [8]. No details are given however on exactly how the ATPC technique is to be implemented, but rather a provision of a feedback link with a measure of the received power made available to the transmitter. To further illustrate other applications of ATPC technology we note that, in the 2 GHz band, Wireless Communications Association International, Inc. (TIA) submitted a document to the FCC in which ATPC plays a central role [9].

Considerations of ATPC technology applications in fixed wireless networks, such as WiMax, appear in the IEEE 802.16 standard subgroup in charge of point-to-multipoint links [11]. The IEEE standard for WiMax [16] states, in section 8.1.11.2, on the subject of SS-to-BS interference that: “In PMP systems, SS-to-BS interference may be evaluated by use of a simulation program. It is clear that an interfering SS could be relatively close to a victim BS, but the level of interference depends on the relative locations of the BSs of the two systems (which affects the antenna pointing direction), on the use of automatic transmit power control (ATPC), and on possible differential rain fading.

Another potential advantage of ATPC technology is in LMDS systems, where it is claimed that, with power control, the carrier-to-interference (CI) ratio can be improved by at least 2 dB [12]. ATPC techniques also find applications in interference cancellation between satellite and terrestrial systems in the 28 GHz band. To minimize the carrier power, automatic transmitter power control (ATPC) is employed at the ground terminals, and also at the satellites in some proposed NGSO systems. When fading events occur (for example, under rain conditions) transmitter power is increased to compensate for the additional loss. The use of ATPC minimizes power consumption under clear-sky conditions and therefore eases the problem of sharing spectrum with other networks by reducing the potential interference.

A study [13] uses an ATPC range equal to 10 dB. In the 43 GHz band [14], ATPC provides a transmission power range from -30 dBW down to -50 dBW. The use and limitations of ATPC techniques, in point-to-point wireless systems over higher frequency bands, is also discussed by the FCC [18]. Moreover, on the topic of earth stations in satellite systems, the following was ruled by the RABC Fixed Wireless Communications Committee [24].

The European Union has also issued recommendations on the use of ATPC in fixed-satellite services [25]: “that the use of transmit power reduction mechanisms (e.g. Automatic Power Control and/or Power Setting) by the FWA terminal stations will ensure that the maximum EIRP density level defined in considering m) will not be exceeded by a single station towards the GSO arc;” and “that FSS systems using uncoordinated FSS earth stations in the bands referred to in

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol rate, R</td>
<td>24 Mbaud</td>
</tr>
<tr>
<td>Pulse shape</td>
<td>Square-root raised-cosine</td>
</tr>
<tr>
<td>Roll-off factor, α</td>
<td>0.25</td>
</tr>
<tr>
<td>Bandwidth, B</td>
<td>30 MHz</td>
</tr>
<tr>
<td>Multipath model</td>
<td>Rummlier</td>
</tr>
<tr>
<td>Path delay, t=B/α</td>
<td>5.56 ns</td>
</tr>
<tr>
<td>Modulation</td>
<td>64-QAM</td>
</tr>
<tr>
<td>Equalizer type</td>
<td>Adaptive Linear (FF) with LMS algorithm</td>
</tr>
<tr>
<td>Equalizer taps</td>
<td>15</td>
</tr>
<tr>
<td>Equalizer step</td>
<td>7.5x10^{-4}</td>
</tr>
</tbody>
</table>

TABLE I
PARAMETERS OF THE COMPUTER MODEL OF AN FWS LINK

Decide 1 and 2 shall implement Automatic Power Control in the uncoordinated FSS earth stations and/or automatic onboard satellite gain control,” Also in Europe, ATPC techniques have been integrated into so-called “Technical Frequency Assignment Criteria for Lower 6 and Upper 6 GHz Bands” [15].

To date, the best study on the validity of ATPC techniques in fixed digital wireless systems is that produced by the Ofcom group in the UK [26]. In particular, the study concludes that: “The potential advantages of ATPC reported in the literature include (i) Reduced average power consumption; (ii) extended equipment mean time between fades (MTBF); (iii) Elimination of the ‘upfade’ problem in receivers; (iv) Improved outage performance due to the reduced influence of adjacent channel interference (ACI); and (v) easier frequency co-ordination in areas of high radio-relay station density.”

II. MODEL OF AN ATPC FIXED WIRELESS LINK

A. System model

A computer model was developed to facilitate the study of the performance of ATPC techniques in an FWS link with respect to rain attenuation, co-channel interference (CCI), and loop parameter settings. In its current form, this model applies to a 30 MHz bandwidth frequency band and it is implemented in the complex baseband domain. (This is done for the purposes of shortening the simulation time. It should be noted that a full RF (bandpass) model could be easily implemented. However, the simulation time would be too large.) The model has been implemented using Mathlab™ software with the Simulink™ tool and the Communications and Signal Processing Blocksets. The main model parameters are summarized in Table I. Importantly, we note that the model assumes an ideal return channel without noise over which the required transmitter gain factor is conveyed. The rain attenuation factor G is a gain that is computed from the rain attenuation A (in dB) as follows:

\[G = 10^{-A/20} \]

(1)

The transmission gain factor \(G_{TX} \) at the transmitter is
initially set equal to 1 (this corresponds to a value of 0 dB in power increase) and is modified periodically by the ATPC control loop, based on the average received power, as explained below. Thus an important parameter of an ATPC technique or algorithm is the rate at which the loop operates. This issue is addressed in a later section.

B. Multipath channel model

The multipath channel model used in this study is the standard three-path channel model proposed by Rummler [29]. The path delay τ is computed using the so-called factor-of-six rule [30], [31]. $\tau = 1/6f_B$, where $f_B = (1+\alpha)R$ is the channel bandwidth and $\alpha = 0.25$ is the roll-off factor of the square-root raised-cosine filters used at the transmitter and receiver.

III. PROPOSED ATPC ALGORITHM

A. Power measurement

The metric used to drive the ATPC loop is the received power. It is therefore very important to obtain a reliable and accurate estimate of the received power. In the SJSU model, the received power is estimated in the digital baseband domain as follows. The matched filter outputs are sampled at symbol rate, and the square magnitudes computed. These numbers are then passed through a digital 2nd order Chebyshev type-II IIR narrow lowpass filter (LPF). This filter was designed using the Filter Design and Analysis (FDA) tool in Matlab™ and was specified to have a normalized stopband frequency equal to 0.05 with an attenuation value of 80 dB. Fig. 1 shows a plot of the magnitude spectrum of the filter.

B. Algorithm

An ATPC algorithm is hereby defined as a method of computing a transmitter gain factor GT required at the transmitter end of a link in order to reach a desired average power at the receiver end. For example, an ATPC algorithm was been applied to cellular systems in [32]. In the SJSU model, and only for convenience, the target average power has been set to unity. This can be easily changed to other values if desired.

The average received power is available at the output of a digital narrowband lowpass filter, as explained above. Let $PR[n]$ denote the estimated average received power. Based on the value $PR[n]$, the ATPC algorithm computes a power step

$$\Delta P = g(1 - P_R[n])^{-1},$$

where $g(\cdot)$ denotes a nonlinear function which is essentially the combination of a dead zone and a two-level quantizer.

The parameters of this nonlinear function depend on pre-specified power steps that are used to increase or decrease power at the transmitter. In this work, the increments in transmitted power are set to standard values of dB. These values are found to be standard in many commercial ATPC products in the market. The ATPC algorithm then proceeds to compute the value of the new required transmitter power as follows:

$$P_T[n+1] = (1 + \Delta P)P_T[n]$$

This value needs to be saturated in order not to exceed the maximum allowable transmit power. In the ATPC model, the algorithm has a 30 dB range, with the minimum transmitted power set to 1 (0 dB) and the maximum transmitted power equal to 1000 (30 dB). Finally, the value of transmitter gain factor GT is obtained as $GT = \sqrt{P_T[n+1]}$.

C. ATPC loop

One of the contributions of the work reported here is in the analysis of the dynamics of the ATPC control loop. This is a problem similar to that of phase-locked loops (PLL) in the sense that feedback and nonlinear functions are involved. Thus of great interest is the dynamic behavior of the ATPC control loop with respect to various parameters such as rain attenuation level, ATPC step size and ATPC update interval.

IV. RESULTS

A. Sensitivity to ATPC loop sampling rate

It is important that the ATPC control loop be updated slowly. This means that the sampling period of the loop needs to exceed the length of the impulse response of the digital averaging filter. Otherwise, an unstable situation will occur, as will be shown shortly, where both the transmitter gain factor GT and the estimated average received power $P_R[n]$ oscillate.

Fig. 1. Magnitude spectrum of a narrowband lowpass filter (LPF), used in estimation of the received power.
Fig. 2. Dynamic behavior of the average power and transmitter gain factor for DT/T = 100

Fig. 3. Dynamic behavior of the average power and transmitter gain factor for DT/T = 200

Fig. 4. Dynamic behavior of the average power and transmitter gain factor for DT/T = 500

B. Sensitivity to rain attenuation

The model was used to analyze the effect of rain attenuation A (dB) on the performance of an ATPC loop using a fixed sampling factor DT/T = 200. Rain attenuation values of A = 6 dB and A = 10 dB give the results shown in Figs. 6 and 7, respectively. These computer simulation results suggest that as the rain attenuation value increases, the ATPC loop might become less stable.

C. Sensitivity to co-channel interference

We have also investigated the effect of co-channel interference (CCI) on the performance of an ATPC loop. To study this effect, we set the values DT/T = 1000, A = 6 dB, and the channel-to-interference ratio C/I (dB) to infinite (no interference), 0 dB (equal powers) and 6 dB. Simulation results are shown in Fig. 8. Based on these results, which apply to one link with one (uncorrelated) interferer, the effect of CCI

...
is negligible so as long as $C/I > 6 \text{ dB}$.

D. Sensitivity to multipath channel’s relative notch depth

Also simulated was the effect of the relative notch depth in Rummler’s multipath model on the performance of the ATPC loop. We found no evidence of variation in the estimated received power for values up to $B = 21 \text{ dB}$.

E. Sensitivity to ATPC loop return delay

Another result of our study is the impact of the ATPC loop return delay on the performance. The return delay td is the result of the receiver and transmitter antennas separated by a certain fixed distance d. As an example, for the symbol rate considered in this study (24 million symbols per second), a distance of 50 kilometers translates into a return delay of $td = 167 \text{ msec or 4000 symbols}$. Our simulations confirm that, in general, the ATPC loop-sampling interval DT should not be smaller than the return delay td. Otherwise, the loop becomes unstable in a manner similar to that shown earlier for very small values of the loop-sampling interval DT. Figs. 9 and 10 illustrate the problem with the value $DT/T = 500$ in a 20 Km long link for which the normalized return delay value is given by $tg/T = 1600$.

Our analysis of an ATPC-aided FWS link reveals the following:

1) Sensitivity to sampling rate and return delay: The sampling interval of the ATPC loop should be at least equal to the length of the impulse response of the averaging filter (used to estimate power at the receiver) plus the return delay. Failure to satisfy this requirement results in undesirable oscillations in transmitted power and possible loss of the link.

2) Sensitivity to rain attenuation: The larger the attenuation caused by rain, the greater the possibility that the ATPC loop will become unstable. This issue can be solved using a sufficiently low sampling rate in the loop.

3) Sensitivity to co-channel interference: Our simulation results suggest that the ATPC loop is insensitive to CCI as long as that the carrier-to-interference ratio satisfies $C/I > 6 \text{ dB}$.

4) Sensitivity to multipath conditions: The simulations show no sensitivity of the ATPC loop to the multipath channel’s relative notch depth.

V. CONCLUSIONS AND OBSERVATIONS

A computer model has been built that incorporates multipath effects in a fixed wireless link using a standard Rummler’s model. This also includes an adaptive linear equalizer using the LMS algorithm and allows us to study parameter settings of ATPC loops. In our analysis, 64-QAM signals were employed. However, any other signal format and
constellation size can be easily incorporated.

An important finding is that the sampling interval of the ATPC loop should be at least equal to the length of the impulse response of the averaging filter (used to estimate power at the receiver) plus the return delay. We have also found that an ATPC loop is insensitive to CCI provided that the value of the carrier-to-interference ratio (C/I) is at least equal to 6 dB.

An ATPC loop is also insensitive to the multipath channel’s relative notch depth. Based on the study and results reported in this paper, the following important recommendations can be made: For frequency coordination purposes, mixed deployments (non-ATPC and ATPC) should be avoided. Full path clearance (0.6 of the first Fresnel zone for the worst month) must exist over an ATPC transmission path.

Careful calibration of antennas and amplifiers should always be required. ATPC power should not remain at the maximum level for more than certain amount of time. An ATPC system should not use bit error rate as a metric equivalent to average received power.

Fig. 8. Effect of CCI on estimated average power using DT/T = 1000 and rain attenuation value A = 6 dB

Fig. 9. Power difference (1-P[n]) and power step DP, with DT/T = 500 and td/T = 1600

REFERENCES

Fig. 10. Average power $P[n]$ and transmitter gain factor G_t, with $DT/T = 500$ and $td/T = 1600$

