
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

Metamorphic Viruses with Built-In Buffer Overflow Metamorphic Viruses with Built-In Buffer Overflow

Ronak Shah
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shah, Ronak, "Metamorphic Viruses with Built-In Buffer Overflow" (2010). Master's Projects. 28.
DOI: https://doi.org/10.31979/etd.dtrm-p5ed
https://scholarworks.sjsu.edu/etd_projects/28

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/28?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

METAMORPHIC VIRUSES WITH BUILT
BUFFER OVERFLOW

The Faculty of the Department of Computer Science

of the Requirements for the Degree

METAMORPHIC VIRUSES WITH BUILT
BUFFER OVERFLOW

A Research Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Ronak Shah

Spring 2010

METAMORPHIC VIRUSES WITH BUILT-IN

© 2010

Ronak Shah

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Project-Thesis Titled

METAMORPHIC VIRUSES WITH BUILT-IN
BUFFER OVERFLOW

by

Ronak Shah

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date

Dr. Sami Khuri, Department of Computer Science Date

Mr. Dhrumin Shah, NetApp Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

i

Abstract

METAMORPHIC VIRUSES WITH BUILT-IN BUFFER OVERFLOW

Metamorphic computer viruses change their structure—and thereby their signature—each

time they infect a system. Metamorphic viruses are potentially one of the most dangerous

types of computer viruses because they are difficult to detect using signature-based methods.

Most anti-virus software today is based on signature detection techniques.

In this project, we create and analyze a metamorphic virus toolkit which creates viruses with a

built-in buffer overflow. The buffer overflow serves to obfuscate the entry point of the actual

virus, thereby making detection more challenging. We show that the resulting viruses

successfully evade detection by commercial virus scanners.

Several modern operating systems (e.g., Windows Vista and Windows 7) employ address space

layout randomization (ASLR), which is designed to prevent most buffer overflow attacks. We

show that our proposed buffer overflow technique succeeds, even in the presence of ASLR.

Finally, we consider possible defenses against our proposed technique.

ii

Acknowledgements

I would really like to thank Dr. Mark Stamp, for giving me an opportunity to work on this

research project under his guidance. I also thank him for the patience, ideas, suggestions and

inspirations without which this Master’s research project would not have been possible.

I would also like to thank Prof. Janelle Melvin for helping and guiding me with the writing of the

research project.

iii

Table of Contents

1. Introduction .. 1

2. Background ... 4

2.1. Types of Computer Viruses .. 4

2.1.1. Encrypted Viruses ... 4

2.1.2. Oligomorphic Viruses .. 5

2.1.3. Polymorphic Viruses.. 5

2.1.4. Metamorphic Viruses .. 5

2.2. Virus Generation Tools and Techniques ... 7

2.3. Virus Detection Techniques ... 8

2.3.1. Signature Detection Technique ... 8

2.3.2. Change Detection Technique .. 8

2.3.3. Anomaly Detection Technique or Heuristic Analysis .. 9

3. Buffer Overflow .. 10

3.1. What is a Buffer Overflow? .. 10

3.2. Buffer Overflow Attacks .. 14

3.3. Attempts to Avoid or Detect Buffer Overflows .. 15

4. Address Space Layout Randomization (ASLR) .. 18

4.1. What is ASLR? ... 18

4.2. Where is it used? .. 19

4.3. De-Randomization Attacks .. 19

4.4. Analysis of ASLR in Microsoft Windows Vista ... 20

5. Technical Details .. 21

5.1. Virus Code with the Buffer Overflow Exploit ... 21

5.2. Code Encryption and Decryption .. 23

5.3. Opaque Predicates .. 25

5.4. Insertion of Junk Code and Normal Code... 27

5.5. Subroutine Permutation ... 28

5.6. Inline Functions in C++ ... 32

6. Metamorphic Virus Generation Tool.. 33

6.1. Metamorphic Virus Generation Tool: Detailed Steps ... 34

6.1.1. Metamorphic Engine .. 34

iv

6.1.2. Build Framework for Buffer Overflow (Compile Buffer.cpp) .. 35

6.1.3. Output Files .. 35

6.1.4. The Virus Attack: Buffer.exe .. 36

7. Test and Results ... 37

7.1. Buffer Overflow Test .. 37

7.2. Hiding Entry Point to the Virus .. 41

7.3. Test against Commercial Virus Scanners ... 42

8. Defense Techniques .. 44

8.1. ASLR Improvements for Preventing Buffer Overflow .. 44

8.1.1. Use of 64-bit Architectures .. 44

8.1.2. Increase Randomization Frequency... 44

8.1.3. Randomizing Addresses at a Finer Granularity... 45

8.1.4. Monitoring and Catching Errors .. 45

8.2. Monitoring File Creation ... 45

8.3. Code Transformation Detection .. 46

8.4. Advanced Techniques for Virus Detection .. 46

9. Conclusions and Future Work .. 47

10. References .. 49

11. Appendix ... 51

11.1. Appendix A: Normal Codes as disassembled from Windows Files .. 51

11.2. Appendix B: Opaque Predicates .. 55

11.3. Appendix C: Virus code used for testing .. 56

12. Biography.. 57

v

List of Figures

Figure 1: Metamorphic Viruses .. 6

Figure 2: C++ Code Example for a simple buffer overflow... 11

Figure 3: Diagrammatic Description of the memory of a program ... 12

Figure 4: Diagrammatic Description of an Exploited Buffer Overflow 13

Figure 5: Stack Frame with Canary Implementation .. 17

Figure 6: Distribution of Stack Addresses ... 20

Figure 7: buffer.cpp (C++ file containing the actual buffer overflow exploit) 21

Figure 8: Buffer Overflow in Disassembly ... 22

Figure 9: Encryption Logic .. 23

Figure 10: Decryption Logic ... 24

Figure 11: Calls to the encryption and decryption functions... 24

Figure 12: Simple Opaque Predicate .. 25

Figure 13: Opaque Predicate Involving Complex Math .. 25

Figure 14: Opaque Predicate as shown in Assembly .. 26

Figure 15: Subroutine Permutation ... 28

Figure 16: Inline Functions in C++ Code Extract .. 32

Figure 17: Screenshot of Metamorphic Virus Generation Tool ... 33

Figure 18: Virus Generation Tool ... 34

Figure 19: Buffer.exe ... 36

Figure 20: OllyDbg Error on Dynamic Linking .. 41

Figure 21: ASM Extract Notepad .. 51

Figure 22: ASM Extract WordPad ... 51

Figure 23: ASM Extract Explorer .. 52

Figure 24: ASM Extract Registry Editor ... 53

Figure 25: ASM Extract Internet Explorer ... 54

Figure 26: Virus code in C++ ... 56

vi

List of Tables

Table 1: Subroutine Transformation Code Extracts ... 29

Table 2: Disassembly of Code Extract 1 ... 30

Table 3: Disassembly of Code Extract 2 ... 31

Table 4: Defeating ASLR (First Run) .. 38

Table 5: Defeating ASLR (Second Run) .. 39

Table 6: Defeating ASLR (Third Run) ... 40

Table 7: Opaque Predicates .. 55

1

METAMORPHIC VIRUSES WITH BUILT-IN BUFFER
OVERFLOW

1. Introduction

The field of computer security is relatively new and is constantly changing to meet the

needs of a rapidly evolving industry. As our dependence on computers and the Internet for

communication, banking, shopping, internet booking and trading, and almost every aspect

of our day-to-day experience has grown, so has the importance of computer security. In

recent years there has been a drastic increase in the number of virus attacks on computer

systems. Research into potential attacks and possible defenses against these attacks is vital.

A computer virus is a malicious piece of software that infects user machines, servers, or

other larger systems, by copying itself and disrupting the normal functioning of a computer

system. Typically, a computer virus is easily spread, small, and has the ability to reproduce

itself. According to [6], one of the first computer viruses was the famous and successful

Brain virus, in 1986. Since then, the number of computer attacks and viruses has increased

exponentially.

A virus attack is the harm that is caused to a computer (mostly software) by the malicious

code that is contained in a virus. Typically, virus attacks aim at using up the software or

hardware resources by making these resources unavailable, corrupting data, using sensitive

data for malicious activities, and so on. Generally, a virus is very difficult to trace back to its

2

publisher. Statistics show that most virus attacks are carried out by troubled employees,

college students, and information hackers, among others [23].

Metamorphic viruses change their code structure across generations in such a way that the

viruses’ functionality does not change. This means that multiple distinctive copies of the

same virus perform the same attack, which makes detection extremely difficult. Generally,

metamorphic viruses are generated with the help of a metamorphic engine that performs

all the code transformations to the virus software. The aim of this research project is to

develop a metamorphic virus generation tool that uses a publicly known and detected virus,

and convert it into a resident metamorphic virus. In our project we further obfuscate the

virus code by making it appear to be “dead code” that should never execute. However, this

“dead code” does actually execute due to a buffer overflow and de-randomization

technique. Since this virus appears to be dead code, it should be more difficult to detect

with conventional signature detection techniques.

This paper is organized as follows:

• Section 2 gives a background of computer viruses in general and discusses their

importance and severity in today’s world. This section also discusses the various

types of computer viruses, along with the different techniques used to generate and

detect them.

• In Section 3 we introduce and discuss buffer overflows, their history, importance,

buffer overflow attacks, and ways to avoid or mitigate them.

3

• In Section 4 we discuss the Address Space Layout Randomization technique that is

used by some of operating systems, like Linux PaX, Microsoft Windows Vista (and

later), to make buffer overflows difficult to exploit. We also analyze the

effectiveness of ASLR as implemented in Windows Vista.

• In Section 5 we discuss the different software techniques that are used by our

metamorphic virus generator to create highly metamorphic viruses.

• In Section 6 we discuss the implementation of our metamorphic virus generator tool

for generating undetectable viruses.

• In Section 7 we present the tests performed to evaluate the results achieved by our

metamorphic virus generation tool.

• In Section 8 we discuss some of the mechanisms that could be used by anti-virus

software in an effort to detect the viruses proposed in this paper.

• Finally, Section 9 summarizes our results and offers proposed directions for future

research in this area.

4

2. Background

Computer viruses attempt to infect user machines, servers, or other larger systems by

copying themselves and disrupting the normal functioning of a computer system. By and

large, these viruses, malware, adware, and other spyware are detected with the help of

anti-virus software, most of which uses signature-based detection techniques. Various

sophisticated virus generation techniques have been employed to make signature-based

virus detection difficult. We discuss some of these techniques here.

2.1. Types of Computer Viruses

According to [1] and [16], viruses can be classified into four different types, or categories,

namely, encrypted, oligomorphic, polymorphic, and metamorphic.

2.1.1. Encrypted Viruses

The body of an encrypted virus consists of a small decryption module and an encrypted

virus body. Thus it is difficult for virus scanning software using signature detection

technique to detect, as the virus body is encrypted and residing in the binary.

But the decryption modules of such viruses remain the same and have a unique signature.

Thus, it is fairly simple to detect such viruses based on the signature of the decryption

module itself. Hence, such viruses can easily be detected using conventional signature

detection strategies.

5

2.1.2. Oligomorphic Viruses

Oligomorphic viruses, as described, by Peter Ferrie, Symantec, in [16], change their

decryptors across generations. With this technique, signature detection of the viruses on

the basis of the decryption module becomes difficult. However, most commercial virus

scanners are smart enough to defeat this technique by detecting the viruses after

decryption, which will obviously reveal the constant code structure and a constant

signature.

2.1.3. Polymorphic Viruses

Polymorphic viruses work in the same way as encrypted viruses but there are multiple

encryption and decryption modules in each generation. All these modules work to hide the

single piece of virus code. Detection is still possible using code emulation. Virus scanners

can use code emulation technique to decrypt the virus body dynamically. The reason for

this is that all polymorphic viruses contain the same virus structure.

2.1.4. Metamorphic Viruses

This is the fourth and the most dangerous type of virus, as discussed in [1]. The structure of

a metamorphic virus changes completely with each new generation. Metamorphic viruses

hide their signature by employing various code obfuscation techniques. Metamorphic

viruses have a different internal structure in each instance, but the functionality of each

instance is identical. It is difficult for signature detection virus scanners to detect such

6

viruses. Metamorphic viruses are therefore only detectable by highly sophisticated

detection techniques.

Metamorphic viruses use different types of technologies to obfuscate the virus code and at

the same time attempt to change their code so that they will be difficult to scan using virus

signatures.

Let us consider the following diagram to understand metamorphic viruses in detail. As

shown in the diagram, the metamorphosis of a virus involves taking the original copy of a

virus and changing it so that it remains the same functionally but its structure is drastically

altered.

Figure 1: Metamorphic Viruses

7

2.2. Virus Generation Tools and Techniques

There are many different virus generation techniques available, and the list is constantly

growing. Hundreds of virus generation tools are freely available online. Some of the virus

generation tools available at VXHeavens website [11] are:

1. C++ Worm Generator

2. CcT's Malware Construction Kit

3. CompVCK for Win32Asm Sources

4. Next Generation Virus Construktion Kit (NGVCK)

5. Windows Virus Creation Kit

All these tools provide a full-fledged framework to generate dangerous and metamorphic

computer viruses. The different techniques used by these virus generating tools are:

1. Code insertion

2. Code obfuscation

3. Code transformation

4. Replacement of existing operations with similar operations or operations that do not

change the way the virus program is performing

8

2.3. Virus Detection Techniques

With the increase in the number and sophistication of virus attacks, there is also a need for

advanced virus detection techniques. Some of the techniques used for virus detection are:

2.3.1. Signature Detection Technique

A signature is the binary footprint of any virus. A signature-based virus scanner looks for a

match amongst the available signatures in all the binary files in a computer. If a match is

found it means that a particular known virus is detected. This is brute force technique and is

very effective for the detection of known viruses, but it is not very effective when not much

is known about a virus’ signature or if it’s a completely new virus attack. Still, most

commercial virus scanners use conventional signature detection technique.

2.3.2. Change Detection Technique

Change detection technique involves monitoring the important files on a system for

changes. This can be done by computing and storing the hashes during the ideal state of the

system for files that do not generally change. These hashes can be computed periodically

and compared with the original saved hash of the file. If the newly computed hash is

different from the saved hash, it means that the file is changed and has therefore been

affected by a virus or other malicious code.

This can prove to be a very effective technique even in detecting new or unknown viruses.

However, there are also a number of disadvantages associated with this technique. Since,

many files change in a system; it is difficult to take into account these changes into the

9

change detection technique. This technique can easily flag for false positives, for instance

when a file changes for a good reason. Also it puts a heavy load on the processor, if used

very frequently.

2.3.3. Anomaly Detection Technique or Heuristic Analysis

Anomaly detection, or heuristic analysis, is another technique that can be used for

detection of viruses. In this technique, the virus scanner monitors system files and

resources and looks for anomalous behavior. Anomaly detection is a very challenging

problem for the following reasons:

1. The behavior of a system changes constantly depending upon its usage

2. Flagging of anomalous behavior does not always help

3. It is very difficult to define the norm of a given system

For these reasons, this technique also causes many false positives. Anomaly detection

relates to a problem in the domain of artificial intelligence and is a complex one to solve. It

is very difficult to design a virus scanner that purely uses anomaly detection technique.

There have been some approaches where anomaly detection is combined with signature

detection techniques to develop the scanner.

10

3. Buffer Overflow

A buffer overflow is a programming flaw due to which more data is pushed into a data

structure than it is designed to hold [3]. For the last two decades, most of the virus attacks

are exploited due to the buffer overflow [9]. The virus generation toolkit that we present in

this research project is based on a simple buffer overflow exploit. We hide the entry point

to a hidden or “dead” piece of code that could never have executed without the buffer

overflow exploit. In this section, we discuss some famous buffer overflow exploits, their

historical importance in the field of computer security, and some of the techniques that

have been used to detect and mitigate buffer overflows in the past.

3.1. What is a Buffer Overflow?

Buffer overflow is a programming bug or a hack that can be exploited by attackers to

launch serious virus attacks [9]. Buffer overflow can be exploited through programming

languages like C or C++ easily where strict bound checking is not performed on the data

structures.

The concept of buffer overflow is very simple, “A buffer overflow is very much like pouring

ten ounces of water in a glass designed to hold eight ounces. Obviously, when this

happens, the water overflows the rim of the glass, spilling out somewhere and creating a

mess.” [15]

 Buffer overflows can be exploited by writing to an unauthorized memory location using

pointers, arrays, stacks, heaps, or other similar data structures. For example, consider an

11

array or any other data structure that holds N elements. A buffer overflow occurs when a

program tries to store more than N elements in that data structure. The reason for the

occurrence of a buffer overflow is that not enough memory is allocated for a data structure

or the buffer. A code snippet demonstrating a buffer overflow error is as follows:

Figure 2: C++ Code Example for a simple buffer overflow

In the above example, the declaration for the array arr allocates memory for 5 integer

values. The “for loop” tries to put more than 5 integer values in the array arr. This

causes the array buffer to overflow.

In Figure 3 we give a diagrammatic representation of a program’s execution memory stack.

As shown in the figure, function variables and buffers are placed next to the return address

of a function in the execution stack. When an attempt is made to write to a memory

location that is not allocated it causes the buffer to overflow. Thus, when the program

reaches its end it does not know where to go back to. This is even more dangerous if a

buffer overflow attack modifies the path of execution by overwriting the return address

with the known address of some malicious code.

12

Figure 3: Diagrammatic Description of the memory of a program

Buffer overflow can be exploited such that the path of execution is altered with malicious

intent. The return address of the executing code can be overwritten with address of some

malicious code with the help of a buffer overflow exploit. This scenario is explained by the

memory map shown in Figure 4 below:

13

Figure 4: Diagrammatic Description of an Exploited Buffer Overflow

14

3.2. Buffer Overflow Attacks

Buffer overflow attacks are very sensitive and require an in-depth knowledge of the system

that is being attacked. Buffer overflow exploits are very popular amongst virus writers and

hackers because the attacker has full control over the code to execute after the exploit.

Such attacks have been around for quite awhile and there have been many attempts to

avoid or to detect them. We discuss in detail some of the attempts to avoid, void, or detect

buffer overflows in Section 3.3.

Some of the most famous and hostile buffer overflow exploits include [9]:

1. Morris Worm (1988): Affected 6000 machines over the internet

2. Code Red Virus (2001): Exploited a buffer overflow in Microsoft’s IIS (Internet

Information Services) Server Software that affected about 250,000 systems in 15 hours

3. SQL Slammer Worm (2003): Caused a denial-of-service (DoS) attack on machines

running Microsoft SQL Server 2000, and affected 250,000 systems in 10 minutes

15

3.3. Attempts to Avoid or Detect Buffer Overflows

We discuss some successful attempts to avoid or detect occurrence of buffer overflows in

this section. Some of these techniques have proved to be very useful in combating against

buffer overflow exploits.

3.3.1. Managed Code Environments

Managed code is the Microsoft naming convention for code that executes in management

of the Common Language Runtime (CLR). The languages that fall into this category are

Managed C++, C#.NET, VB.NET, and XAML for Silverlight. These programming languages

require strict bound checking on all data structures, like arrays, lists, sets, or bags. Java also

runs under the management of Java Virtual Machine (JVM) and produces a Java byte code

when compiled. JVM also requires strict bound checking on the above-listed data

structures. Thus, it is not possible to exploit buffer overflows in such managed

environments. When a buffer overflow is exploited, the exception handlers in managed

environments throw the “out of bounds” exception. Thus buffer overflows can be easily

caught in the managed code environments.

3.3.2. NX (no execute) Bit

NX or no execute bit is supported by some operating systems, like Microsoft Windows Vista

and Windows 7. NX bit works like a flag variable on a program’s execution stack. When this

flag is set, that particular section of the memory becomes non-executable. This is very

useful in making the stack non-executable. This means that even if a buffer overflow is

16

exploited, it would not be possible to overwrite the stack. Thus, the path of execution

cannot be changed, as the return address would not be modified which is typically the case

in most buffer overflow attacks [9].

As stated in [2], “As the NX approach becomes more widely deployed, we should see a

decline in the number and overall severity of buffer overflow attacks.”

3.3.3. Canary or the /GS Option in Microsoft

Canary or canary bit is a mechanism that can be used to prevent stack smashing attacks. In

this approach we push a special value, called the canary, after the return address. The value

of the canary is constant, and chosen in such a manner that if it is changed or overwritten

the change will be detected. The canary value is validated when the code reaches the end of

control flow and the jump to the return address is only made if the canary is not modified.

The concept of canary is implemented in Microsoft Visual Studio compiler as the Buffer

Security Check (/GS) Option.

According to [5], the /GS Option, “causes the compiler to add checks that protect the

integrity of the return address and other important stack metadata associated with

procedure invocation. The ‘GS’ protections do not eliminate vulnerabilities, but rather

make it more difficult for an attacker to exploit vulnerabilities.”

However, claims have been made that this implementation in Microsoft Windows is flawed,

and that buffer overflows are still exploitable [5].

17

Figure 5: Stack Frame with Canary Implementation

3.3.4. ASLR (Address Space Layout Randomization)

Another concept that is used by some operating systems, like Linux PaX and Microsoft

Windows Vista, is Address Space Layout Randomization (ASLR), as discussed in [10]. ASLR

aims at preventing buffer overflow exploits by randomizing the memory address space from

which the program will be executed. This concept is explained in more detail, along with its

advantages and de-randomization attacks, in the Section 4.

18

4. Address Space Layout Randomization (ASLR)

According to [5], “Address Space Layout Randomization is a prophylactic security

technology aimed at reducing the effectiveness of exploit attempts.” ASLR makes it

difficult to exploit vulnerabilities with buffer, stack, or heap overflows. The virus developed

in our project defeats ASLR in Windows systems by exploiting the buffer overflow using

function pointers. This is achieved without going through the lengthy process of de-

randomization. In this section, we discuss ASLR, its background, what it takes to de-

randomize memory space, and ways to make ASLR more robust.

4.1. What is ASLR?

Address Space Layout Randomization (ASLR) is a mechanism that randomizes the program

memory. This prevents the program from getting placed at the same address in the main

memory every time it is loaded. Thus, if a program is compromised once using a hard-coded

buffer or stack overflow exploit, the same attack will not be successful subsequently. Thus,

hard-coding addresses to exploit buffer overflows will fail. A sophisticated de-randomization

approach would have to be used to break the security in this kind of protection.

19

4.2. Where is it used?

Address Space Layout Randomization (ASLR) is built in by the newer operating systems like:

• Linux PaX ASLR

• OpenBSD

• Microsoft Windows Vista

• Microsoft Windows 7 and

• Mac OS X Leopard.

ASLR randomizes program memory such that it does not always execute in the same

memory space. ASLR enabled systems are secure against attacks caused by viruses

containing buffer overflow exploits pointing to hard-coded memory addresses. This is

because hard-coding buffer overflows would point to a completely random location in the

memory. In Microsoft Windows Vista, Windows 7, and Mac OS X Leopard, the ASLR

mechanism is used along with the NX (no execute) bit mechanism as discussed in subsection

3.3.2.

4.3. De-Randomization Attacks

De-randomization is the process by which an attacker compromises the security provided

by ASLR. After de-randomization, buffer overflows can be exploited by hard-coding memory

addresses even on ASLR enabled system. Two different de-randomization attacks on the

Linux PaX ASLR system demonstrated in [7] are:

1. return-to-libc attack, uses the Oracle buffer overflow

20

2. Information leakage attacks

Similar de-randomization attacks can be launched on any other operating system that uses

ASLR.

4.4. Analysis of ASLR in Microsoft Windows Vista

Microsoft Windows Vista considers executables (.exe) and dynamic link libraries (.dll)

containing the PE (portable executable) header for ASLR [4]. Windows Vista uses a random

global image offset that is reset on each reboot. Microsoft claims that this random global

image offset is selected from a range of 256 values, but according to statistics and analyses

this range is actually much smaller [4]. This is shown in the figure below, which is taken

from [4], pg. 9, Figure 2. Distribution of Stack Addresses, as follows:

Figure 6: Distribution of Stack Addresses

21

5. Technical Details

In this section, we discuss different code obfuscation techniques and exploits used by the

virus generation tool to obfuscate and morph a virus in detail.

5.1. Virus Code with the Buffer Overflow Exploit

Figure 7 illustrates the C++ code that uses the buffer overflow exploit to link to malicious

code. This code contains two C++ functions, viz., goodCode and virusCode. The

goodCode function causes the exploit by overwriting its return address with the entry

point of virusCode. The return address is overwritten by overflowing the buffer of array

arr in the goodCode function.

Figure 7: buffer.cpp (C++ file containing the actual buffer overflow exploit)

22

The following compiler options should be set for hiding the buffer overflow exploit:

1. Buffer Security Check (/GS): The Buffer Security Check is on by default. We set it to No

(/GS-) so it will not enforce restrictions on the size of the buffer [18].

2. Basic Runtime Checks: Disable run-time checks on stack frames, uninitialized variables,

and data type mismatch by setting this compiler option to Default [19].

3. Enable C++ Exceptions: C++ Exception Handling is enabled by default (compiler option is

set to “Yes (/EHsc)”). Disable exceptions by setting this compiler option to No [20].

The disassembly of the code in Figure 7 is shown in Figure 8. The return address of the

subroutine is overwritten with a pointer to another function (buffer.010E1078). Thus, the

code flow jumps to buffer.010E1078 when the subroutine returns. The code in this function

can link the program to a potential virus.

Figure 8: Buffer Overflow in Disassembly

23

5.2. Code Encryption and Decryption

Code encryption and decryption can be used to obfuscate a piece of code. This obfuscated

code is decrypted at run-time when the encrypted portion of code is invoked. Since the

decryption logic should not be identical in each generation, it is obfuscated using different

obfuscation techniques explained from sections 5.3 to 5.6.

Encryption and decryption is implemented in our project with the help of function pointers.

The encrypt function accepts the pointer to a C/C++ function and encrypts all bytes of code

in that function. Once a function is encrypted, the encrypted bytes of code are built into the

un-compiled C++ code as HEX in the __asm {…} section. The encrypted functions are

decrypted at run-time when invoked. All the encrypted bytes are decrypted and overwritten

at the same address. If an attempt to execute the encrypted function is made before

decrypting, it will cause an error in the program.

Consider the following code constructs to better understand code encryption and

decryption. The cryptographic algorithm implemented in the following example is fairly

simple, but complex cryptography can be implemented.

Figure 9: Encryption Logic
Encryption Logic will be a part of encrypting the first time; it will not be present in the final

source code

24

Figure 10: Decryption Logic
Decryption Logic will be present in the final source code

Figure 11: Calls to the encryption and decryption functions

Sensitive code in the metamorphic virus generator is obfuscated using such encryption-

decryption mechanism. The areas in the metamorphic virus where we use such code

encryption and decryption mechanisms are as follows:

1. Implementation of the buffer overflow exploit

2. Linking the executable to the virus dynamic link library (dll)

25

5.3. Opaque Predicates

An opaque predicate is a dynamic logic or expression of code whose result is

predetermined. The result remains constant irrespective of the values of internal variables.

Opaque predicates can be useful to obfuscate the flow of control in a program. Opaque

predicates can also be used to insert dead code into the logic and make it look like

something important and relevant.

Opaque predicates can be easily implemented in code by simple if…else statements,

ternary operators, switch statements, or even loops. For example, a simple opaque

predicate will look like:

Figure 12: Simple Opaque Predicate

Complex opaque predicates based on complex piece of math can also be used. For example,

the snippet of code in Figure 13 uses the math property that (a2 + b2) is always greater than

(2ab). Thus the code within the “if block” will always be executed, and the code within

the “else block” will never be executed.

Figure 13: Opaque Predicate Involving Complex Math

26

The above snippet of code, when seen in the assembly, will be very complex and difficult to

understand, as shown in Figure 14. Also, it looks as if it will be doing something vital to this

part of the program.

Figure 14: Opaque Predicate as shown in Assembly

Opaque predicates are frequently used at random in the virus generation tool to obfuscate

the virus code and change its signature significantly. Some of the opaque predicates used in

the tool are listed in Appendix B.

27

5.4. Insertion of Junk Code and Normal Code

5.4.1. Junk Code

Junk code is a useless block of code and the execution of this code does not make any

difference to the functionality of the underlying program. However, it may cause

performance delays in the executing program. Junk code is inserted in the virus binaries

using our virus generation tool to obfuscate the virus code and thereby change its

signature.

5.4.2. Insertion of Normal Windows Code

Normal code refers to the code from binary files of Windows operating system. This

“normal code” can be inserted instead of inserting junk code randomly. The “normal code”

is obtained by scanning and stripping logical bunch of instructions from normal files in the

Windows Operating System. Some of the normal Windows files that we disassembled and

scanned are Notepad (notepad.exe), Windows Explorer (explorer.exe), Registry

Editor (regedit.exe), Word Pad (write.exe) and Internet Explorer

(iexplore.exe). The code obtained from these files is illustrated in Appendix A. This

technique helps make the signature of the metamorphic virus similar to the existing

Windows files, which works like a camouflage to avoid signature detection as well as other

advanced detection techniques.

28

5.5. Subroutine Permutation

Subroutine permutation refers to permuting the definitions of the different subroutines in

the program. Since the order of definition of subroutines does not change the order in

which these subroutines are actually called, makes no functional changes to the program.

Hence, subroutine permutation is an effective technique for changing the signature of a

program considerably [17].

If a program contains n different subroutines, or functions, or methods, using subroutine

permutation technique n! different permutations can be generated. For example, in a

program with 3 methods or subroutines, we can get 3! = 6 different permutations or

signatures of the same program, as shown in the Figure 15 below:

Figure 15: Subroutine Permutation

Consider the following extracts of C++ code in Table 1. These sample programs show two

out of the six permutations with three methods. The output of both the programs is

identical.

29

Table 1: Subroutine Transformation Code Extracts

Code extract 1 Code extract 2

However, the binary signatures of both of the following versions of code are completely

different from each other as shown by the Ollydbg disassemblies in Table 2 and 3.

These disassemblies show that the binary signatures change considerably due to the

reordering of subroutines (or methods). A permutation algorithm is used to generate n!

different permutations for n methods in the program. A particular permutation is then

selected at random and the n methods of the program are defined in that order. This will

change the binary signatures considerably for each generation of our metamorphic virus.

30

Table 2: Disassembly of Code Extract 1

31

Table 3: Disassembly of Code Extract 2

32

5.6. Inline Functions in C++

Inline functions in C / C++ are an indication to the compiler to insert the function code inline

at the function call. This helps the compiler avoid the overhead of processing the stack

frame and the registers involved in calling a regular function. However, it is not advisable to

make all the functions inline because of the limitations involved in using them with

recursive function calls, function calls within loops, and large processing within functions.

Inline functions are declared in C and C++ by using the keyword “inline” in front of the

function definition as shown in Figure 16:

Figure 16: Inline Functions in C++ Code Extract

Since the definition of the functions does not change when they are made inline, inline

functions are used at random in the virus code.

Each generation of virus generated from our tool is different from the previous because of

the collection of obfuscation, re-ordering and permutation techniques used at random.

33

6. Metamorphic Virus Generation Tool

The aim of our project is to develop a tool for generating and hiding metamorphic viruses.

These metamorphic viruses are created from an existing virus whose signature is known by

the anti-virus software. Using the tool, the virus is hidden as “dead code” in the victim’s

machine and exposed using a buffer overflow. The virus is undetectable as lies on the

machine in the form of text that is not considered for scanning by signature detection. The

virus code is compiled at run-time with different code obfuscation and crypto logic

technologies, as discussed in Section 5. The virus code can be provided as input to the tool

through a file or plain text. The virus generation tool is developed as a Windows forms

application that accepts the input virus, applies the metamorphic engine using file I/O

operations and compiles it as a Win32 console application. The screenshot of our

metamorphic virus generation tool is shown in Figure 17 below.

Figure 17: Screenshot of Metamorphic Virus Generation Tool

34

6.1. Metamorphic Virus Generation Tool: Detailed Steps

This section outlines the top-level steps performed by our Virus Generation Tool to

generate the metamorphic virus as illustrated in Figure 18:

Figure 18: Virus Generation Tool

6.1.1. Metamorphic Engine

The metamorphic engine applies the exploits and code obfuscation techniques discussed in

Section 5 to the given virus program. These techniques are applied at random, making use

of randomization and permutation algorithms to generate varied and metamorphic results.

Also the framework for the buffer overflow exploit is built into Buffer.cpp code file. At

the end of this step we obtain two files:

35

1. Buffer.exe: Buffer.cpp is the compiled code file that contains the buffer

overflow (section 5.1) and the code to link to the virus through this overflow.

2. Virus.cpp: Virus.cpp is the uncompiled code file that contains the morphed

code for the actual virus. This morphed code is obtained by applying the different

techniques discussed in section 5.

6.1.2. Build Framework for Buffer Overflow (Compile Buffer.cpp)

As shown in the previous subsection 6.1.1, the body of the built-in buffer overflow is

already in place. This buffer overflow attack is designed to bypass the randomization

provided by Address Space Layout Randomization. The attack is designed such that when

the buffer overflow takes place, the memory space has already selected the one out of 256

available locations to execute.

Now we compile this newly created Buffer.cpp file through a build script batch (.bat)

file and generate an executable (Buffer.exe) file. This executable contains the built-in

buffer overflow which, when exploited, links to the virus code.

6.1.3. Output Files

The actual virus code is hidden as “dead code” in the form of text in Virus.cpp, and not

in any executable or dynamic link library. This makes it harder for virus scanners to detect,

since most commercial virus scanners use signature-based detection techniques. By using

the buffer overflow to hide the entry point to the virus, we have created a generic tool that

can be used to create any hard-to-detect virus. The virus code is compiled just-in-time of

36

the attack, which gives the anti-virus software much less time to consider it as a potential

candidate for signature detection. Also, the virus code is morphed and differs from the code

of the actual virus, which makes it even more difficult to detect using signature detection.

6.1.4. The Virus Attack: Buffer.exe

The first generation of Buffer.exe performs the actual virus attack, with the help of the

buffer overflow, by compiling the virus.cpp to an executable or a dll and linking to it at

run-time as shown in Figure 19. The metamorphic engine is applied to the virus at each

generation of the virus to generate diverse copies of the virus:

Figure 19: Buffer.exe

37

7. Test and Results

We performed the following tests to analyze the output and quantify the results of the

metamorphic virus generation tool:

7.1. Buffer Overflow Test

In this section, we test the effectiveness of the buffer overflow exploit in obfuscating and

causing the virus attack on Windows XP, Vista, and Windows 7 environments. The buffer

overflow can be exploited only if the code is compiled by setting the right compiler options,

as discussed in section 5.1.

The tool uses a buffer overflow exploit and function pointers to point to benign-looking

code in the program memory that links to “dead code” stored as text in the computer.

Since, this benign-looking code resides within the executable, its address is local to the

execution stack. Hence, we exploit the buffer overflow by defeating the randomization

provided by Address Space Layout Randomization without launching the lengthy process of

de-randomization, as referred to in section 4.3.

Consider the following OllyDbg disassemblies of the buffer overflow as implemented in our

project in figures 20, 21, and 22. This result was obtained with ASLR enabled on a Windows

7 environment with the program run three times consecutively. In the figures below we can

see that even though the program’s execution space was randomized in all the three

executions, the buffer overflow was successful. This buffer overflow attack is readily

38

exploited on Windows XP, which does not have ASLR enabled, but also in Windows Vista

and Windows 7 environments, which have ASLR enabled. Also OllyDbg and IDA Pro

disassembly do not detect or flag the buffer exploit.

Table 4: Defeating ASLR (First Run)

Code with the Buffer Overflow:

Code where the virus can be linked from:

39

Table 5: Defeating ASLR (Second Run)

Code with the Buffer Overflow:

Code where the virus can be linked from:

40

Table 6: Defeating ASLR (Third Run)

Code with the Buffer Overflow:

Code where the virus can be linked from:

41

7.2. Hiding Entry Point to the Virus

Since the virus is independent of the main program it can be loaded and linked at run-time

by providing the name of the dll or executable and the name of the function to call with the

help of the LoadLibrary system function.

But the OllyDbg Disassembler is smart enough to detect the use of the LoadLibrary function

and flag with the following warning when the program is first disassembled.

Figure 20: OllyDbg Error on Dynamic Linking

OllyDbg disassembly detects the call to LoadLibrary system function and displays the

warning message as depicted in Figure 20. The call to LoadLibrary system function is

encrypted with our tool and the warning message is bypassed.

42

7.3. Test against Commercial Virus Scanners

Finally we performed the following test to measure the effectiveness of the tool in

generating and obfuscating an existing virus code. We tested the generated output of the

metamorphic virus tool against some of the following commercial virus scanners:

1. Avast! Anti-Virus Version 4.8. Downloaded from [12]

2. Kaspersky Anti-Virus Version 8.0.0.506. Downloaded from [13]

Steps to follow:

1. Obtain C or C++ source code of a well known virus from online web resources like

[11] or [14]

2. Compile the virus source code by itself and generate its output binaries

3. Check whether this virus is detected in the presence of anti-virus software via

scanning

4. Input the source code obtained in Step 1 to our virus generating tool. This will

generate an obfuscated and metamorphic copy of the original virus

5. Again check whether the generated virus is detected by the same anti-virus software

For this purpose we downloaded virus source code from various sources viz [11], [14], and

[23], and followed the above procedure. As a result, the original virus binaries were

detected and quarantined by anti-virus software when they were compiled as-is, but when

we generated the virus file using our tool it remained undetected. The reason for this is that

the virus code is morphed and hidden as “dead code,” in the form of text.

43

Secondly, we made the virus execute in the presence of the virus scanners and it remained

undetected. This means that commercial virus scanners do not use any advanced

techniques like anomaly detection, or change detection, during run-time.

44

8. Defense Techniques

In this section, we discuss some of the defense techniques that can be used against a

malicious virus attack like the one proposed in this research project.

8.1. ASLR Improvements for Preventing Buffer Overflow

Some of the improvements suggested in [7] for ASLR Operating Systems are as follows:

8.1.1. Use of 64-bit Architectures

The current 32 bit architectures provide insufficient address space randomization, and can

easily be compromised by a brute force attack. Using 64-bit architectures provides higher

address space randomization and it would be much more difficult to de-randomize or guess

the address space.

8.1.2. Increase Randomization Frequency

Randomization frequency is the rate at which randomization is performed by an operating

system. Microsoft Windows Vista and Windows 7 perform randomization after a defined

time interval; randomization is also performed after reboot or logoff from the system. The

randomization must be performed at a much higher rate to avoid buffer exploits.

45

8.1.3. Randomizing Addresses at a Finer Granularity

Randomization as implemented by Microsoft Windows Vista and Windows 7 is 64 kB

aligned. This causes the memory layout of any program to be relative and remain the same

within the 64 kB block. This implementation can easily be exploited with smart attacks.

8.1.4. Monitoring and Catching Errors

Implementation of a crash detection and reaction mechanism for monitoring errors and

segmentation violations in the address space is also suggested in [7]. If such errors or

violations are encountered, further action, like termination, should be taken against such

programs.

8.2. Monitoring File Creation

The virus designed by the metamorphic engine resides as a text file that is compiled and

converted to its binaries just-in-time before getting called. For detection of such viruses,

virus scanning software should employ a utility that monitors the creation of binary or

executable files. After detecting the creation of such files, the following actions can be

taken:

• Report to the system administrator

• Immediately consider the newly created file for signature detection immediately

• Monitor the newly created binary for suspicious or anomalous behavior

46

8.3. Code Transformation Detection

Our metamorphic virus generation tool makes changes to the code files in the affected

system. Code transformation detection is a technique that monitors such changes. This

technique can be employed to monitor excessive file I/O operations on C, C++ or ASM code

files or binary files like exe or dlls. This can be a very effective technique for detecting

metamorphic viruses before an attack.

8.4. Advanced Techniques for Virus Detection

Various advanced techniques can be applied for the detection of metamorphic viruses.

Some of these techniques are code disassembling, code emulation, geometric detection,

subroutine depermutation, heuristic analysis using emulators, and Hidden Markov Models

[17], [21] and [25]. None of these techniques can be claimed as fool-proof for the detection

of metamorphic viruses, but these techniques can be used jointly, as required, for the

detection of highly metamorphic viruses.

47

9. Conclusions and Future Work

Clearly, metamorphic viruses are highly versatile and difficult to detect, and are a relatively

new and exciting topic for research. The virus generator presented in this research project

generates and obfuscates a highly metamorphic computer virus. The metamorphic virus is

generated through a metamorphic engine that includes the application of a set of

transformations to an existing piece of virus code. The metamorphic virus resides as “dead

code” on the victim machine, and is invoked by a buffer overflow exploit. Using the virus

generation tool, we have been able to create a virus that successfully evades detection by

commercial virus scanners using signature detection technique.

We propose some techniques that can be used to make anti-virus scanning techniques

stronger and better able to detect metamorphic viruses. We also suggest some approaches

for improving Address Space Layout Randomization technique to avoid and detect buffer

overflow exploits.

The research work completed in this project can be extended in the following areas:

1. Analyzing metamorphic viruses that are obfuscated using heap overflow exploits, and

providing a defense mechanism against such viruses

2. Identifying other intelligent programming techniques that can potentially be used to

increase the degree of metamorphism in the generated virus.

3. Research on operating systems and virus scanning software that are smart enough to

avoid or detect such exploits

48

4. Understanding and analyzing the effectiveness of Address Space Layout Randomization

(ASLR) on Mac OS X systems. Determining if the effectiveness of the built-in buffer

overflow, as proposed in this paper, can be extended to Mac OS X

5. The process of metamorphic virus generation can be automated by stripping off the

meaningful chunk of assembly code from a virus exe (executable file) or a dll (Dynamic

Link Library) and then providing it to the virus generator tool, which will make

metamorphic versions of the same virus

49

10. References

[1] Wing Wong & Mark Stamp (2006). Hunting for metamorphic engines. Springer-Verlag

France 2006

[2] Dr. Mark Stamp (2006). Chapter 11, Software Flaws and Malware and Chapter 12, Insecurity

in Software, Information Security Principles and Practices. Wiley-Interscience.

[3] Xufen Gao and Mark Stamp. Metamorphic Software for Buffer Overflow Mitigation.

Department of Computer Science, San Jose State University

[4] Ollie Whitehouse (2007). An Analysis of Address Space Layout Randomization on Windows

Vista™. Symantec Corporation

[5] Ollie Whitehouse (2007). Analysis of GS protections in Microsoft® Windows Vista™.

Symantec Corporation

[6] The History of Computer Viruses, http://www.virus-scan-software.com/virus-scan-

help/answers/the-history-of-computer-viruses.shtml

[7] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu & Dan Boneh

(2004). On the Effectiveness of Address Space Randomization. ACM

[8] Metamorphic code, Wikipedia, http://en.wikipedia.org/wiki/Metamorphic_code

[9] Buffer Overflow, Wikipedia, http://en.wikipedia.org/wiki/Buffer_overflow

[10] Address Space Layout Randomization (ASLR), Wikipedia,

http://en.wikipedia.org/wiki/Address_space_layout_randomization

[11] VX Heavens Website, http://vx.netlux.org/

[12] avast! Antivirus, http://www.avast.com/

[13] Kaspersky Antivirus, http://www.kaspersky.com/

http://www.virus-scan-software.com/virus-scan-help/answers/the-history-of-computer-viruses.shtml
http://www.virus-scan-software.com/virus-scan-help/answers/the-history-of-computer-viruses.shtml
http://en.wikipedia.org/wiki/Metamorphic_code
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://vx.netlux.org/
http://www.avast.com/
http://www.kaspersky.com/

50

[14] Offensive Computing Website, www.offensivecomputing.net/

[15] Mark E. Donaldson (2002). Inside the buffer overflow attack: Mechanism, Method, &

Prevention

[16] Peter Ferrie. Hunting For Metamorphic. Symantec Corporation

http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

[17] Priti Desai (2008). Towards an Undetectable Computer Virus.

http://www.cs.sjsu.edu/faculty/stamp/students/Desai_Priti.pdf

[18] Buffer Security Check (/GS): http://msdn.microsoft.com/en-us/library/8dbf701c(VS.80).aspx

[19] Run-Time Error Checks (/RTC): http://msdn.microsoft.com/en-

us/library/8wtf2dfz(VS.80).aspx

[20] Exception Handling Model (/EH): http://msdn.microsoft.com/en-

us/library/1deeycx5(VS.80).aspx

[21] Evgenios Konstantinou (2008). Metamorphic Virus: Analysis and Detection.

http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf

[22] Rohitab.com Forums. http://www.rohitab.com/

[23] Peter Albert (May 20, 2000). Computer crime: A psychological analysis.

[24] Common Language Runtime (CLR): http://msdn.microsoft.com/en-

us/library/ddk909ch(v=VS.71).aspx

[25] Hidden Markov Models: http://en.wikipedia.org/wiki/Hidden_Markov_model

http://www.offensivecomputing.net/
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/Desai_Priti.pdf
http://msdn.microsoft.com/en-us/library/8dbf701c%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/8wtf2dfz%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/8wtf2dfz%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/1deeycx5%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/1deeycx5%28VS.80%29.aspx
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
http://www.rohitab.com/
http://msdn.microsoft.com/en-us/library/ddk909ch%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/ddk909ch%28v=VS.71%29.aspx
http://en.wikipedia.org/wiki/Hidden_Markov_model

51

11. Appendix
11.1. Appendix A: Normal Codes as disassembled from Windows Files

1. Notepad.exe

Figure 21: ASM Extract Notepad
2. Wordpad.exe

Figure 22: ASM Extract WordPad

52

3. Explorer.exe

Figure 23: ASM Extract Explorer

53

4. Regedit.exe

Figure 24: ASM Extract Registry Editor

54

5. Iexplore.exe

Figure 25: ASM Extract Internet Explorer

55

11.2. Appendix B: Opaque Predicates

Some of the opaque predicates used in the metamorphic virus generation toolkit are:

Table 7: Opaque Predicates

1. if (((a + b) ^ 2) == (a^2 + 2*a*b + b^2))
{
 printf(“Execute this”);
}
else
{
 printf(“Don’t Execute this”);
}

2. if ((a ^ 2 – b ^ 2) == (a + b) * (a - b))
{
 printf(“Execute this”);
}
else
{
 printf(“Don’t Execute this”);
}

3. if (((x ^ a) * (x ^ b)) == (x ^ (a + b)))
{
 printf(“Execute this”);
}
else
{
 printf(“Don’t Execute this”);
}

4. if ((a * (a + 1)) % 2 == 0)
{
 printf(“Execute this”);
}
else
{
 printf(“Don’t Execute this”);
}

5. if ((7 * a * a – 1) == (b * b))
{
 printf(“Don’t Execute this”);
}
else
{
 printf(“Execute this”);
}

56

11.3. Appendix C: Virus code used for testing
1. Virus code [21]

Figure 26: Virus code in C++

57

12. Biography

Ronak Shah received his Bachelors of Engineering (B.E.) Degree in Computer Engineering

from Mumbai University. He is currently pursuing his Masters of Science (M.S.) Degree in

Computer Science from San Jose State University. He worked as a Software Development

Engineer for one year in India after receiving his B.E. His research interests are in the field of

Computer/Internet Security, Computer Networks, and Algorithms.

Dr. Mark Stamp is a Professor in the Department of Computer Science at San Jose State

University. He has been working in the field of Cryptography and Computer Security for

more than fifteen years. He has worked as a Cryptologic Mathematician at the National

Security Agency for seven years and as a Chief Cryptologic Scientist at MediaSnap, Inc. for

two years. He is the author of a number of publications and two textbooks in the field of

Computer Security, viz. Applied Cryptanalysis: Breaking Ciphers in the Real World and

Information Security: Principles and Practice.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-047011486X.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471738484.html

	Metamorphic Viruses with Built-In Buffer Overflow
	Recommended Citation

	1. Introduction
	2. Background
	2.1. Types of Computer Viruses
	2.1.1. Encrypted Viruses
	2.1.2. Oligomorphic Viruses
	2.1.3. Polymorphic Viruses
	2.1.4. Metamorphic Viruses

	2.2. Virus Generation Tools and Techniques
	2.3. Virus Detection Techniques
	2.3.1. Signature Detection Technique
	2.3.2. Change Detection Technique
	2.3.3. Anomaly Detection Technique or Heuristic Analysis

	3. Buffer Overflow
	3.1. What is a Buffer Overflow?
	3.2. Buffer Overflow Attacks
	3.3. Attempts to Avoid or Detect Buffer Overflows

	4. Address Space Layout Randomization (ASLR)
	4.1. What is ASLR?
	4.2. Where is it used?
	4.3. De-Randomization Attacks
	4.4. Analysis of ASLR in Microsoft Windows Vista

	5. Technical Details
	5.1. Virus Code with the Buffer Overflow Exploit
	5.2. Code Encryption and Decryption
	5.3. Opaque Predicates
	5.4. Insertion of Junk Code and Normal Code
	5.5. Subroutine Permutation
	5.6. Inline Functions in C++

	6. Metamorphic Virus Generation Tool
	6.1. Metamorphic Virus Generation Tool: Detailed Steps
	6.1.1. Metamorphic Engine
	6.1.2. Build Framework for Buffer Overflow (Compile Buffer.cpp)
	6.1.3. Output Files
	6.1.4. The Virus Attack: Buffer.exe

	7. Test and Results
	7.1. Buffer Overflow Test
	7.2. Hiding Entry Point to the Virus
	7.3. Test against Commercial Virus Scanners

	8. Defense Techniques
	8.1. ASLR Improvements for Preventing Buffer Overflow
	8.1.1. Use of 64-bit Architectures
	8.1.2. Increase Randomization Frequency
	8.1.3. Randomizing Addresses at a Finer Granularity
	8.1.4. Monitoring and Catching Errors

	8.2. Monitoring File Creation
	8.3. Code Transformation Detection
	8.4. Advanced Techniques for Virus Detection

	9. Conclusions and Future Work
	10. References
	11. Appendix
	11.1. Appendix A: Normal Codes as disassembled from Windows Files
	11.2. Appendix B: Opaque Predicates
	11.3. Appendix C: Virus code used for testing

	12. Biography

