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Transmission of Fine-Scalable Coded Content  

in Bandwidth-Limited Environments  

Xiao Su

Computer Engineering Department
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Tao Wang
Synopsys Inc.

700 E. Middlefield Road

Mountain View, CA 94043, USA

Abstract 

In this paper, we propose an optimal peer assignment algorithm on peer-to-peer

networks. This algorithm is designed to maximize the quality of transmitting fine-

scalable coded content by exploiting the embedding property of scalable coding. To be

more realistic, we assume that the requesting peer has a delay constraint to display

the content within a certain delay bound, and it also has limited incoming band­

width. We first use a simple example to illustrate the peer assignment problem, and

then formulate this problem as a linear programming problem, followed by a non­

linear programming problem. To efficiently solve the second nonlinear problem, we

transform it into a sequence of linear programming problems. Finally, we apply our

proposed algorithm to both image and video transmissions in bandwidth-limited en­

vironments. Extensive experiments have been carried out to evaluate the complexity

and performance of our approach by comparing it with both nonlinear formulation
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and two heuristic schemes. The results have verified the superior performance of our

proposed algorithm.

1 Introduction 

Peer-to-peer (P2P) networks are very promising for applications such as image and video

transmissions, since a requesting peer may obtain content from a set of less congested

or geographically closer supplying peers. This makes these applications less susceptible

to bandwidth shortage and network congestion [21]. The delivery of images and videos

depends largely on how they are coded before transmission, as coding algorithms define

the property of coded bit streams.

Coding algorithms can be coarsely classified into two categories: scalable coding that

embeds lower bit-rate bit streams into higher bit-rate bit streams, and non-scalable coding

that does not have this embedding property [25]. Let C1 and C2 be the two bit streams

generated by coding an image or a video in bit rate r1 and r2, respectively, where r1 < r2.

Scalable coding generates C1 as a prefix part of C2, while non-scalable coding generates C1

and C2 as two entirely different bit streams.

Scalable coding algorithms can be further divided into two categories: fine-scalable and

coarse-scalable coding [25]. Fine-scalable coding generates a fully embedded bit stream,

whose quality increases with every additional bit. Coding algorithms, such as “Set Par­

titioning in Hierarchical Trees”(SPIHT) [20] and 3D-SPIHT [15], can generate such fine-

scalable coded images and videos, respectively. Coarse-scalable coding generates a bit

stream that consists of several layers, a base layer followed by one or more enhancement

layers. The quality of a coarse-scalable coded bit stream only increases with an additional

block of bits. The four scalability modes in MPEG-2 generate such coarse-scalable bit

streams. Here, we focus on transmission of fine-scalable coded images and videos, gener­

ated by SPIHT and 3D-SPIHT.
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If a peer requests an image or a video that is non-scalable coded in d bits/pixel, then

another peer holding the same content coded in dn bits/pixel can serve as a supplying peer,

only if dn = d. On the other hand, if a peer requests an image or a video that is scalable

coded in d bits/pixel, then another peer holding the same content coded in ds bits/pixel can

serve as a supplying peer, regardless of the value of ds. Therefore, utilizing the embedding

property of scalable coding on P2P networks will involve more supplying peers, which

have the requested content coded in different bit rates. However, to our best knowledge,

none of the existing work seriously considered this embedding property, while designing its

transmission strategies. In this paper, we will show how to use this embedding property to

maximize the quality of transmitting fine-scalable coded content on P2P networks.

To be more realistic, we also consider the following two constraints. First, applications

such as video transmission, are sometimes delay sensitive with some delay bound. For

example, when a user downloads a video from the Internet, he may want to receive the

best possible video preview within a couple of minutes and decide whether to continue

downloading the video. Second, the requesting peer may have limited incoming bandwidth

in some bandwidth-limited environments, for example, wireless personal area networks

(WPAN) and cellular networks.

In summary, we study in this paper image and video transmissions in bandwidth-limited

environments. The objective of our work is to investigate how to divide and assign the

transmission task to a set of supplying peers, in order to maximize the quality of the

downloaded content on P2P networks, under the constraints that a requesting peer has a

delay bound and limited incoming bandwidth.

The paper is organized as follows. We first discuss related work in Section 2, and

then use a simple example to illustrate the peer assignment problem in Section 3. Next we

formally formulate and solve the problem in Section 4, and evaluate the proposed algorithm

in Section 5. Finally, we conclude the paper in Section 6.
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2 Related Work 

Early commercial peer-to-peer file sharing systems, such as Napster [6] and Gnutella [3],

normally identify a single supplying peer by its directory lookup algorithm, and download

files from this single peer. More recent systems, such as KaZaA [4], eDonkey [2] and

BitTorrent [1], adopt a more general data sharing model of downloading media files from

multiple sources. However, these systems treat the media files as regular data files, and

they do not explore the properties and structures of coded bit streams. In this case, when a

peer requests for an image or a video, these systems will only treat the same content coded

in the same bit rate as identical to the requested object. The files with the same content

coded in different bit rates will be regarded as different objects. Hence, even for scalable

coded media files, these systems may miss a lot of eligible supplying peers that have the

same content coded in different bit rates. Our work exploits the embedding property of

scalable coding to involve these missing supplying peers in transmission, and thus results

in better quality of downloaded content.

In research community, there have been a lot of efforts developing efficient algorithms

for live media streaming on P2P networks. Such efforts can be classified into two categories.

Research in the first category addresses how to construct and maintain an efficient over­

lay topology for media distribution. In CoopNet [17, 18], a video source collects information

from other nodes to construct and maintain a distribution tree. This centralized model is

efficient but presents a scalability problem. This motivated the proposal of distributed

algorithms like SpreadIt [13], NICE [8], and ZIGZAG [23, 24]. These algorithms use hier­

archical clustering to minimize transmission delay, limit work load, and distribute the tasks

of tree construction and maintenance to a set of cluster heads. While such tree-based distri­

bution structure is intuitive, it is also susceptible to unbalanced load. Solutions addressing

this problem include building mesh-based trees in Narada [10], maintaining multiple dis­
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tribution trees in SplitStream [9], adapting tree structures to reduce streaming latency for

active users in ACTIVE [28], and relying on data-driven design in DONet [27].

Research in the second category studies how to deliver multimedia content to improve

quality of service (QoS) from either network or end users’ perspective. Xu [26] proposed an

optimal media assignment algorithm (OT Sp2p) to minimize the initial buffering delay, and

also studied how to amplify the overall system capacity for media streaming. However, other

QoS parameters, such as latency, loss, and path diversity, were not considered. Cui [11, 12]

exploited the buffer capacity at peer nodes to reduce the load on streaming servers when

user requests are asynchronous and peer bandwidths are heterogeneous. In PALS [7, 19],

receivers adaptively decided on the number of media layers and used a packet assignment

algorithm to allocate the subset of packets in each layer to different senders. PALS adopted

layered-coded streams to address the heterogeneity in peer bandwidths, but it did not dig

deeper into the internal coding algorithms and bit streams to study how these can help

improve end-to-end QoS.

The proposed work in this paper belongs to the second category. It differs from the

existing work, in such a way that we have exploited the embedding property of scalable

coding when designing our transmission schemes. Our previous work [22] along this line

studied how to minimize the downloading time of scalable coded images on P2P networks,

but it does not take into account the delay and incoming bandwidth constraints.

3 Illustrative Example 

In this section, we walk through a simple example of image transmission in a low-bandwidth

environment. It helps us gain a better understanding of the peer assignment problem, when

a requesting peer has a delay bound and limited incoming bandwidth.

Suppose in a P2P system, there are four peers holding fine-scalable coded bit streams

5



of a standard Barbara image of dimension 512 × 512. p1 has the image coded in 0.25

bits/pixel, i.e. 0.25 bpp, resulting in the coded bit stream of size 64 kbits. p2 has the

image coded in 0.5 bpp (i.e., coded bit stream of size 128 kbits). p3 and p4 have the image

coded in 1 bpp (i.e., coded bit stream of size 256 kbits). Furthermore, p1, p2, p3, and p4

have different outgoing bandwidths of 50 kbps, 20 kbps, 40 kbps, and 20 kbps, respectively.

Such a setting models image transmission in a bandwidth-limited environment.

Now consider the scenario, where a requesting peer tries to download the Barbara image

coded in 1 bpp within 2 seconds from these four supplying peers. Its incoming bandwidth is

only 100 kbps, which is smaller than the total sum (130 kbps) of the outgoing bandwidths

provided from the supplying peers.

There are two heuristic approaches to assign the transmission task to the supplying

peers. The first heuristic method, called LongAssign, models the existing P2P file-sharing

systems, such as eDonkey and BitTorrent. It only involves the supplying peers with the

image coded in the same bit rate, and transmits the image based on their outgoing band­

widths. The supplying peer with a larger bandwidth gets to transmit a larger portion of

the coded image.

Because the requested image is coded in 1 bpp, only p3 and p4 are eligible to work as the

supplying peers. The sum of the outgoing bandwidths (60 kbps) from these two supplying

peers is smaller than the incoming bandwidth of the requesting peer (100 kbps). In this

case, the best image transmission scheme is to assign the transmission task to p3 and p4

based on their outgoing bandwidths. p3 transmits 80 kbits of the coded bit stream, say

between [0, 80) kbits, and p4 transmits 40 kbits, say between [80, 120) kbits. At the delay

bound of 2 seconds, the requesting peer is only able to decode from the 120 kbits of coded

bit stream that has been received.

The second heuristic method, called GreedyAssign, tries to involve any possible peer

with either a subset or a superset of the requested image at any time until the peer finishes
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transmitting its image. Since the peers hold the Barbara image of different sizes, they

may finish their transmissions at different times. The peers need to dynamically adjust

their sending rates based on the current number of the supplying peers and their supplying

bandwidths. GreedyAssign maximally uses the bandwidths from the supplying peers at

any given time, while satisfying the limit of incoming bandwidth of the requesting peer.

This heuristic utilizes the embedding property of scalable coding, and models a greedy

implementation of parallel downloading. In GreedyAssign, all the four peers are eligible

to work as supplying peers. First, all the four peers contribute to the transmission of the

coded bit stream between [0, 64) kbits. Note that during this period, the total bandwidth

from the four supplying peers (130 kbps) is larger than the incoming bandwidth of the

requesting peer (100 kbps). The supplying peers will cooperate to send at an aggregate

bandwidth of 100 kbps. At t = 0.64 (= 64/100) second, p1 leaves because it does not

have bit stream beyond 64 kbits. Then p2, p3, and p4 work together to supply the coded

bit stream between [64, 128) kbits. At t = 1.44(≈ 0.64 + 64/(20 + 40 + 20)) second, p2

leaves because it has no bit stream beyond 128 kbits. After that, both p3 and p4 continue

their transmission until the delay bound (t = 2) is met. Using this greedy method, the

requesting peer receives a bit stream of 162 (≈ 128 + (2− 1.44)× (40 + 20)) kbits.

Table 1: optimal peer assignment

peer identity p1 p2 p3 p4

image segment (kbits)
transmission bandwidth (kbps)

time (second)

[0, 40)
20
2

[40, 80)
20
2

[80, 160)
40
2

[160, 200)
20
2

This greedy approach, however, does not result in the decoded image of best possible

quality. An optimal algorithm, called SLPAssign (derived in Section 4), allocates the image

transmission task, shown in Table 1. p1 transmits the bit stream between [0, 40) kbits at
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20 kbps; p2 transmits between [40, 80) kbits at 20 kbps; p3 transmits between [80, 160)

kbits at 40 kbps; and p4 transmits between [160, 200) kbits at 20 kbps. All the peers start

transmission at time 0 and finish at 2 second. This algorithm results in the transmission

of 200 kbits in total. As the decoding quality is proportional to the size of the received bit

stream, SLPAssign results in the best quality among the three transmission schemes.

To illustrate the difference in visual quality of the above three schemes, we use SPIHT [20]

to generate fine-scalable coded Barbara images. Figure 1a), Figure 1b), and Figure 1c) show

the decoded Barbara images, when 120 kbits, 162 kbits, and 200 kbits of the SPIHT-coded

bit stream are received by applying LongAssign, GreedyAssign, and SLPAssign, respec­

tively. The corresponding peak signal-to-noise ratios (PSNRs) are 30.90 dB, 32.96 dB, and

34.48 dB. Among the three algorithms, SLPAssign achieves the best objective PSNR as

well as visual quality.

From this simple example, we can reach two conclusions. First, there exist more sup­

plying peers such as p1 and p2, if the embedding property of scalable coding is exploited

in transmission of scalable-coded content. Both GreedyAssign and SLPAssign possess this

feature, resulting in better image quality than LongAssign. Second, in addition to utilizing

this embedding property, it is very important to develop a systematic approach to find

the optimal transmission scheme that can achieve the best decoding quality, under the

constraints that the requesting peer has a delay bound and limited bandwidth.

4 Problem Statement and Solution 

The transmission of fine-scalable coded content on P2P networks can be done in four

steps. First, a requesting peer prompts a user to specify his delay requirement (e.g., the

delay bound), or the delay bound is determined by the type of applications. Second, the

requesting peer employs a directory lookup algorithm to locate a potential set of supplying

peers for a given request. Third, the requesting peer applies the proposed peer assignment
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a) LongAssign

b) GreedyAssign c) SLPAssign

Figure 1: Decoded Barbara images when the delay bound is 2 seconds and the incoming

bandwidth of the requesting peer is 100 kbps, using a) LongAssign (PSNR = 30.90 dB),

b) GreedyAssign (PSNR = 32.96 dB), and c) SLPAssign (PSNR = 34.48 dB).

algorithm to allocate the transmission task to the supplying peers, with the objective to

maximize the quality of delivered content within the delay bound. Fourth, the supplying

peers are informed about their own allocations by the requesting peer, and then start

transmission.
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Table 2: Notations used in the paper

Notation Definition
n 
si 
ri 
Bi 
BI 

BO 

Tu 

the number of supplying peers
the size of the coded bit stream in peer i, i = 1, 2, . . . , n 
the coded bit rate of the content in peer i, i = 1, 2, . . . , n 
the outgoing bandwidth of peer i, i = 1, 2, . . . , n 
the incoming bandwidth of the requesting peer
the sum of the outgoing bandwidth of n supplying peers
user-defined delay bound

In this section, we will develop an optimal peer assignment algorithm applied in the third

step. To facilitate further discussion, we first define some notations. For a given requesting

peer, there are n supplying peers with coded bit streams of sizes, si (i = 1, 2, . . . , n),

coded in different bit rates, ri (i = 1, 2, . . . , n), and with different outgoing bandwidths,

Bi (i = 1, 2, . . . , n). Without loss of generality, we assume s1 ≤ s2 ≤ . . . ≤ sn (that is,

r1 ≤ r2 ≤ . . . ≤ rn), otherwise we can always re-number the peers to follow this order.

The requesting peer tries to download an image or a video within the delay bound of Tu 

seconds, and its incoming bandwidth is BI . The total bandwidth from the supplying peers

Lnis BO = i=1 Bi, and BI can be either larger or smaller than BO . For easy reference, we

summarize the notations in Table 2.

Given the above notations, let us define concept of a peer allocation vector,

DEFINITION 1 A peer allocation vector, P = {(Δi, bi), i = 1, 2, . . . , n}, is the vector

in which the ith element, (Δi, bi), defines the size of segment Δi assigned to peer i for

transmission and its transmission rate bi.

The objective here is to derive an optimal peer allocation vector, P∗ = {(Δ∗
i , b∗i ), i =

1, 2, . . . , n}, such that the quality of the content downloaded within delay bound Tu is

optimal. Because the content is fine-scalable coded, its quality is proportional to the amount

of the bit stream received by the requesting peer. Hence, to find optimal P∗, we need to
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maximize the quantity of Δ1 +Δ2 + . . . +Δn, under the following constraints. First, each

peer finishes transmitting its assigned segment Δi within delay bound Tu. Second, segment

Δi assigned to each peer is within its bit stream boundary [0, si]. Third, transmission

rate bi assigned to each peer is no larger than its outgoing bandwidth Bi. Fourth, the total

transmission rate of the supplying peers is within the incoming bandwidth of the requesting

peer. In other words, this problem can be formulated as a constrained integer programming

problem as follows,

maxP L(P) = Δ1 +Δ2 + . . . +Δn (1)

subject to
Δi 

bi 
≤ Tu, 

i
 

Δk ≤ si, 
k=1

bi ≤ Bi, 

n
 

bk ≤ BI , 
k=1





Δi, bi ∈ {0} Z+, for i = 1, 2, . . . , n 

which is a linear integer programming problem by transforming constraint Δi/bi ≤ Tu into

Δi − bi Tu ≤ 0.

To efficiently solve this integer programming problem, we first assume variables Δi and

bi take continuous values, and then employ a linear programming package, lp solve [5], to

find an optimal solution to the corresponding linear programming problem. After that, we

derive the approximate integer solution to Eqn.(1) by rounding the continuous solution to

its closest integer solution. In our previous work [22], we proved that the quality of this

approximate solution is very close to the true optimal integer solution by establishing an

upper bound between the two.
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Let PTu be the solution obtained from Eqn.(1). If its objective value, L(PTu ), is equal

to sn, this means that delay bound Tu is large enough for the requesting peer to obtain the

coded content of the best quality. In this case, the solution to Eqn.(1) may not be unique.

To illustrate this, let us visit a simple example. A peer requests from two supplying

peers for an image within 5 (Tu) seconds. Suppose p1 has its coded image of size 100

kbits (s1) with the outgoing bandwidth of 50 kbps (B1), and p2 has its coded image of

120 kbits (s2) with the outgoing bandwidth of 30 kbps (B2). The requesting peer has its

incoming bandwidth BI larger than 80 (50 + 30) kbps. For this simple problem, we can

easily find two optimal solutions: the first one is {(0, 50), (120, 30)}, and the second one is

{(75, 50), (45, 30)}. In both cases, the requesting peer can receive the coded image of 120

kbits, which is the best-quality image that can be supplied by p1 and p2. However, the first

solution results in much longer image transmission time (max{0/50, 120/30} = 4 sec) than

that of the second solution (max{75/50, 45/30} = 1.5 sec). Obviously, the second solution

is a preferable solution.

Therefore, we are motivated to find the solution that also minimizes the transmission

time, in case that the objective value L(PTu ) = sn. In other words, we need to solve an
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additional constrained optimization problem:

minP T (P) = max

 

Δ1

b1

, 
Δ2

b2

, . . . , 
Δn 

bn

 

subject to
i 

k=1

Δk ≤ si, for i = 1, 2, . . . , n − 1, 

n 

k=1

Δk = sn, 

bi ≤ Bi, 

n 

k=1

bk ≤ BI , 

Δi, bi ∈ {0}




Z+, for i = 1, 2, . . . , n 

To solve this problem, we first introduce a new variable y = max
{

Δ1 
b1 

, Δ2 
b2 

, . . . , 

(2)

Δn 
bn 

}

.

Then we can transform the objective function into min{P,y} T (P, y) = y, and also add some

new constraints, Δi/bi ≤ y (i = 1, 2, . . . , n), into the above problem. This leads to the
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following equivalent optimization problem:

min{P,y} T (P, y) = y (3)

i 

subject to Δk ≤ si, for i = 1, 2, . . . , n − 1, 
k=1

n 

Δk = sn, 
k=1

bi ≤ Bi, 

n 

bk ≤ BI , 
k=1

Δi/bi ≤ y 





Z+Δi, bi ∈ {0} , for i = 1, 2, . . . , n 

However, it is difficult to solve this problem, because constraints Δi/bi ≤ y are nonlinear

(note that Δi, bi, and y are all variables). In general, solving a nonlinear constrained

optimization problem depends highly on its starting points. Without good starting points,

it is easy to get stuck at local minima with poor solution qualities [16]. Sometimes, it is

even difficult to find feasible solutions. In addition, it may take a long time to find the

solutions.

Hence, instead of directly solving this nonlinear constrained problem, in Eqn.(3), we

propose to find the optimal solution P∗ by solving a sequence of the linear programming

problems of Eqn.(1) with the delay bound gradually tightened.

As discussed above, the reason why we need to solve Eqn.(2) is that the delay bound

Tu is too large. The purpose of solving Eqn.(2) is to find the minimum delay bound

T ∗ = T (P∗), so that for any Tu = T < T ∗, the solution PT to Eqn.(1) satisfies L(PT ) < sn.

Then the optimal solution P∗ can be derived by solving Eqn.(1), given Tu = T ∗.
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In our approach, we aim to find this minimum delay bound T ∗ by bisection search. For

efficient computation, it is important to find a good upper bound T h and a good lower

bound T l . Obviously, Tu is a good choice for T h . T l can be set to zero, but we can find

a better T l by relaxing the bandwidth constraints in Eqn.(2). In other words, the lower

bound T l can be found by solving the following linear programming problem,

Δ1 Δ2 Δn
min T (l = max , , . . . , (4)Δ)Δ B1 B2 Bn 

i 

subject to Δk ≤ si, for i = 1, 2, . . . , n − 1, 
k=1

n 

Δk = sn, 
k=1





Z+Δi ∈ {0} , for i = 1, 2, . . . , n 

which is derived from Eqn.(2) by removing the bandwidth constraints and the variables

of transmission rates bi. This formulation assumes that each supplying peer pi can use its

available bandwidth Bi, and the requesting peer has unlimited incoming bandwidth.

Let l = Δo).Δo be the optimal solution to Eqn.(4). Then we can set the lower bound T l T (l

To validate this lower bound, we need to prove T (lΔo) ≤ T (P∗).

Because P∗ = {(Δ∗
i , b∗i ), i = 1, 2, . . . , n} is an optimal solution to Eqn.(2), it satisfies

all the constraints of Eqn.(2). Note that the constraints of Eqn.(4) is a subset of Eqn.(2).

Δ∗ {Δ∗Accordingly, if we substitute the corresponding segment vector l = i , i = 1, 2, . . . , n}

into Eqn.(4), it will satisfy all the constraints of Eqn.(4). Thus, segment vector l is aΔ∗

Δofeasible solution to Eqn.(4). Because l is the optimal solution to Eqn.(4), we can obtain

Δ∗ Δ∗ 
iT (Δl o) ≤ T (l ≤ i for i =Δ∗). In addition, due to the fact that 1, 2, . . . , n, we have

Bi bi 

T (l Δo) ≤ T (P∗).Δ∗) ≤ T (P∗). Therefore, we prove T (l
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�

T (lIn summary, by solving Eqn.(4), we obtain a lower bound, T l = Δo), of the optimal

solution to Eqn.(2), T ∗(= T (P∗)).

{ }

Δn 
Bn

and then we transform the objective function into min T (l =Δ, y) y by adding new{Δ,y}

constraints, Δi/Bi ≤ y (i = 1, 2, . . . , n), into Eqn.(4). Since the new constraints are linear

(note that Δi’s and y are variables, and Bi’s are not), this is also a linear programming

problem, which can be efficiently solved by the lp solve [5] package.

If the optimal solution l to Eqn.(4) satisfiesΔo 

Bk ≤ BI , (5)

Δ1 Δ2To solve Eqn.(4), we first introduce a new variable y = as before,max ,  , . . . ,  
B1 B2 

o 
k

k,Δ =0

this means that the requesting peer has enough incoming bandwidth BI to accommodate

lΔo . By setting

Bi if Δi
o = 0

bi = (6)
0 otherwise

we obtain a peer allocation vector, P ′ = {(Δo 
i , bi), i = 1, 2, . . . , n}.

′ ΔoNext we will prove that P is an optimal solution to Eqn.(2). First, because l is an

optimal solution to Eqn.(4), it satisfies all the constraints of Eqn.(4). According to Eqn.(5)

L

and Eqn.(6), we can obtain bi ≤ Bi and i bi ≤ BI , the bandwidth constraints of Eqn.(2).

Hence, P ′ is a feasible solution to Eqn.(2), where all its constraints are satisfied. Second,

from our earlier discussion, we know that T (lΔo) ≤ T (P∗) ≤ T (P), for any feasible solution

P to Eqn.(2). Since T (P ′) = Δo), we have T (P ′) ≤ T (P) for any feasible solution P.T (l

This means that P ′ is an optimal solution to Eqn.(2). In this case, we can stop here since

we have already found the optimal solution P ′ to Eqn.(2).
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0. Given a user or application specified delay bound Tu 
1. Solve Eqn.(1) with delay bound Tu 
2. If L(PTu ) < sn, then solution is found and stop
3. Find the lower bound T l by solving Eqn.(4)
4. If the solution satisfies Eqn.(5), then solution is found and stop
5. Set the upper bound T h = Tu 
6. If T l and T h are sufficiently close, then solution is found and stop
7. Set T = (T l + T h)/2
8. Solve Eqn.(1) with delay bound T 
9. If L(PT ) = sn, then 
10. set T h = T 
11.Else 
12. set T l = T 
13.Endif 
14.Goto step 6

Figure 2: Sequence of linear programming solution.

On the other hand, if Δl o does not satisfy Eqn.(5), it implies that the bandwidth con­

straints of Eqn.(2) are violated. In this scenario, given T h and T l, we perform bisection

search between T l and T h to find the minimum T ∗ by solving a sequence of linear pro­

gramming problems of Eqn.(1), such that the optimal solution L(PT ∗ ) = sn. Figure 2

summarizes our peer assignment algorithm.

5 Experimental Results 

In this section, we evaluate the computational complexity and performance of our proposed

peer assignment algorithm (SLPAssign), shown in Figure 2.

In our SLPAssign algorithm, we set the terminating threshold of the bisection search

(Step 6 in Fig.2) to be 0.001. The experiments were carried out in a Pentium-IV Linux PC

with 1.8GHz CPU and 512MB memory.
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5.1 Comparison with Nonlinear Solution  

In this subsection, we will compare the computational complexity and performance of

SLPAssign with the approach of directly solving the nonlinear formulation in Eqn.(2),

when the delay bound Tu is larger than the minimum transmission time.

To solve this nonlinear formulation, we use the fmincon() function in Matlab. The func­

tion uses sequential quadratic programming [14] to find a constrained minimum, starting

from an initial estimate. As is well known, the quality of the solution depends heavily on

the choice of starting points. Two sets of starting points are evaluated in our experiments:

1) StartOne using the solution P derived from the first linear programming problem in

Eqn.(1) as the starting point; and 2) StartTwo using an all-one vector as the starting

point.

We compare the complexity and performance of SLPAssign with StartOne and StartTwo

in the following two scenarios. In the first scenario, the incoming bandwidth BI of the

requesting peer is larger than the total outgoing bandwidth BO of the supplying peers.

Table 3 and Table 4 show the comparison results for 4 and 8 supplying peers, with respect

to different delay bounds Tu (in seconds).

In the second scenario, we consider the case where the incoming bandwidth BI is 50

percent of the total bandwidth BO . The comparison results with respect to different delay

bounds Tu (in seconds) for both 4 and 8 supplying peers are depicted in Table 5 and Table 6.

In these tables, the solution (in seconds) is referred to image transmission time T (P)

that measures the quality of peer assignment P obtained by using SLPAssign or nonlinear

formulation. The CPU time in seconds measures time used to find the solution. The

iteration number listed for SLPAssign shows the number of linear programming problems

that SLPAssign needs to solve after Step 1 in Fig.2. We interpret the results as follows.

First, SLPAssign can always find the peer assignment with the minimum transmission
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Table 3: Comparison results for 4 supplying peers among SLPAssign, StartOne, and

StartTwo, when the incoming bandwidth of the requesting peer is larger than the total

outgoing bandwidth of the supplying peers (BI ≥ BO). The symbol n/s means that no

solution is found within the maximum CPU time, 300 seconds.

delay bound
SLPAssign StartOne StartTwo

solution CPU iter solution CPU solution CPU

Tu=3 2.4 0.001 1 3.000 0.063 2.792 0.141

Tu=4 2.4 0.001 1 4.000 0.031 n/s 300.0

Tu=5 2.4 0.001 1 5.000 0.036 4.838 0.070

Tu=6 2.4 0.001 1 6.000 0.062 4.838 0.063

Tu=7 2.4 0.001 1 7.000 0.031 6.781 0.094

Tu=8 2.4 0.001 1 8.000 0.031 4.838 0.109

Tu=9 2.4 0.001 1 9.000 0.078 4.838 0.093

Tu=10 2.4 0.001 1 10.000 0.063 9.845 0.110

Tu=11 2.4 0.001 1 11.000 0.062 4.838 0.110

Table 4: Comparison results for 8 supplying peers among SLPAssign, StartOne, and

StartTwo, when the incoming bandwidth of the requesting peer is larger than the total

outgoing bandwidth of the supplying peers (BI ≥ BO).

delay bound
SLPAssign StartOne StartTwo

solution CPU iter solution CPU solution CPU

Tu=4 3.236 0.001 1 4.000 0.078 3.254 0.406

Tu=5 3.236 0.001 1 3.347 0.417 3.272 28.719

Tu=6 3.236 0.001 1 4.185 0.11 3.261 6.000

Tu=7 3.236 0.001 1 4.185 0.188 3.266 0.406

Tu=8 3.236 0.001 1 4.187 0.25 3.253 0.500

Tu=9 3.236 0.001 1 4.185 0.14 3.303 0.609

Tu=10 3.236 0.001 1 4.180 0.219 3.294 0.297

Tu=11 3.236 0.001 1 4.185 0.125 3.281 39.172

Tu=12 3.236 0.001 1 4.185 0.172 3.373 0.375

time. However, the nonlinear solution does not guarantee to find a good peer assignment

solution all the time. It is easy to get stuck at local minima. The solution quality of

StartOne and StartTwo is poorer than that of SLPAssign.

Second, the nonlinear solution is highly dependent on the selected starting points. It is

difficult to find a set of starting points that consistently work the best for all experiments.
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Table 5: Comparison results for 4 supplying peers among SLPAssign, StartOne, and

StartTwo, when the incoming bandwidth of the requesting peer is 50 percent of the total

outgoing bandwidth of the supplying peers (BI = 50%× BO).

delay bound
SLPAssign StartOne StartTwo

solution CPU iter solution CPU solution CPU

Tu=4 3.939 0.004 13 4.000 0.031 4.000 0.085

Tu=5 3.939 0.004 15 5.000 0.031 5.000 0.094

Tu=6 3.939 0.004 14 6.000 0.031 3.939 0.093

Tu=7 3.939 0.005 17 7.000 0.032 4.075 0.109

Tu=8 3.939 0.004 14 8.000 0.031 8.000 0.093

Tu=9 3.939 0.004 16 9.000 0.032 9.000 0.094

Tu=10 3.939 0.004 14 10.000 0.032 10.000 0.094

Tu=11 3.939 0.004 15 11.000 0.032 11.000 0.088

Tu=12 3.939 0.005 17 4.457 0.141 12.000 0.078

Table 6: Comparison results for 8 supplying peers among SLPAssign, StartOne, and

StartTwo, when the incoming bandwidth of the requesting peer is 50 percent of the total

outgoing bandwidth of the supplying peers (BI = 50%× BO).

delay bound
SLPAssign StartOne StartTwo

solution CPU iter solution CPU solution CPU

Tu=5 4.461 0.006 12 4.457 0.203 5.000 0.203

Tu=6 4.457 0.007 13 4.457 0.103 6.000 0.141

Tu=7 4.458 0.007 13 4.457 0.11 5.253 0.391

Tu=8 4.457 0.007 14 4.460 0.36 8.000 0.156

Tu=9 4.457 0.007 14 4.457 0.36 6.285 0.359

Tu=10 4.457 0.007 14 4.457 0.266 4.602 1.172

Tu=11 4.457 0.008 16 4.457 0.125 5.276 5.985

Tu=12 4.457 0.008 16 4.457 0.109 5.778 121.812

Tu=13 4.457 0.009 18 4.457 0.141 13.000 0.141

StartTwo finds better solutions than those of StartOne in Table 4, whereas StartOne finds

better solutions in Table 6.

Third, we measure the computational overhead as time used to find a solution divided

by the image transmission time (that is, cpu ). The computational overhead of SLPAssign
solution

is negligible, but that of nonlinear solutions is much higher. In some cases, the overhead

for solving nonlinear formulation can be very significant. Many problem instances in these
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four tables incur overhead larger than 100%.

In summary, our SLPAssign performs much better than the nonlinear solutions in both

computational overhead and solution quality.

5.2 Comparison with Two Heuristics 

To further evaluate the performance of SLPAssign, we compare it with two heuristic

schemes, LongAssign and GreedyAssign, used in the example in Section 3.

We designed our experiments to simulate two types of applications: image transmission

in low-bandwidth environments and video transmission in the Internet. To gain some in­

sight how SLPAssign, LongAssign, and GreedyAssign respond with different delay bounds,

we carried out the experiments to calculate the quality of downloaded content, as the de­

lay bound Tu gradually increases from 0 to the time needed by GreedyAssign to finish

downloading the content.

5.2.1 Image Transmission in Low Bandwidth Environment 

In this subsection, we compare the performance of SLPAssign, LongAssign, and GreedyAs­

sign for the application of image transmission in low bandwidth environments. The band­

width in some wireless networks, such as bluetooth-based WPANs and cellular networks,

is very limited. It is usually in the order of tens of kilobits per second. To model such an

environment, we set the outgoing bandwidth Bi of supplying peers to be within 4 kbps and

32 kbps.

The image transmitted is the 512×512 Barbara image, fine-scalable coded by SPIHT [20].

The bit rates used by supplying peers to encode the Barbara image using SPIHT are ran­

domly generated between 0.125 bpp and 1 bpp, resulting in the coded image of size si 

between 32 kbits and 256 kbits. The maximum size of the coded image is 256 kbits (i.e.,

the Barbara image coded in 1 bpp).
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Figure 3: Comparison of downloaded image size (a and b) and quality (c and d) among

SLPAssign, GreedyAssign, and LongAssign with respect to a range of delay bounds, in a

P2P system with 4 supplying peers.

Due to the dynamic nature of wireless PANs or cellular networks, the number of the

supplying peers is not likely to be very large. We set the number of the supplying peers

to be less than 10, from which we choose two sets of representative comparison results and

plot them in Figure 3 and Figure 4, respectively.

From these experimental results, we can make several observations. First, for any

given delay bound Tu, LongAssign results in the worst image quality in terms of PSNR.

This is not surprising, since LongAssign involves less number of supplying peers in image

transmission. This shows the advantage of sharing scalable-coded content on P2P networks.
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Figure 4: Comparison of downloaded image size (a and b) and quality (c and d) among

SLPAssign, GreedyAssign, and LongAssign with respect to a range of delay bounds, in a

P2P system with 8 supplying peers.

By exploiting the embedding property of scalable coding, we have more supplying peers

available to contribute and share resources. In addition, SLPAssign always obtains the

image of the best quality in terms of PSNR, for a given delay bound among the three

approaches.

Second, SLPAssign results in much shorter image transmission time to obtain the best-

quality image. For example, SLPAssign only takes half of the time used by GreedyAssign

in Figure 4a) and 4c), and 60% of the time by GreedyAssign in Figure 4b) and 4d),

respectively. Besides, when the delay bound is larger than the maximum downloading time
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of SLPAssign (e.g., 2.4 seconds in Figure 3a) and 3c), 3.9 seconds in Figure 3b) and 3d),

3.2 seconds in Figure 4a) and 4c), 4.4 seconds in Figure 4b) and 4d)), SLPAssign obtains

the best image in shorter than the delay bound, while GreedyAssign downloads an image

with poorer quality at the delay bound.

Third, when the incoming bandwidth of the requesting peer is limited and the number

of the supplying peers is small, the performance gap between SLPAssign and GreedyAssign

becomes small. This is observed in Figure 3b) and 3d). Intuitively, we can understand this

as follows. In Figure 3b) and 3d), there are 4 supplying peers, and the incoming bandwidth

of the requesting peer is equal to 50% of the total outgoing bandwidth of the supplying

peers. This bandwidth constraint can be considered as equivalent to reducing the number

of supplying peers, and it is fair to say that we essentially have 2 supplying peers. The

advantage due to the optimal scheduling of SLPAssign diminishes in such a small system,

when the variance in the image sizes of the two supplying peers is small. In this scenario,

GreedyAssign is able to achieve close-to-optimal peer assignment.

5.2.2 Video Transmission in the Internet 

Video transmission is always a bandwidth-constrained application, even with the rapid

adoption of broadband networks. Here we evaluate the performance of SLPAssign, Lon­

gAssign, and GreedyAssign for video transmission in the Internet. We set the outgoing

bandwidth of supplying peers to be between 128 and 384 kbps, corresponding to the uplink

bandwidths of DSLs and cable modems.

Since the standard public video sequences, such as MPEG-4 sequences, are relatively

short, we used our own video sequence, which was captured and digitized from a boxing

match in a TV program. This video sequence has 33100 frames in CIF format of dimension

352 × 288, representing about 18-minute video captured in 30 frames/sec. We used a fine-

scalable video coding algorithm, 3D-SPIHT [15], to compress the video sequence into 200
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Figure 5: Comparison of downloaded video size (a and b) and quality (c and d) among

SLPAssign, GreedyAssign, and LongAssign with respect to a range of delay bounds, in a

P2P system with 12 supplying peers

MBbytes.

We experimented with the P2P networks with the number of supplying peers ranging

from 10 and 20. To save space, we only reported the results with 12 and 16 supplying

peers. The other results are similar. Figure 5 and Figure 6 show the experimental results

for 12 and 16 supplying peers, respectively.

We can reach similar conclusions as in the image transmission experiments. LongAssign

is still the worst among the three, and SLPAssign consistently outperforms GreedyAssign

and LongAssign. Further, in our video transmission experiments, the performance gap

25



 200  200
 180  180
 160  160
 140  140

LongAssign 
GreedyAssign 

SLPAssign

LongAssign 
GreedyAssign 

SLPAssign 

V
id

eo
 Q

ua
lit

y 
(P

SN
R

) 
V

id
eo

 S
iz

e 
(M

B
yt

es
) 

V
id

eo
 Q

ua
lit

y 
(P

SN
R

) 
V

id
eo

 S
iz

e 
(M

B
yt

es
)

120
 100
 80
 60
 40
 20

 120
 100

 80
 60
 40
 20

 0  0
 0  5  10  15  20  25  30 0  5  10  15  20  25  30 

Delay Bound (min) Delay Bound (min) 

a) video size (BI ≥ BO) b) video size (BI = 50%× BO)

 34  34

 32  32

LongAssign 
GreedyAssign 

SLPAssign

LongAssign 
GreedyAssign 

SLPAssign 

30

 28

 26

 24

 22

 30

 28

 26

 24

 22

 20  20

 18
 0  5  10  15

Delay Bound
 20  25  30 

(min) 

 18
 0  5  10  15

Delay Bound (
 20  25  30 

min) 

c) video PSNR (BI ≥ BO) d) video PSNR (BI = 50%× BO)

Figure 6: Comparison of downloaded video size (a and b) and quality (c and d) among

SLPAssign, GreedyAssign, and LongAssign with respect to a range of delay bounds, in a

P2P system with 16 supplying peers

between SLPAssign and GreedyAssign is much more significant. With the same delay

bound, SLPAssign downloads up to 45 MBytes more video bit streams than GreedyAssign,

and thus the video quality is up to 3dB better.

It is interesting to note that the performance advantage of SLPAssign becomes more

obvious as the number of supplying peers increases. This is because when we have more

supplying peers, it is more likely that the supplying peers have more chances to have the

coded videos of different sizes. With more variances in the video sizes, GreedyAssign may

result in poorer peer assignment in which the supplying peers leave the system at different
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time instances. However, SLPAssign can systematically maximize the utilization of the

available bandwidth by scheduling the supplying peers to finish transmission at almost the

same time.

The above analysis also explains why the performance gain of SLPAssign over GreedyAs­

sign is larger when the incoming bandwidth is sufficient (BI ≥ BO). When a requesting

peer has more abundant incoming bandwidth, it is able to involve more supplying peers in

transmission.

5.2.3 Result Summary 

In summary, our experimental results have demonstrated that SLPAssign has negligible

computational overhead and achieves excellent performance compared to the two heuristic

approaches. The proposed SLPAssign is a general approach, and it can be used to download

scalable coded images or videos in bandwidth-limited environments. Its performance gain

becomes more significant when there are more supplying peers on P2P networks.

6 Conclusions and Future Work 

In this paper, we studied how to maximize the quality of delivering fine-scalable coded

content on P2P networks, under the constraints that the content has to be displayed within

a delay bound and the incoming bandwidth of a requesting peer is limited. We formulated

this problem as constrained optimization problems, and then efficiently solved them using

a sequence of linear programming. The main contributions of this paper are three-fold.

First, we have demonstrated how to exploit the embedding property of scalable coding to

design optimal peer assignment strategies on P2P networks. To be more realistic, we have

incorporated both delay and bandwidth constraints in our problem formulation. Second,

we have proposed an efficient solution method to solve the nonlinear formulation by using

a sequence of linear programming, and have proved its optimality. Third, we have applied
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our peer assignment algorithm to both image and video transmissions in bandwidth-limited

environments. The experimental results have verified excellent performance of our proposed

algorithm.

In the future, we plan to study transmission of coarse-scalable coded content, such as

those generated by MPEG-2 scalability modes and JPEG2000.
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