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Abstract 
 

METAMORPHIC VIRUSES WITH BUILT-IN BUFFER OVERFLOW 
 

Metamorphic computer viruses change their structure—and thereby their signature—each 

time they infect a system. Metamorphic viruses are potentially one of the most dangerous 

types of computer viruses because they are difficult to detect using signature-based methods. 

Most anti-virus software today is based on signature detection techniques. 

 

In this project, we create and analyze a metamorphic virus toolkit which creates viruses with a 

built-in buffer overflow. The buffer overflow serves to obfuscate the entry point of the actual 

virus, thereby making detection more challenging. We show that the resulting viruses 

successfully evade detection by commercial virus scanners. 

 

Several modern operating systems (e.g., Windows Vista and Windows 7) employ address space 

layout randomization (ASLR), which is designed to prevent most buffer overflow attacks. We 

show that our proposed buffer overflow technique succeeds, even in the presence of ASLR. 

Finally, we consider possible defenses against our proposed technique.  
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METAMORPHIC VIRUSES WITH BUILT-IN BUFFER 
OVERFLOW 

 

1. Introduction 
 

The field of computer security is relatively new and is constantly changing to meet the 

needs of a rapidly evolving industry.  As our dependence on computers and the Internet for 

communication, banking, shopping, internet booking and trading, and almost every aspect 

of our day-to-day experience has grown, so has the importance of computer security.  In 

recent years there has been a drastic increase in the number of virus attacks on computer 

systems. Research into potential attacks and possible defenses against these attacks is vital.  

 

A computer virus is a malicious piece of software that infects user machines, servers, or 

other larger systems, by copying itself and disrupting the normal functioning of a computer 

system. Typically, a computer virus is easily spread, small, and has the ability to reproduce 

itself. According to [6], one of the first computer viruses was the famous and successful 

Brain virus, in 1986. Since then, the number of computer attacks and viruses has increased 

exponentially.   

 

A virus attack is the harm that is caused to a computer (mostly software) by the malicious 

code that is contained in a virus. Typically, virus attacks aim at using up the software or 

hardware resources by making these resources unavailable, corrupting data, using sensitive 

data for malicious activities, and so on. Generally, a virus is very difficult to trace back to its 
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publisher.  Statistics show that most virus attacks are carried out by troubled employees, 

college students, and information hackers, among others [23].  

 

Metamorphic viruses change their code structure across generations in such a way that the 

viruses’ functionality does not change. This means that multiple distinctive copies of the 

same virus perform the same attack, which makes detection extremely difficult. Generally, 

metamorphic viruses are generated with the help of a metamorphic engine that performs 

all the code transformations to the virus software. The aim of this research project is to 

develop a metamorphic virus generation tool that uses a publicly known and detected virus, 

and convert it into a resident metamorphic virus. In our project we further obfuscate the 

virus code by making it appear to be “dead code” that should never execute.  However, this 

“dead code” does actually execute due to a buffer overflow and de-randomization 

technique. Since this virus appears to be dead code, it should be more difficult to detect 

with conventional signature detection techniques. 

 

This paper is organized as follows: 

• Section 2 gives a background of computer viruses in general and discusses their 

importance and severity in today’s world. This section also discusses the various 

types of computer viruses, along with the different techniques used to generate and 

detect them.  

• In Section 3 we introduce and discuss buffer overflows, their history, importance, 

buffer overflow attacks, and ways to avoid or mitigate them.  
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• In Section 4 we discuss the Address Space Layout Randomization technique that is 

used by some of operating systems, like Linux PaX, Microsoft Windows Vista (and 

later), to make buffer overflows difficult to exploit. We also analyze the 

effectiveness of ASLR as implemented in Windows Vista.  

• In Section 5 we discuss the different software techniques that are used by our 

metamorphic virus generator to create highly metamorphic viruses.  

• In Section 6 we discuss the implementation of our metamorphic virus generator tool 

for generating undetectable viruses.  

• In Section 7 we present the tests performed to evaluate the results achieved by our 

metamorphic virus generation tool.  

• In Section 8 we discuss some of the mechanisms that could be used by anti-virus 

software in an effort to detect the viruses proposed in this paper. 

• Finally, Section 9 summarizes our results and offers proposed directions for future 

research in this area. 
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2. Background 
 

Computer viruses attempt to infect user machines, servers, or other larger systems by 

copying themselves and disrupting the normal functioning of a computer system. By and 

large, these viruses, malware, adware, and other spyware are detected with the help of 

anti-virus software, most of which uses signature-based detection techniques. Various 

sophisticated virus generation techniques have been employed to make signature-based 

virus detection difficult.  We discuss some of these techniques here. 

 

2.1. Types of Computer Viruses 
 

According to [1] and [16], viruses can be classified into four different types, or categories, 

namely, encrypted, oligomorphic, polymorphic, and metamorphic.   

 

2.1.1. Encrypted Viruses  

 

The body of an encrypted virus consists of a small decryption module and an encrypted 

virus body. Thus it is difficult for virus scanning software using signature detection 

technique to detect, as the virus body is encrypted and residing in the binary.  

 

But the decryption modules of such viruses remain the same and have a unique signature. 

Thus, it is fairly simple to detect such viruses based on the signature of the decryption 

module itself. Hence, such viruses can easily be detected using conventional signature 

detection strategies.  
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2.1.2. Oligomorphic Viruses 
 

Oligomorphic viruses, as described, by Peter Ferrie, Symantec, in [16], change their 

decryptors across generations. With this technique, signature detection of the viruses on 

the basis of the decryption module becomes difficult. However, most commercial virus 

scanners are smart enough to defeat this technique by detecting the viruses after 

decryption, which will obviously reveal the constant code structure and a constant 

signature. 

 

2.1.3. Polymorphic Viruses 

 

Polymorphic viruses work in the same way as encrypted viruses but there are multiple 

encryption and decryption modules in each generation. All these modules work to hide the 

single piece of virus code. Detection is still possible using code emulation. Virus scanners 

can use code emulation technique to decrypt the virus body dynamically. The reason for 

this is that all polymorphic viruses contain the same virus structure.  

 

2.1.4. Metamorphic Viruses  

 

This is the fourth and the most dangerous type of virus, as discussed in [1]. The structure of 

a metamorphic virus changes completely with each new generation. Metamorphic viruses 

hide their signature by employing various code obfuscation techniques. Metamorphic 

viruses have a different internal structure in each instance, but the functionality of each 

instance is identical. It is difficult for signature detection virus scanners to detect such 
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viruses.  Metamorphic viruses are therefore only detectable by highly sophisticated 

detection techniques. 

 

Metamorphic viruses use different types of technologies to obfuscate the virus code and at 

the same time attempt to change their code so that they will be difficult to scan using virus 

signatures. 

 

Let us consider the following diagram to understand metamorphic viruses in detail. As 

shown in the diagram, the metamorphosis of a virus involves taking the original copy of a 

virus and changing it so that it remains the same functionally but its structure is drastically 

altered.  

Figure 1: Metamorphic Viruses 
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2.2. Virus Generation Tools and Techniques 
 

There are many different virus generation techniques available, and the list is constantly 

growing. Hundreds of virus generation tools are freely available online. Some of the virus 

generation tools available at VXHeavens website [11] are: 

1. C++ Worm Generator 

2. CcT's Malware Construction Kit 

3. CompVCK for Win32Asm Sources 

4. Next Generation Virus Construktion Kit (NGVCK) 

5. Windows Virus Creation Kit   

 

All these tools provide a full-fledged framework to generate dangerous and metamorphic 

computer viruses. The different techniques used by these virus generating tools are:  

1. Code insertion 

2. Code obfuscation 

3. Code transformation  

4. Replacement of existing operations with similar operations or operations that do not 

change the way the virus program is performing  
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2.3. Virus Detection Techniques 
 

With the increase in the number and sophistication of virus attacks, there is also a need for 

advanced virus detection techniques. Some of the techniques used for virus detection are:  

 

2.3.1. Signature Detection Technique 

 

A signature is the binary footprint of any virus. A signature-based virus scanner looks for a 

match amongst the available signatures in all the binary files in a computer. If a match is 

found it means that a particular known virus is detected. This is brute force technique and is 

very effective for the detection of known viruses, but it is not very effective when not much 

is known about a virus’ signature or if it’s a completely new virus attack. Still, most 

commercial virus scanners use conventional signature detection technique. 

 

2.3.2. Change Detection Technique 
 

Change detection technique involves monitoring the important files on a system for 

changes. This can be done by computing and storing the hashes during the ideal state of the 

system for files that do not generally change.  These hashes can be computed periodically 

and compared with the original saved hash of the file. If the newly computed hash is 

different from the saved hash, it means that the file is changed and has therefore been 

affected by a virus or other malicious code.  

 

This can prove to be a very effective technique even in detecting new or unknown viruses. 

However, there are also a number of disadvantages associated with this technique. Since, 

many files change in a system; it is difficult to take into account these changes into the 
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change detection technique. This technique can easily flag for false positives, for instance 

when a file changes for a good reason. Also it puts a heavy load on the processor, if used 

very frequently. 

 

2.3.3. Anomaly Detection Technique or Heuristic Analysis 

 

Anomaly detection, or heuristic analysis, is another technique that can be used for 

detection of viruses. In this technique, the virus scanner monitors system files and 

resources and looks for anomalous behavior. Anomaly detection is a very challenging 

problem for the following reasons:  

1. The behavior of a system changes constantly depending upon its usage 

2. Flagging of anomalous behavior does not always help 

3. It is very difficult to define the norm of a given system  

 

For these reasons, this technique also causes many false positives. Anomaly detection 

relates to a problem in the domain of artificial intelligence and is a complex one to solve. It 

is very difficult to design a virus scanner that purely uses anomaly detection technique. 

There have been some approaches where anomaly detection is combined with signature 

detection techniques to develop the scanner.  
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3. Buffer Overflow 
 

A buffer overflow is a programming flaw due to which more data is pushed into a data 

structure than it is designed to hold [3]. For the last two decades, most of the virus attacks 

are exploited due to the buffer overflow [9]. The virus generation toolkit that we present in 

this research project is based on a simple buffer overflow exploit. We hide the entry point 

to a hidden or “dead” piece of code that could never have executed without the buffer 

overflow exploit. In this section, we discuss some famous buffer overflow exploits, their 

historical importance in the field of computer security, and some of the techniques that 

have been used to detect and mitigate buffer overflows in the past. 

 

3.1. What is a Buffer Overflow? 
 

Buffer overflow is a programming bug or a hack that can be exploited by attackers to 

launch serious virus attacks [9]. Buffer overflow can be exploited through programming 

languages like C or C++ easily where strict bound checking is not performed on the data 

structures.  

 

The concept of buffer overflow is very simple, “A buffer overflow is very much like pouring 

ten ounces of water in a glass designed to hold eight ounces. Obviously, when this 

happens, the water overflows the rim of the glass, spilling out somewhere and creating a 

mess.” [15] 

 

 Buffer overflows can be exploited by writing to an unauthorized memory location using 

pointers, arrays, stacks, heaps, or other similar data structures. For example, consider an 
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array or any other data structure that holds N elements. A buffer overflow occurs when a 

program tries to store more than N elements in that data structure. The reason for the 

occurrence of a buffer overflow is that not enough memory is allocated for a data structure 

or the buffer. A code snippet demonstrating a buffer overflow error is as follows:  

Figure 2: C++ Code Example for a simple buffer overflow 

 

In the above example, the declaration for the array arr allocates memory for 5 integer 

values. The “for loop” tries to put more than 5 integer values in the array arr. This 

causes the array buffer to overflow.  

 

In Figure 3 we give a diagrammatic representation of a program’s execution memory stack. 

As shown in the figure, function variables and buffers are placed next to the return address 

of a function in the execution stack. When an attempt is made to write to a memory 

location that is not allocated it causes the buffer to overflow. Thus, when the program 

reaches its end it does not know where to go back to. This is even more dangerous if a 

buffer overflow attack modifies the path of execution by overwriting the return address 

with the known address of some malicious code. 
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Figure 3: Diagrammatic Description of the memory of a program 

 
 

 

Buffer overflow can be exploited such that the path of execution is altered with malicious 

intent. The return address of the executing code can be overwritten with address of some 

malicious code with the help of a buffer overflow exploit. This scenario is explained by the 

memory map shown in Figure 4 below:  
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Figure 4: Diagrammatic Description of an Exploited Buffer Overflow 
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3.2. Buffer Overflow Attacks 
 

Buffer overflow attacks are very sensitive and require an in-depth knowledge of the system 

that is being attacked. Buffer overflow exploits are very popular amongst virus writers and 

hackers because the attacker has full control over the code to execute after the exploit. 

Such attacks have been around for quite awhile and there have been many attempts to 

avoid or to detect them. We discuss in detail some of the attempts to avoid, void, or detect 

buffer overflows in Section 3.3. 

 

Some of the most famous and hostile buffer overflow exploits include [9]:  

1. Morris Worm (1988): Affected 6000 machines over the internet 

2. Code Red Virus (2001): Exploited a buffer overflow in Microsoft’s IIS (Internet 

Information Services) Server Software that affected about 250,000 systems in 15 hours 

3. SQL Slammer Worm (2003): Caused a denial-of-service (DoS) attack on machines 

running Microsoft SQL Server 2000, and affected 250,000 systems in 10 minutes 
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3.3. Attempts to Avoid or Detect Buffer Overflows 
 

We discuss some successful attempts to avoid or detect occurrence of buffer overflows in 

this section. Some of these techniques have proved to be very useful in combating against 

buffer overflow exploits.  

 

3.3.1. Managed Code Environments 
 

Managed code is the Microsoft naming convention for code that executes in management 

of the Common Language Runtime (CLR). The languages that fall into this category are 

Managed C++, C#.NET, VB.NET, and XAML for Silverlight. These programming languages 

require strict bound checking on all data structures, like arrays, lists, sets, or bags. Java also 

runs under the management of Java Virtual Machine (JVM) and produces a Java byte code 

when compiled. JVM also requires strict bound checking on the above-listed data 

structures. Thus, it is not possible to exploit buffer overflows in such managed 

environments. When a buffer overflow is exploited, the exception handlers in managed 

environments throw the “out of bounds” exception. Thus buffer overflows can be easily 

caught in the managed code environments. 

 

3.3.2. NX (no execute) Bit  
 

NX or no execute bit is supported by some operating systems, like Microsoft Windows Vista 

and Windows 7. NX bit works like a flag variable on a program’s execution stack. When this 

flag is set, that particular section of the memory becomes non-executable. This is very 

useful in making the stack non-executable. This means that even if a buffer overflow is 
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exploited, it would not be possible to overwrite the stack. Thus, the path of execution 

cannot be changed, as the return address would not be modified which is typically the case 

in most buffer overflow attacks [9].  

 

As stated in [2], “As the NX approach becomes more widely deployed, we should see a 

decline in the number and overall severity of buffer overflow attacks.” 

 

3.3.3. Canary or the /GS Option in Microsoft 
 

Canary or canary bit is a mechanism that can be used to prevent stack smashing attacks. In 

this approach we push a special value, called the canary, after the return address. The value 

of the canary is constant, and chosen in such a manner that if it is changed or overwritten 

the change will be detected. The canary value is validated when the code reaches the end of 

control flow and the jump to the return address is only made if the canary is not modified.  

The concept of canary is implemented in Microsoft Visual Studio compiler as the Buffer 

Security Check (/GS) Option.  

 

According to [5], the /GS Option, “causes the compiler to add checks that protect the 

integrity of the return address and other important stack metadata associated with 

procedure invocation. The ‘GS’ protections do not eliminate vulnerabilities, but rather 

make it more difficult for an attacker to exploit vulnerabilities.”  

 

However, claims have been made that this implementation in Microsoft Windows is flawed, 

and that buffer overflows are still exploitable [5]. 
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Figure 5: Stack Frame with Canary Implementation 

 
 

3.3.4. ASLR (Address Space Layout Randomization) 
 

Another concept that is used by some operating systems, like Linux PaX and Microsoft 

Windows Vista, is Address Space Layout Randomization (ASLR), as discussed in [10]. ASLR 

aims at preventing buffer overflow exploits by randomizing the memory address space from 

which the program will be executed.  This concept is explained in more detail, along with its 

advantages and de-randomization attacks, in the Section 4. 
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4. Address Space Layout Randomization (ASLR) 
 

According to [5], “Address Space Layout Randomization is a prophylactic security 

technology aimed at reducing the effectiveness of exploit attempts.” ASLR makes it 

difficult to exploit vulnerabilities with buffer, stack, or heap overflows. The virus developed 

in our project defeats ASLR in Windows systems by exploiting the buffer overflow using 

function pointers. This is achieved without going through the lengthy process of de-

randomization. In this section, we discuss ASLR, its background, what it takes to de-

randomize memory space, and ways to make ASLR more robust. 

 

4.1. What is ASLR? 
 

Address Space Layout Randomization (ASLR) is a mechanism that randomizes the program 

memory. This prevents the program from getting placed at the same address in the main 

memory every time it is loaded. Thus, if a program is compromised once using a hard-coded 

buffer or stack overflow exploit, the same attack will not be successful subsequently. Thus, 

hard-coding addresses to exploit buffer overflows will fail. A sophisticated de-randomization 

approach would have to be used to break the security in this kind of protection. 
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4.2. Where is it used? 
 

Address Space Layout Randomization (ASLR) is built in by the newer operating systems like:  

• Linux PaX ASLR 

• OpenBSD 

• Microsoft Windows Vista 

• Microsoft Windows 7 and  

• Mac OS X Leopard.  

 

ASLR randomizes program memory such that it does not always execute in the same 

memory space. ASLR enabled systems are secure against attacks caused by viruses 

containing buffer overflow exploits pointing to hard-coded memory addresses. This is 

because hard-coding buffer overflows would point to a completely random location in the 

memory. In Microsoft Windows Vista, Windows 7, and Mac OS X Leopard, the ASLR 

mechanism is used along with the NX (no execute) bit mechanism as discussed in subsection 

3.3.2. 

 
4.3. De-Randomization Attacks 

 

De-randomization is the process by which an attacker compromises the security provided 

by ASLR. After de-randomization, buffer overflows can be exploited by hard-coding memory 

addresses even on ASLR enabled system. Two different de-randomization attacks on the 

Linux PaX ASLR system demonstrated in [7] are: 

1. return-to-libc attack, uses the Oracle buffer overflow 
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2. Information leakage attacks 

Similar de-randomization attacks can be launched on any other operating system that uses 

ASLR. 

 
4.4. Analysis of ASLR in Microsoft Windows Vista 

 

Microsoft Windows Vista considers executables (.exe) and dynamic link libraries (.dll) 

containing the PE (portable executable) header for ASLR [4]. Windows Vista uses a random 

global image offset that is reset on each reboot. Microsoft claims that this random global 

image offset is selected from a range of 256 values, but according to statistics and analyses 

this range is actually much smaller [4]. This is shown in the figure below, which is taken 

from [4], pg. 9, Figure 2. Distribution of Stack Addresses, as follows: 

Figure 6: Distribution of Stack Addresses 
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5. Technical Details 
 

In this section, we discuss different code obfuscation techniques and exploits used by the 

virus generation tool to obfuscate and morph a virus in detail.  

 
5.1. Virus Code with the Buffer Overflow Exploit 

 

Figure 7 illustrates the C++ code that uses the buffer overflow exploit to link to malicious 

code. This code contains two C++ functions, viz., goodCode and virusCode.  The 

goodCode function causes the exploit by overwriting its return address with the entry 

point of virusCode. The return address is overwritten by overflowing the buffer of array 

arr in the goodCode function. 

Figure 7: buffer.cpp (C++ file containing the actual buffer overflow exploit) 
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The following compiler options should be set for hiding the buffer overflow exploit: 

1. Buffer Security Check (/GS): The Buffer Security Check is on by default. We set it to No 

(/GS-) so it will not enforce restrictions on the size of the buffer [18].  

2. Basic Runtime Checks:  Disable run-time checks on stack frames, uninitialized variables, 

and data type mismatch by setting this compiler option to Default [19]. 

3. Enable C++ Exceptions: C++ Exception Handling is enabled by default (compiler option is 

set to “Yes (/EHsc)”). Disable exceptions by setting this compiler option to No [20].  

 

The disassembly of the code in Figure 7 is shown in Figure 8. The return address of the 

subroutine is overwritten with a pointer to another function (buffer.010E1078). Thus, the 

code flow jumps to buffer.010E1078 when the subroutine returns. The code in this function 

can link the program to a potential virus.  

Figure 8: Buffer Overflow in Disassembly 
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5.2. Code Encryption and Decryption 
 

Code encryption and decryption can be used to obfuscate a piece of code. This obfuscated 

code is decrypted at run-time when the encrypted portion of code is invoked. Since the 

decryption logic should not be identical in each generation, it is obfuscated using different 

obfuscation techniques explained from sections 5.3 to 5.6.  

 

Encryption and decryption is implemented in our project with the help of function pointers. 

The encrypt function accepts the pointer to a C/C++ function and encrypts all bytes of code 

in that function. Once a function is encrypted, the encrypted bytes of code are built into the 

un-compiled C++ code as HEX in the __asm {…} section. The encrypted functions are 

decrypted at run-time when invoked. All the encrypted bytes are decrypted and overwritten 

at the same address. If an attempt to execute the encrypted function is made before 

decrypting, it will cause an error in the program.  

 

Consider the following code constructs to better understand code encryption and 

decryption. The cryptographic algorithm implemented in the following example is fairly 

simple, but complex cryptography can be implemented. 

 

Figure 9: Encryption Logic 
Encryption Logic will be a part of encrypting the first time; it will not be present in the final 

source code 
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Figure 10: Decryption Logic 
Decryption Logic will be present in the final source code 

 
 

Figure 11: Calls to the encryption and decryption functions 

 
 

Sensitive code in the metamorphic virus generator is obfuscated using such encryption-

decryption mechanism. The areas in the metamorphic virus where we use such code 

encryption and decryption mechanisms are as follows: 

1. Implementation of the buffer overflow exploit 

2. Linking the executable to the virus dynamic link library (dll) 
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5.3. Opaque Predicates 
 

An opaque predicate is a dynamic logic or expression of code whose result is 

predetermined. The result remains constant irrespective of the values of internal variables.  

Opaque predicates can be useful to obfuscate the flow of control in a program. Opaque 

predicates can also be used to insert dead code into the logic and make it look like 

something important and relevant.  

 

Opaque predicates can be easily implemented in code by simple if…else statements, 

ternary operators, switch statements, or even loops. For example, a simple opaque 

predicate will look like: 

Figure 12: Simple Opaque Predicate 

 

Complex opaque predicates based on complex piece of math can also be used. For example, 

the snippet of code in Figure 13 uses the math property that (a2 + b2) is always greater than 

(2ab). Thus the code within the “if block” will always be executed, and the code within 

the “else block” will never be executed.  

Figure 13: Opaque Predicate Involving Complex Math 
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The above snippet of code, when seen in the assembly, will be very complex and difficult to 

understand, as shown in Figure 14. Also, it looks as if it will be doing something vital to this 

part of the program. 

Figure 14: Opaque Predicate as shown in Assembly 

 
 

Opaque predicates are frequently used at random in the virus generation tool to obfuscate 

the virus code and change its signature significantly. Some of the opaque predicates used in 

the tool are listed in Appendix B. 

  

 



27 
 

5.4. Insertion of Junk Code and Normal Code 
 

5.4.1. Junk Code  
 

Junk code is a useless block of code and the execution of this code does not make any 

difference to the functionality of the underlying program. However, it may cause 

performance delays in the executing program.  Junk code is inserted in the virus binaries 

using our virus generation tool to obfuscate the virus code and thereby change its 

signature.  

 

5.4.2. Insertion of Normal Windows Code  
 

Normal code refers to the code from binary files of Windows operating system. This 

“normal code” can be inserted instead of inserting junk code randomly. The “normal code” 

is obtained by scanning and stripping logical bunch of instructions from normal files in the 

Windows Operating System.  Some of the normal Windows files that we disassembled and 

scanned are Notepad (notepad.exe), Windows Explorer (explorer.exe), Registry 

Editor (regedit.exe), Word Pad (write.exe) and Internet Explorer 

(iexplore.exe). The code obtained from these files is illustrated in Appendix A. This 

technique helps make the signature of the metamorphic virus similar to the existing 

Windows files, which works like a camouflage to avoid signature detection as well as other 

advanced detection techniques.  
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5.5. Subroutine Permutation 
 

Subroutine permutation refers to permuting the definitions of the different subroutines in 

the program. Since the order of definition of subroutines does not change the order in 

which these subroutines are actually called, makes no functional changes to the program. 

Hence, subroutine permutation is an effective technique for changing the signature of a 

program considerably [17].  

 

If a program contains n different subroutines, or functions, or methods, using subroutine 

permutation technique n! different permutations can be generated. For example, in a 

program with 3 methods or subroutines, we can get 3! = 6 different permutations or 

signatures of the same program, as shown in the Figure 15 below: 

 

Figure 15: Subroutine Permutation 

 
 

 

Consider the following extracts of C++ code in Table 1. These sample programs show two 

out of the six permutations with three methods. The output of both the programs is 

identical.  
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Table 1: Subroutine Transformation Code Extracts 

Code extract 1 Code extract 2 

  
 

 

However, the binary signatures of both of the following versions of code are completely 

different from each other as shown by the Ollydbg disassemblies in Table 2 and 3.  

 

These disassemblies show that the binary signatures change considerably due to the 

reordering of subroutines (or methods). A permutation algorithm is used to generate n! 

different permutations for n methods in the program. A particular permutation is then 

selected at random and the n methods of the program are defined in that order. This will 

change the binary signatures considerably for each generation of our metamorphic virus. 
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Table 2: Disassembly of Code Extract 1 
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Table 3: Disassembly of Code Extract 2 
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5.6. Inline Functions in C++ 
 

Inline functions in C / C++ are an indication to the compiler to insert the function code inline 

at the function call. This helps the compiler avoid the overhead of processing the stack 

frame and the registers involved in calling a regular function. However, it is not advisable to 

make all the functions inline because of the limitations involved in using them with 

recursive function calls, function calls within loops, and large processing within functions. 

 

Inline functions are declared in C and C++ by using the keyword “inline” in front of the 

function definition as shown in Figure 16:  

Figure 16: Inline Functions in C++ Code Extract 

 

 

Since the definition of the functions does not change when they are made inline, inline 

functions are used at random in the virus code.  

Each generation of virus generated from our tool is different from the previous because of 

the collection of obfuscation, re-ordering and permutation techniques used at random. 
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6. Metamorphic Virus Generation Tool 
 

The aim of our project is to develop a tool for generating and hiding metamorphic viruses. 

These metamorphic viruses are created from an existing virus whose signature is known by 

the anti-virus software. Using the tool, the virus is hidden as “dead code” in the victim’s 

machine and exposed using a buffer overflow. The virus is undetectable as lies on the 

machine in the form of text that is not considered for scanning by signature detection. The 

virus code is compiled at run-time with different code obfuscation and crypto logic 

technologies, as discussed in Section 5. The virus code can be provided as input to the tool 

through a file or plain text. The virus generation tool is developed as a Windows forms 

application that accepts the input virus, applies the metamorphic engine using file I/O 

operations and compiles it as a Win32 console application. The screenshot of our 

metamorphic virus generation tool is shown in Figure 17 below. 

 

 
Figure 17: Screenshot of Metamorphic Virus Generation Tool 
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6.1. Metamorphic Virus Generation Tool: Detailed Steps 
 

This section outlines the top-level steps performed by our Virus Generation Tool to 

generate the metamorphic virus as illustrated in Figure 18: 

Figure 18: Virus Generation Tool 

 
 

6.1.1. Metamorphic Engine 

 
The metamorphic engine applies the exploits and code obfuscation techniques discussed in 

Section 5 to the given virus program. These techniques are applied at random, making use 

of randomization and permutation algorithms to generate varied and metamorphic results. 

Also the framework for the buffer overflow exploit is built into Buffer.cpp code file. At 

the end of this step we obtain two files:  



35 
 

1. Buffer.exe: Buffer.cpp is the compiled code file that contains the buffer 

overflow (section 5.1) and the code to link to the virus through this overflow. 

2. Virus.cpp: Virus.cpp is the uncompiled code file that contains the morphed 

code for the actual virus. This morphed code is obtained by applying the different 

techniques discussed in section 5. 

 
6.1.2. Build Framework for Buffer Overflow (Compile Buffer.cpp) 

 

As shown in the previous subsection 6.1.1, the body of the built-in buffer overflow is 

already in place. This buffer overflow attack is designed to bypass the randomization 

provided by Address Space Layout Randomization. The attack is designed such that when 

the buffer overflow takes place, the memory space has already selected the one out of 256 

available locations to execute. 

 

Now we compile this newly created Buffer.cpp file through a build script batch (.bat) 

file and generate an executable (Buffer.exe) file. This executable contains the built-in 

buffer overflow which, when exploited, links to the virus code.  

 

6.1.3. Output Files 

 

The actual virus code is hidden as “dead code” in the form of text in Virus.cpp, and not 

in any executable or dynamic link library. This makes it harder for virus scanners to detect, 

since most commercial virus scanners use signature-based detection techniques. By using 

the buffer overflow to hide the entry point to the virus, we have created a generic tool that 

can be used to create any hard-to-detect virus. The virus code is compiled just-in-time of 
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the attack, which gives the anti-virus software much less time to consider it as a potential 

candidate for signature detection. Also, the virus code is morphed and differs from the code 

of the actual virus, which makes it even more difficult to detect using signature detection.  

 

6.1.4. The Virus Attack: Buffer.exe 
 

The first generation of Buffer.exe performs the actual virus attack, with the help of the 

buffer overflow, by compiling the virus.cpp to an executable or a dll and linking to it at 

run-time as shown in Figure 19. The metamorphic engine is applied to the virus at each 

generation of the virus to generate diverse copies of the virus: 

 
Figure 19: Buffer.exe 
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7. Test and Results 
 

We performed the following tests to analyze the output and quantify the results of the 

metamorphic virus generation tool:  

 

7.1. Buffer Overflow Test 
 

In this section, we test the effectiveness of the buffer overflow exploit in obfuscating and 

causing the virus attack on Windows XP, Vista, and Windows 7 environments. The buffer 

overflow can be exploited only if the code is compiled by setting the right compiler options, 

as discussed in section 5.1. 

 

The tool uses a buffer overflow exploit and function pointers to point to benign-looking 

code in the program memory that links to “dead code” stored as text in the computer. 

Since, this benign-looking code resides within the executable, its address is local to the 

execution stack. Hence, we exploit the buffer overflow by defeating the randomization 

provided by Address Space Layout Randomization without launching the lengthy process of 

de-randomization, as referred to in section 4.3. 

 

Consider the following OllyDbg disassemblies of the buffer overflow as implemented in our 

project in figures 20, 21, and 22. This result was obtained with ASLR enabled on a Windows 

7 environment with the program run three times consecutively. In the figures below we can 

see that even though the program’s execution space was randomized in all the three 

executions, the buffer overflow was successful. This buffer overflow attack is readily 
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exploited on Windows XP, which does not have ASLR enabled, but also in Windows Vista 

and Windows 7 environments, which have ASLR enabled. Also OllyDbg and IDA Pro 

disassembly do not detect or flag the buffer exploit. 

Table 4: Defeating ASLR (First Run) 

Code with the Buffer Overflow: 

 
Code where the virus can be linked from: 
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Table 5: Defeating ASLR (Second Run) 

Code with the Buffer Overflow: 

 
Code where the virus can be linked from: 
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Table 6: Defeating ASLR (Third Run) 

Code with the Buffer Overflow: 

 
Code where the virus can be linked from: 
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7.2. Hiding Entry Point to the Virus 
 

Since the virus is independent of the main program it can be loaded and linked at run-time 

by providing the name of the dll or executable and the name of the function to call with the 

help of the LoadLibrary system function.  

 

But the OllyDbg Disassembler is smart enough to detect the use of the LoadLibrary function 

and flag with the following warning when the program is first disassembled. 

 

 
 

Figure 20: OllyDbg Error on Dynamic Linking 
 

OllyDbg disassembly detects the call to LoadLibrary system function and displays the 

warning message as depicted in Figure 20. The call to LoadLibrary system function is 

encrypted with our tool and the warning message is bypassed. 
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7.3. Test against Commercial Virus Scanners 
 

Finally we performed the following test to measure the effectiveness of the tool in 

generating and obfuscating an existing virus code. We tested the generated output of the 

metamorphic virus tool against some of the following commercial virus scanners: 

1. Avast! Anti-Virus Version 4.8. Downloaded from [12] 

2. Kaspersky Anti-Virus Version 8.0.0.506. Downloaded from [13] 

 

Steps to follow: 

1. Obtain C or C++ source code of a well known virus from online web resources like 

[11] or [14] 

2. Compile the virus source code by itself and generate its output binaries  

3. Check whether this virus is detected in the presence of anti-virus software via 

scanning 

4. Input the source code obtained in Step 1 to our virus generating tool. This will 

generate an obfuscated and metamorphic copy of the original virus  

5. Again check whether the generated virus is detected by the same anti-virus software  

 

For this purpose we downloaded virus source code from various sources viz [11], [14], and 

[23], and followed the above procedure. As a result, the original virus binaries were 

detected and quarantined by anti-virus software when they were compiled as-is, but when 

we generated the virus file using our tool it remained undetected. The reason for this is that 

the virus code is morphed and hidden as “dead code,” in the form of text.  
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Secondly, we made the virus execute in the presence of the virus scanners and it remained 

undetected. This means that commercial virus scanners do not use any advanced 

techniques like anomaly detection, or change detection, during run-time.  
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8. Defense Techniques 
 

In this section, we discuss some of the defense techniques that can be used against a 

malicious virus attack like the one proposed in this research project. 

 
8.1. ASLR Improvements for Preventing Buffer Overflow 

 

Some of the improvements suggested in [7] for ASLR Operating Systems are as follows: 

 
8.1.1. Use of 64-bit Architectures 

 

The current 32 bit architectures provide insufficient address space randomization, and can 

easily be compromised by a brute force attack. Using 64-bit architectures provides higher 

address space randomization and it would be much more difficult to de-randomize or guess 

the address space. 

 
8.1.2. Increase Randomization Frequency 

 

Randomization frequency is the rate at which randomization is performed by an operating 

system. Microsoft Windows Vista and Windows 7 perform randomization after a defined 

time interval; randomization is also performed after reboot or logoff from the system. The 

randomization must be performed at a much higher rate to avoid buffer exploits. 
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8.1.3. Randomizing Addresses at a Finer Granularity 

 

Randomization as implemented by Microsoft Windows Vista and Windows 7 is 64 kB 

aligned. This causes the memory layout of any program to be relative and remain the same 

within the 64 kB block. This implementation can easily be exploited with smart attacks. 

 
8.1.4. Monitoring and Catching Errors 

 

Implementation of a crash detection and reaction mechanism for monitoring errors and 

segmentation violations in the address space is also suggested in [7]. If such errors or 

violations are encountered, further action, like termination, should be taken against such 

programs.  

 

8.2. Monitoring File Creation 
 

The virus designed by the metamorphic engine resides as a text file that is compiled and 

converted to its binaries just-in-time before getting called. For detection of such viruses, 

virus scanning software should employ a utility that monitors the creation of binary or 

executable files. After detecting the creation of such files, the following actions can be 

taken: 

• Report to the system administrator 

• Immediately consider the newly created file for signature detection immediately 

• Monitor the newly created binary for suspicious or anomalous behavior  
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8.3. Code Transformation Detection 
 

Our metamorphic virus generation tool makes changes to the code files in the affected 

system.  Code transformation detection is a technique that monitors such changes. This 

technique can be employed to monitor excessive file I/O operations on C, C++ or ASM code 

files or binary files like exe or dlls. This can be a very effective technique for detecting 

metamorphic viruses before an attack.  

 

8.4. Advanced Techniques for Virus Detection 
 

Various advanced techniques can be applied for the detection of metamorphic viruses. 

Some of these techniques are code disassembling, code emulation, geometric detection, 

subroutine depermutation, heuristic analysis using emulators, and Hidden Markov Models 

[17], [21] and [25]. None of these techniques can be claimed as fool-proof for the detection 

of metamorphic viruses, but these techniques can be used jointly, as required, for the 

detection of highly metamorphic viruses. 
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9. Conclusions and Future Work 
 

Clearly, metamorphic viruses are highly versatile and difficult to detect, and are a relatively 

new and exciting topic for research. The virus generator presented in this research project 

generates and obfuscates a highly metamorphic computer virus. The metamorphic virus is 

generated through a metamorphic engine that includes the application of a set of 

transformations to an existing piece of virus code. The metamorphic virus resides as “dead 

code” on the victim machine, and is invoked by a buffer overflow exploit. Using the virus 

generation tool, we have been able to create a virus that successfully evades detection by 

commercial virus scanners using signature detection technique.  

 

We propose some techniques that can be used to make anti-virus scanning techniques 

stronger and better able to detect metamorphic viruses. We also suggest some approaches 

for improving Address Space Layout Randomization technique to avoid and detect buffer 

overflow exploits.  

 

The research work completed in this project can be extended in the following areas: 

1. Analyzing metamorphic viruses that are obfuscated using heap overflow exploits, and 

providing a defense mechanism against such viruses 

2. Identifying other intelligent programming techniques that can potentially be used to 

increase the degree of metamorphism in the generated virus.  

3. Research on operating systems and virus scanning software that are smart enough to 

avoid or detect such exploits 
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4. Understanding and analyzing the effectiveness of Address Space Layout Randomization 

(ASLR) on Mac OS X systems. Determining if the effectiveness of the built-in buffer 

overflow, as proposed in this paper, can be extended to Mac OS X 

5. The process of metamorphic virus generation can be automated by stripping off the 

meaningful chunk of assembly code from a virus exe (executable file) or a dll (Dynamic 

Link Library) and then providing it to the virus generator tool, which will make 

metamorphic versions of the same virus 
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11. Appendix 
11.1. Appendix A: Normal Codes as disassembled from Windows Files 

 

1. Notepad.exe 

 

Figure 21: ASM Extract Notepad 
2. Wordpad.exe 

 

Figure 22: ASM Extract WordPad 
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3. Explorer.exe 

 

Figure 23: ASM Extract Explorer 
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4. Regedit.exe 

 

Figure 24: ASM Extract Registry Editor 
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5. Iexplore.exe 

 

Figure 25: ASM Extract Internet Explorer 
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11.2. Appendix B: Opaque Predicates 
 

Some of the opaque predicates used in the metamorphic virus generation toolkit are: 

Table 7: Opaque Predicates 

1. if (((a + b) ^ 2) == (a^2 + 2*a*b + b^2)) 
{ 
   printf(“Execute this”); 
} 
else 
{ 
   printf(“Don’t Execute this”); 
} 

2. if ((a ^ 2 – b ^ 2) == (a + b) * (a - b)) 
{ 
   printf(“Execute this”); 
} 
else 
{ 
   printf(“Don’t Execute this”); 
} 

3. if (((x ^ a) * (x ^ b)) == (x ^ (a + b))) 
{ 
   printf(“Execute this”); 
} 
else 
{ 
   printf(“Don’t Execute this”); 
} 

4. if ((a * (a + 1)) % 2 == 0) 
{ 
   printf(“Execute this”); 
} 
else 
{ 
   printf(“Don’t Execute this”); 
} 

5. if ((7 * a * a – 1) == (b * b)) 
{ 
   printf(“Don’t Execute this”); 
} 
else 
{ 
   printf(“Execute this”); 
} 
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11.3. Appendix C: Virus code used for testing 
1. Virus code [21] 

 

Figure 26: Virus code in C++ 
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