Ultra-Wide (UWB) Communications: New Paradigms and Opportunities.

Robert H. Morelos-Zaragoza
San Jose State University, robert.morelos-zaragoza@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/ee_pub

Part of the Electrical and Computer Engineering Commons

Recommended Citation

This Presentation is brought to you for free and open access by the Electrical Engineering at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.
Ultra-Wideband (UWB) Communications: New Paradigms and Opportunities

Robert Morelos-Zaragoza, Ph.D.
Department of Electrical Engineering
San Jose State University
San Jose, CA 95192-0084

February, 2004
The *UWB* communication problem

- Truly *Ultra-wide*: 3.1 GHz to 10.5 GHz (FCC approved in 2001)
- The usable bandwidth is 7.4 GHz (!!)

- Multipath components are resolvable
 - Could use a **RAKE receiver**

- However, at high information rates (in excess of 100 Mbps), inter-symbol interference (ISI) is present
 - An **equalizer** is needed

- This type of situation has never been studied before
 - **New channel model** needed
 - Cannot rely on CDMA/spread-spectrum experience
 - IEEE 802.15.3a study group (Intel, Time Domain and Mitsubishi)
UWB Emission Limit for Indoor Systems

![Graph showing UWB EIRP emission levels in dBm against frequency in GHz. The graph indicates the indoor limit and part 15 limit with specific frequency bands highlighted.]
UWB Spectrum and Narrowband Systems

-41 dBm/Mhz

Emitted Signal Power

GP
PCS
Bluetooth, 802.11b
Cordless Phones
Microwave Ovens

802.11a

"Part 15 Limit"

Frequency (Ghz)

1.6 1.9 2.4 3.1 5 10.6

UWB Spectrum

March 10, 2004
UWB Research Group, SJSU
Channel Model from IEEE 802.15.3a group (Nov. 2003)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CM1</th>
<th>CM2</th>
<th>CM3</th>
<th>CM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda) [1/nsec] Cluster arrival rate</td>
<td>0.0233</td>
<td>0.4</td>
<td>0.0667</td>
<td>0.0667</td>
</tr>
<tr>
<td>(\lambda) [1/nsec] Ray arrival rate</td>
<td>2.5</td>
<td>0.5</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>(\Gamma) Cluster decay factor</td>
<td>7.1</td>
<td>5.5</td>
<td>14.0</td>
<td>24.0</td>
</tr>
<tr>
<td>(\gamma) Ray decay factor</td>
<td>4.3</td>
<td>6.7</td>
<td>7.9</td>
<td>12.0</td>
</tr>
<tr>
<td>(\sigma_1) [dB] Cluster lognormal fading term</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
</tr>
<tr>
<td>(\sigma_2) [dB] Ray lognormal fading term</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
<td>3.3941</td>
</tr>
<tr>
<td>(NP_{10dB}) MERL, TR-2003-73</td>
<td>12.5</td>
<td>15.3</td>
<td>24.9</td>
<td>41.2</td>
</tr>
<tr>
<td>(NP_{10dB} (*)) SJSU, 12/13/2004</td>
<td>14.57</td>
<td>15.0</td>
<td>23.5</td>
<td>32.2</td>
</tr>
</tbody>
</table>

(*) Average over 200 channel realizations with T. Becker's Matlab model.
Matlab model simulation results
(February 13, 2004)
The CM1 Channel: LOS, 0-4 m

100 Impulse Responses for the CM1 Channel
The CM2 Channel: NLOS, 0-4 m
The CM3 Channel: NLOS, 4-10 m

100 Impulse Responses for the CM3 Channel

Magnitude

Time (nsec)
The CM4 Channel: Strong Multipath

100 Impulse Responses for the CM4 Channel

Time (nsec)

Magnitude

March 10, 2004
UWB Research Group, SJSU
Some receiver design considerations

• FCC mandates the use of at least 500 MHz of UWB bandwidth

• This translates into a pulse duration of the order of 2 ns

• Data rates of the order of 100 Mbps translate into symbol periods of the order of 10 ns. The larger the data rate, the longer the symbol duration.

• This means that spectral peaks will appear in the spectrum, unless some form of “dithering” is used

• Even for line-of-sight (LOS) conditions, with high data rates, the maximum delay spread is greater than the symbol period
When to “RAKE” the received signal?

- Signal with very narrow pulses and relatively long symbol period
 - Pulse-based modulation: PPM, PAM

- Spread the symbols using pseudo-noise (PN) sequences with good autocorrelation properties
 - Spread-spectrum modulation (as in CDMA)
 - Chip duration short enough to resolve the multipath components

- [Proakis] Rake receiver improves reliability of the communication link provided that
 \[T >> \tau_m, \]

 where \(T \) is the symbol period, and \(\tau_m \) is the maximum delay spread of the channel
Example 1: Pulse-based modulation and two-path channel

\[y(t) = \alpha_0 x(t-\tau_0) + \alpha_1 x(t-\tau_1) \]

Rake receiver: Combines the two components in a constructive manner, to increase the signal energy, prior to the demodulation process.
Example 1 (cont.): Rake receiver

![Diagram of Rake receiver]

Maximum-likelihood channel gain estimator:

\[\alpha_i' = \alpha_i^* + W_i, \quad \text{where } W_i \text{ is Gaussian distributed, } i=1,2 \]
Example 2:
Spread-spectrum modulation and two-path channel

Autocorrelation function of a PN sequence of length N:
Example 2 (cont.): Rake receiver

PN sequence correlators are used in order to resolve (i.e., estimate the delay and gain of) the paths
When to “equalize” the received signal?

- The maximum delay spread of the channel, τ_m, exceeds the symbol period T
 \[T \ll \tau_m, \]

- A Rake receiver is no longer able to resolve independent paths, no matter how many “fingers” it has.

- Paths span several symbol periods and therefore symbols interfere with each other: **Inter-symbol interference (ISI)**

- ISI in turn mean that the channel is no longer “flat” over the signal bandwidth

- An **equalizer** can be used to “flatten” the channel
 - Multi-carrier (OFDM) signalling with frequency-domain equalization is an option
To RAKE or to equalize?

• In conventional (narrowband) digital communication systems, multipath channels can be classified as either “flat” or “frequency-selective”

• A Rake receiver is applicable in “flat” (or mildly frequency-selective) channels. Example: Cellular systems.

• An equalizer can be used in frequency-selective multipath channels. Example: Wireless LANs.

• However, the UWB channel contains such large number of multipath components that the models and receivers designed for narrowband systems are (highly?) suboptimal.
The UWB paradigm and joint RAKE-equalization

• The solution lies between the energy-capture capabilities of a Rake receiver and the ISI-removal properties of an equalizer

• A new type of digital receiver will emerge to handle the promises of high-data rates in very-large-bandwidth UWB systems

• The biggest challenges at this point in time appear to be
 – Short-time accurate estimation of (correlated) channel paths
 – Low-complexity (low-power) solutions to the joint optimization of Rake and equalizer:
 • Number of Rake fingers
 • Number of equalizer taps
 • Linear or nonlinear structures?
 • Data-aided or decision-directed?