
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

WiSeNetor: A Scalable Wireless Sensor Network Simulator WiSeNetor: A Scalable Wireless Sensor Network Simulator

Gauri Krishna Gokhale
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gokhale, Gauri Krishna, "WiSeNetor: A Scalable Wireless Sensor Network Simulator" (2010). Master's
Projects. 29.
DOI: https://doi.org/10.31979/etd.etmu-6xfp
https://scholarworks.sjsu.edu/etd_projects/29

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/29?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

WiSeNetor: A Scalable Wireless Sensor Network Simulator

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Gauri Krishna Gokhale

May 2010

© 2010

Gauri Krishna Gokhale

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

WiSeNetor: A Scalable Wireless Sensor Network Simulator

by

Gauri Krishna Gokhale

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 Dr. Mark Stamp, Department of Computer Science Date

__

 Dr. Robert Chun, Department of Computer Science Date

__

 Dr. Chaitanya Gharpure, Google Inc. Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

WiSeNetor is a teaching and a research tool that simulates a scalable wireless
sensor network on a single computer, based on the “Spamulator” (Aycock, J.,
Crawford, H., & deGraaf, R., 2008) which simulates the Internet on a single
computer. Routing protocols and network discovery algorithms used in mesh
networks and cluster tree networks can be demonstrated using this tool.

WiSeNetor contains a network creation module, simulated network devices and it
simulates routing algorithms. The network creation module spawns a network
according to user specified network type, where the type can be a cluster tree or
mesh. In this process, neighbor tables are populated and the Spamulator is
initiated. The underlying network module of the Spamulator has been reused in
WiSeNetor to achieve better scalability.

Each simulated network device has an associated server program and a client
program that process incoming requests and forward them to appropriate
neighboring nodes, respectively. Network devices also log all of the service
messages in individual log files that may be used to trace the routing or network
discovery process.

WiSeNetor has achieved scalability up to 15,000 nodes in the network. Message
latency and the average number of hops during simulation testing were
comparable to the findings in (Eamsomboon,P., Keeratiwintakorn,P., & Mitrpant,
C, 2008) which validates the WiSeNetor.

 v

ACKNOWLEDGEMENT

Many thanks to Dr. Mark Stamp for his guidance and for a great learning
experience. His advice enabled me to make right decisions and choose
appropriate approach for the project. Great thanks to Dr. John Aycock, University
of Calgary, for sharing his brilliant software, the Spamulator.

This project would not have been possible without the support of my husband,
Sameer, and my little daughter, Tanvi. I am immensely grateful for the good
wishes and blessings of the elders in my family.

 vi

TABLE OF CONTENTS

INTRODUCTION .. 9

WHAT IS A WIRELESS SENSOR NETWORK? .. 9
Sensor Network application classes .. 9

THE 802.15.4 STANDARD AND ZIGBEE ...12

STAR TOPOLOGY ...12
CLUSTER NETWORK TOPOLOGY ..13
CLUSTER TREE NETWORK TOPOLOGY ...16
MESH NETWORK TOPO ..17

Route discovery process ...18

SPAMULATOR: SIMULATING INTERNET ON A SINGLE COMPUTER20

ARCHITECTURE OF SPAMULATOR ..20

DESIGN CRITERIA FOR WISENETOR ..22

MAIN DESIGN CONSIDERATION ..22
OTHER DESIGN CONSIDERATIONS ..22
ROUTING ALGORITHM ...22
CHOOSING CORRECT INFRASTRUCTURE TO ACHIEVE SCALABILITY ...22

ARCHITECTURE OF WISENETOR ..24

IMPLEMENTATION ...25

Operating System ...25
Programming language and scripting language ...25

SIMULATION RESULTS ...42

VALIDATION OF WISENETOR ...45

CONCLUSION ...47

FUTURE WORK ...47

REFERENCES ...48

APPENDIX A ..50

 vii

LIST OF FIGURES

FIGURE 1. TYPICAL MULTI-HOP WIRELESS SENSOR NETWORK ... 9
FIGURE 2. ENVIRONMENTAL DATA COLLECTION NETWORK DEPLOYED IN A FARM10
FIGURE 3: CLUSTER NETWORK ...14
FIGURE 4: CLUSTER TREE TOPOLOGY ...16
FIGURE 5: TYPICAL MESH NETWORK ...18
FIGURE 6: SPAMULATOR ARCHITECTURE (AYCOCK ET AL., 2008) ...20
FIGURE 7: ARCHITECTURE OF WISENETOR ...24
FIGURE 8: STATUS UPDATE PROTOCOL AT SERVER SIDE ...28
FIGURE 9: STATUS UPDATE AT CLIENT SIDE ..29
FIGURE 10: WORKING OF ROUTING PROTOCOL AT SERVER SIDE ..31
FIGURE 11: WORKING OF ROUTING PROTOCOL AT CLIENT SIDE ..32
FIGURE 12: RREQ MESSAGE FRAME IN WISENETOR ...34
FIGURE 13: RREP MESSAGE FRAME IN WISENETOR ...34
FIGURE 14: RTE MESSAGE FRAME IN WISENETOR...35
FIGURE 15: WORKING OF MESH SERVER PROGRAM ..36
FIGURE 16: SUB PROCESS THAT HANDLES RREQ REQUEST ..37
FIGURE 17: SUB PROCESS THAT HANDLES RREP REQUEST ..38
FIGURE 18: SUB PROCESS THAT HANDLES RTE MESSAGE ...39
FIGURE 19: HANDLING OF RREQ MESSAGE BY MESH CLIENT PROGRAM ...40
FIGURE 20: HANDLING OF RREP MESSAGE BY MESH CLIENT PROGRAM ..41
FIGURE 22: TIME ELAPSED IN SPAWNING MESH NETWORK VS NUMBER OF NODES42
FIGURE 23: END-TO-END DELAY FOR INCREASING NUMBER OF NODES ..45
FIGURE 24: NUMBER OF HOPS AS NUMBER OF NODES INCREASES ...46

 viii

LIST OF TABLES

TABLE 1: ROUTING TABLE FOR PAN SHOWN IN FIGURE 3 ...15
TABLE 2: ROUTING TABLE FOR NODE 6 SHOWN IN FIGURE 3 ..15
TABLE 3. SCALABILITY OF SENSE ...23

 9

Introduction

What is a wireless sensor network?

A wireless sensor network (WSN) is a wireless network consisting of spatially
distributed autonomous devices using sensors to cooperatively monitor physical
or environmental conditions, such as temperature, sound, vibration, pressure,
motion or pollutants, at different locations (“Wireless Sensor Network”, n.d.) .

Figure 1. Typical multi-hop wireless sensor network

The main features of a WSN are low power consumption, dynamic detection of
network topology, and low maintenance.

Sensor Network application classes

For WSNs, there are three main application classes:
1. Environmental data collection,
2. Security monitoring,
3. Sensor node tracking.

In environmental data collection, a scientist might want to gather environmental
data pertaining to temperature, pressure, or humidity through a large number of
sensor nodes deployed over a vast area. This will help the scientist to detect
trends in the environment. The sensors will route the data to a base station.
Environmental data collection applications typically use tree-based routing
topologies where each routing tree is rooted at high-capability nodes that sink
data. Data is periodically transmitted from child node to parent node, up the tree-
structure until it reaches the sink. With tree-based data collection, each node is

 10

responsible for forwarding the data of all its descendants (Hill, 2004). Figure 2
denotes an environmental data collection system (“Picture For Environmental
Data Collection System”, n.d.).

 Figure 2. Environmental data collection network deployed in a farm

 11

Typically, these applications include monitoring of humidity or temperature in a
farm to protect the crop from damage due to unpredictable weather conditions.

Security monitoring applications: Sensors monitor any changes in surrounding
conditions. They send a data report only when an anomaly occurs, unlike the
environmental data collection applications which send data continuously to the
desired base stations. Security monitoring applications are used in some military
applications and to monitor fire-hazards (Hill, 2004).

Node tracking applications: These applications are used when one would like to
track valuable assets or personnel. Objects to be tracked are tagged by sensor
nodes. The location of these tagged objects is recorded as they move along the
route (Hill, 2004).

 12

The 802.15.4 standard and ZigBee

Although the IEEE 802.15.4 standard has been designed as a MAC layer
specification for wireless networks, it does support certain network topologies.
The IEEE 802.15.4 standard supports multiple network topologies like star
networks and peer-to-peer networks like mesh, tree, cluster and cluster tree
networks. It only suggests certain network routing algorithms for the above
networks.

The star network is a single-hop network where the communication devices are
in range of a single intermediate device. In multi-hop, peer-to-peer networks
communication happens via multiple intermediate devices.

802.15.4 standard defines two types of devices called full functional device (FFD)
and reduced functional device (RFD). A FFD is a network coordinator or a router
that provides full set of services to the network and a RFD is an end device that
provides limited or reduced set of services. In this discussion, we refer to a FFD
as a PAN coordinator (PAN coordinator is responsible for functions like spawning
a network and also maintaining the network) or a router (Router has capability to
route a message) and RFD as an end device (It is not capable of routing a
message). We may refer to a network device also as a sensor node. Every
network has only one PAN coordinator. Selection of a PAN coordinator is
application specific. In some applications, there may be a dedicated PAN
coordinator where the consumer does not have any control over the network
design. Some applications support event-determined PAN coordinator where a
FFD could become a PAN coordinator given an external stimulus. Self-
determined PAN coordinator is where all FFDs in a network start competing to
become a PAN coordinator upon power up. Location determining network
applications use the self-determined PAN coordinator. In WiSeNetor, we use only
one dedicated PAN coordinator.

The IEEE 802.15.4 standard defines the physical (PHY) layer and the medium
access control (MAC) sub-layer. The ZigBee Alliance builds on top of the IEEE
802.15.4 and defines the network (NWK) layer and the framework for the
application layer for wireless sensor network. The Zigbee specification defines
three kinds of network topologies, namely, star topology, cluster topology and
mesh topology (Zigbee, 2008).

Star Topology

In a star network, an FFD can become a PAN coordinator and behave like a
master device. All the other network devices, FFD or RFD, behave like slave
devices. Star networks are typically used in applications that have limited
coverage area. The PAN coordinator is in control of all the activities happening in

 13

the network. It is aware of all the transactions happening among other network
devices that are its child devices. Therefore, every device needs a single entry,
that of PAN coordinator, in its ACL (Access Control List). Routing is very simple
in star network and involves single message exchange between the PAN
coordinator and the child devices. Thus, there is no need of a complicated
routing algorithm. It is important to know that a star network can not be used in
large scale sensor networks because of scalability issues.

There are 3 kinds of network topologies suited for large scalable sensor networks
mentioned below. These are all peer-to-peer network topologies.

1. Cluster network topology
2. Cluster tree topology
3. Mesh network topology

Cluster Network Topology

A cluster network is based on the concept of parent-child relationship. First
device to join a cluster network becomes the PAN coordinator. Thereafter, a new
device can join the network as a child of the PAN coordinator. Subsequent
devices can join the network as a child of PAN or a parent that is closest to the
PAN. Any parent device can have multiple children or grandchildren but each
child node can have only one parent.

Network Discovery: Each network device transmits beacons. A device that wants
to join the network may hear these beacons and it chooses its parent that is
closest to the PAN coordinator. The PAN coordinator is central to managing the
structure of the network and the network‟s maintenance.

 14

Figure 3: Cluster network

The PAN coordinator maintains information about the nodes in the network using
the status update protocol. The PAN coordinator can find broken communication
links in the network using status update protocol or even find newly added nodes
in the network.

The PAN coordinator sends a status update message to all parents. All the
parents relay this status update message to their child nodes. The message is
forwarded until the leaf nodes are reached. Leaf nodes are the nodes which do
not have any child nodes.
The leaf nodes send a status update response message, containing their
address, to their parents. The parents eavesdrop on the message and update

3

1

4

5

6

2

PAN

coordinator

parent to child relationship

sensor node with node number in

centre

 15

this information in their own routing tables. Parent nodes also aggregate
information contained in the status update response message from their child
nodes. They send this newly updated status update response message to their
parents. This process eavesdropping on the message and aggregating
information continues until the PAN coordinator is reached. Now, the PAN
coordinator has all the updated information about its network.

Routing

Routing Table: The routing table stores a list of network devices downstream and
also the address of its parent. Table 1 depicts a typical routing table for the PAN
in cluster network topology. First row contains the address of a node‟s parent.
For PAN, there is no parent. From the second row onwards, first column contains
addresses of all the nodes in the network and second column contains the
address of the parent node that is directly child of PAN.

 Table 1: Routing Table for PAN shown in figure 3

Parent -

1 1

2 2

3 1

4 1

5 1

6 1

 Table 2: Routing Table for node 6 shown in figure 3

Parent 5

6 6

Routing Algorithm:

In a cluster network routing algorithm, a network device checks first if the
destination device or node has an entry in the routing table. If an entry is found in
the routing table, the message is passed to the appropriate device downstream.
If an entry is not found, the message is routed to the parent considering that the
parent will have more information about the network. In worst case scenario, the
message would be routed up to the PAN coordinator. In this type of network, the
message is guaranteed delivery to its destination.

One advantage of a cluster network is smaller size of the routing table. The
routing table size is smaller because table entry for every possible node is not

 16

required. Smaller table size means lower memory requirement which, in turn,
means lower product cost.

One major disadvantage of a cluster network is unequal distribution of message
traffic through the network. The nodes logically closer to the PAN coordinator
may be involved more, in the routing of messages, than the nodes logically
farther than the PAN. This would lead to unequal battery life among the nodes.
Unequal battery life would lead to partitioning of the network which means
network failure.

Cluster Tree Network Topology

As the number of nodes in a cluster network increases, the routing table size
becomes impractically large. The routing table size might increase because a
node might have to include every child or grandchild in the routing table. To
mitigate this problem, hierarchy could be introduced to the cluster network such
that the network has multiple smaller clusters. The resulting network is called
cluster-tree network topology.

 Figure 4: Cluster Tree Topology

Network address of every node consists of two parts; a cluster identifier and a
network identifier. There is one PAN coordinator which manages the entire
network and there are several cluster heads or cluster coordinators that manage
different clusters.

Cluster 1

Cluster 2

PAN

 Cluster Head

FFD or RFD

 17

Status update process is done in the similar way like that of the cluster network.

Routing:
In a cluster tree network, a device first checks the routing table to see if the
cluster identifier of the destination device is present. If a routing table entry is not
present, which means cluster is unknown; the message is routed to its parent
device. If the cluster identifier is present, then the routing table is searched to
check if network identifier is present. From this point, the routing is continued just
like in the cluster network topology.

Mesh Network Topology

In a mesh network, routing is done in a decentralized way. It allows full peer-to-
peer communication.

Routing: The PAN coordinator or router may store a routing table to be able to
relay a message. A routing table consists of various fields like the destination
address (could be coordinator, router or an end device that would be the final
receiver of the message), next hop address (could be coordinator or router that
would relay the message), status (possible values could be active, inactive,
discovery underway, discovery failed, validation underway), no route cache(flag
that indicates that destination does not store route address, route record
required(flag indicating route record command frame needs to be sent to the
destination prior to next data packet), group ID flag (indicates destination address
is a Group ID).

A device is said to have routing capacity if it has the ability to route a message to
the destination device using its routing table. A coordinator or a router has
routing table capacity. A coordinator or a router also maintains a route discovery
table during the route discovery process. A route discovery table consists of
fields like route request ID, source address, sender address, forward cost,
residual cost and expiration time.

 18

 Figure 5: Typical Mesh Network

Route discovery process

 In the route discovery process (Zigbee, 2008), the network devices together find
and establish a route to destination device. The route discovery process begins if
there doesn‟t exist a routing table entry with the same route request ID for the
specified destination address.

Every device employs a route request ID counter. Each time a route request
command is issued, the device increments the counter and is stored as route
request ID field in the route discovery table. The route request command frame
(RREQ) sets following fields:

1. Command Frame identifier is set to route request
2. Route request ID is set to the value stored in the route discovery table.
3. Source address
4. Sender address
5. Destination address

The device can now broadcast this frame to all its neighboring devices that have
routing capacity. All the end devices shall discard the route request command
frame. A device checks to see if a route discovery table exists and that an entry
with the route request ID exists in the table. If not, the device creates a route
discovery entry. If a device finds that it is indeed the destination device, it
constructs the route request reply (RREP) message or command frame. This

Cluster 1

Cluster 2

PAN

 Cluster Head

FFD or RFD

 19

RREP is sent to the sender of the RREQ. The RREP command frame consists of
following fields:

1. Route request ID is set to the value stored in the route discovery table.
2. Originator‟s address, that is, the device that has created the RREP

command frame and is forwarding it.
3. Destination address

After receiving the RREP message, a device creates a routing table entry for the
specified destination device. It sets the next hop address to the sender of the
RREP message and the destination address specified in the RREP message.
This RREP message is relayed to the device that sent RREQ message,
corresponding to the entry in the route discovery table. This process of relaying
the RREP message to the sender of RREQ message and creating routing table
entry completes when the source device finally gets the RREP message. The
route discovery table entry is discarded after a certain expiration time.

It can be concluded that flat networks like the star network are not suitable for
networks that are highly scalable. If communication is limited to a single base
station, there will be communication overhead and management delay and the
performance will also be limited. Clustering can be done to achieve better
performance. Certain number of sensors can be part of a cluster which can be
managed by a cluster head. Therefore, a cluster-tree network topology with mesh
network in every cluster will be a good solution for a self-healing, self-organizing
and highly scalable sensor network.

 20

Spamulator: Simulating Internet on a single computer
The Spamulator has been developed by John Aycock, Heather Crawford and
Rennie deGraaf of the University of Calgary, AB, Canada (Aycock, Crawford, &
deGraaf, 2008). It simulates the Internet on a single computer.
The Spamulator simulates network services provided by a million domains. It is
lightweight in resource usage and runs on a single computer. Interaction with the
Spamulator can be done using any unmodified client software, such as web
browsers. Users can write their own software to use the simulated Internet using
any programming language or without any special libraries. The Spamulator can
be used to simulate email harvesting and bulk mailing, among other features of
Internet (Aycock et al., 2008).

Architecture of Spamulator

The architecture of Spamulator is kept simple. Network topology, latency or
failures have not been simulated because they are not needed in the intended
use of Spamulator.

Following are the four main building blocks of WiSeNetor.

1. NeRD or Network Rerouting Daemon. It is also called LNS or loopback
network simulator

2. Client program,
3. Local DNS Server,
4. Simulated Sever.

Figure 6: Spamulator Architecture (Aycock et al., 2008)

 21

NeRD or network rerouting daemon is the core of Spamulator. The NeRD
examines a packet coming from a client program and then decides how to
transform it into a new packet and then reroutes it to a simulated server. If
incoming packet needs a new connection, appropriate server program is
launched. A server is a simple executable program written in C language and it
uses the concept of pipes to communicate with the NeRD. Exchange of
information between the server and NeRD include IP addresses, ports.
The local DNS Server is a standard unmodified and authoritative for all top-level
domains that have been simulated.

 22

Design Criteria for WiSeNetor

Main design consideration

WiSeNetor should be highly scalable which will enable the testing of a large
network in a resource-constrained laboratory. It will be useful for teaching and
could also prove to be a useful research tool.

Other design considerations

Self-organization: WSNs were designed to have low maintenance cost.
Therefore, each sensor device should start participating in a network without any
need for addressing, association, or any kind of configuration. This idea of self-
organization comes from the ad-hoc networks. The network employs the proper
message path from source to destination (Gutierrez, Callaway, & Barrett, 2003).

Routing Algorithm

We need to have a routing algorithm considering various topologies and the self-
organizing feature of the WSN. For the cluster network and cluster tree topology,
routing algorithm discussed under Cluster Network Topology is implemented. For
the mesh network topology, Zigbee Routing Protocol is implemented.

Choosing correct infrastructure to achieve scalability

Already existing simulators were studied including ns2 and SENSE and their
scalability was tested.

NS2 is a popular network simulator which simulates different types of protocols
and networks. It does not scale well which is the major requirement of the
project. It scales only up to 500 nodes. Also because of its object-oriented design
there is interdependence between modules which makes addition of a new
protocol even more difficult (Source Forge, Network simulator).

SENSE is a simulator completely dedicated to wireless sensor networks. SENSE
is well designed and well-structured software. The scalability of SENSE was also
checked. In order to do so, the simulation parameters in the sim_routing.cc file
were modified and the output was printed to a text file (Lisee, Chen, G.,
Szymanski, B., & Rensselaer Polytechnic Institute, 2006).

 23

Table 3. Scalability of SENSE

Number of nodes Time taken to execute
the program in minutes

Result

 110 (default value) 5 Pass

 500 35 Pass

1000 More than 180 Fail

Table 3 summarizes the findings of an experiment conducted to test the
scalability of SENSE. SENSE could not scale more than 1000 nodes. From the
above findings, it was concluded that even SENSE does not scale well.

Spamulator scales better than SENSE, up to a million nodes. Spamulator has a
very simple design and hence, Spamulator is selected as basis for WiSeNetor.

Modules from Spamulator that are reused

1. The connection infrastructure can be reused in WiSeNetor.
2. The part implementing scalability can also be reused.

Modules that need to be implemented

1. Network topology detection module.
2. Routing Algorithm: Routing is not an issue in Spamulator because the

Internet can be a collection of various networks with no specific topology.
Therefore, we need to design a routing algorithm for WiSeNetor.

3. Gateway: An intelligent unit which processes data sent by sensor nodes
and generates results.

 24

Architecture of WiSeNetor

WiSeNetor has two important modules:

1. Network Creation Module: The network creation module spawns a network

with user specified parameters like number of clusters, number of routers and
depth of a network. This module also creates data structures like routing
tables or neighbor tables.
The network creation module runs a shell script to initialize and start the
Spamulator.

2. Simulated Network Devices:
The simulated network devices have two parts, the server side part which is
part of Spamulator and the client side part which sits outside the Spamulator.
The reason for splitting this module in two parts is that the Spamulator closes
all the file descriptors and doesn‟t allow the server side to access the routing
or neighbor table (Aycock, 2007). When a message comes from one network
device to another network device, the Spamulator launches the server part of
the simulated network device. The server side, in turn, launches the client
part that processes this message. This module is also responsible for logging
messages to keep track of message delivery.

 Figure 7: Architecture of WiSeNetor

SPAMULATOR

(LNS)

SIMULATED

NETWORK DEVICES

CLIENT

PROGRAMS

ROUTING

TABLES

LOG

FILES

NETWORK

CREATION

MODULE

 25

IMPLEMENTATION

Operating System

Spamulator has been used as the foundation for WiSeNetor. Spamulator runs on
Scientific Linux but scripts have been created which can be used to run the
Spamulator on Ubuntu (A Linux based operating system) as well. Therefore,
WiSeNetor uses Ubuntu (version 8.10) to be compatible with the Spamulator.

Programming language and scripting language
The server programs, client programs and the network creation modules have
been implemented in C/C++ programming languages. Shell script has been used
to initiate the Spamulator which includes creation of Ip tables, described below.

IP Tables
Iptables allow Linux administrators to shield the operating system from unwanted
applications or clients. At the kernel level, the IP packets are inspected before
they are forwarded to the destined application. In order to be able to make the
decision to forward or drop packets, the kernel software needs to be
appropriately configured. In Linux, the iptables configuration file located at

/etc/sysconfig/iptables can be modified to get the desired behavior.

Certain iptables commands can be used to configure the iptables to behave in a
certain way. User needs to specify the type of packets (tcp or udp), source and
the destination address of the packet and target that specifies what action can be
taken on packets that match the specified criteria. Before the Loopback Network
Simulator could run, there need to be rules in the OUTPUT chain of iptables'
"mangle" table to redirect all packets destined to simulated subnets and all
responses from them to the iptables QUEUE target. Also, the "ip_queue" module
must be loaded. For more information on iptables, please refer (Boucher, M.,
Josefsson, M., Kadlecsik, J., McHardy, P., Morris, J., Welte, H., & Russell).

Modules implementing various network topologies

The WiSeNetor implements three kinds of networks, cluster, cluster tree and
mesh networks.

1. Cluster Network

Components:

Components of cluster network include one PAN coordinator and multiple
network devices including parent nodes and child nodes.

Creation of cluster network:

 26

The network creation module spawns a cluster network according to the
user specified inputs. For cluster network, there is only one cluster in the
network and the PAN coordinator, therefore, is the cluster head and also
responsible for maintenance of the network. This module mangles the
iptables for specified address range.

The network creation module also creates routing table for every network
device in the network. Every routing table contains entries for a node‟s
parent node and its children and grandchildren. If a node is a leaf node,
the routing table contains only one entry for its parent node. Every entry
consists of the IP address of a child node or grandchild node and the IP
address of parent of the given child node or grandchild node.

Following algorithm depicts how the cluster network is created
1. Enter type of protocol to simulate. For status update enter „1‟ and for

routing, enter „2‟.
option  {1,2}

2. Create copies of server and client programs.
3. For the given depth (num_iter)

a. Create a routing table for given network device (parent node or
leaf node)

b. First entry in routing table is for the IP address of network
device‟s parent node

Routing File ”P” IP address of parent node

c. If network device is a parent node,

Routing Table  IP address of its child or grandchild
Routing Table  IP address of parent of child or grandchild

d. Increment counter for ip address and increment counter for port
number.

4. Close all open files and stop.

Every network device in the cluster network has two parts, one part
(server part) that handles incoming requests from other network devices
and other part (client part) that processes these requests and creates
response messages and sends them to other network devices.

When a server starts, all its file descriptors are closed except for the
standard output, which is a pipe connecting to the Spamulator. The server
must begin its operation by preparing to listen for a TCP connection, and
sending the port number it will listen at to the Spamulator on standard
output – write this as a two-byte number in network byte order. When a
server exits, the Spamulator is notified by closing standard output [1].

 27

The server or a node needs to record messages coming from its
neighboring node. The LNS or loopback network simulator does not permit
the server to write to a file. One solution to this problem is to use the

system() function call which invokes a command processor to execute

command. First step is to create a file with an appropriate name to avoid
race conditions using the “touch filename” command. The string “touch

filename” is passed as an argument to system() function call and after

the command execution, the processor gives the control back to the
program. Second step – use “echo” command to append messages to the
file created in the first step. In this manner, messages can be recorded by
a node.

In this module, the status update protocol and routing protocol have been
implemented. The PAN coordinator initiates the status update protocol in
order to keep track of newly added nodes or even missing broken links.
The PAN coordinator sends a “SU” (status update) message to its
immediate children. These child nodes, in turn, forward this message to
their direct child nodes. This process continues until all the leaf nodes in
the cluster network have been reached. Once the leaf nodes get the “SU”
message from their parents, they send a status update response
message, “SUR ip_address”, which also contains their ip address, to their
parent nodes. The parent nodes forward this message until the PAN
coordinator has been reached. In this way, the PAN gets a list of existing
nodes in the network.

 28

Following flowchart depicts the working of status update protocol (server
part)

Figure 8: Status Update Protocol at server side

Set up a listen

socket

Write port number to

STDOUT and

initialize Spamulator

Accept connection

from a client

Check

message type

SU SUR

Invoke client

program to

process request

Log

address of

node from

which

message

was

received

 Log File

 Stop

 29

 Figure 9: Status Update at client side

Open Routing

table and check if

child nodes exist

Is it a leaf

node?

No

Yes

Immediate

child?

Scan through list

of child nodes

Routing

Table

Send SU

message to

immediate

child

Yes

No

Form a SUR

message and

send to the

parent node

 Stop

 30

Routing in cluster network:

User can specify the source node and the destination node IP address in the
route. The Spamulator invokes executable for the user specified source node.
The source node checks for the destination IP address in its routing table and
if it finds an entry in the routing table, it sends the message to the destination
node. If an entry is not found in the routing table, it sends the request to its
parent node. This process of searching for the destination node continues
until it has been reached. The routing message starts with a “*” which means
it is a routing request and it is followed by the ip address of the destination
node. An example of a routing message would look like, “* 10.0.0.1
message”.

Following flowchart depicts working of module that implements routing
protocol in cluster network

 31

 Figure 10: Working of routing protocol at server side

Set up a listen

socket

Write port

number to

STDOUT to start

Spamulator

Accept

connection from

other node

Is this the

destination

node?

No

Yes

Log message and

exit

Invoke client part to

process the request

 Stop

 32

 Figure 11: Working of routing protocol at client side

2. Cluster Tree Network

User can specify multiple clusters in order to spawn a cluster tree network.
There is one PAN coordinator which acts as a parent to all the cluster
heads. The first octet of the ip address denotes the cluster id. The PAN
coordinator acts as a hub in order to send a routing message from one
cluster to another.
The cluster-tree network reuses all the modules in cluster network
topology. Status Update protocol and routing protocol in the cluster-tree
network are similar in functionality as that of cluster network protocol.

Search for destination in

routing table
Routing

Table

Destination

found?

Yes

No

Send

message to

the

destination

node

Send message to the

child node

 Stop

 33

3. Mesh network

Network creation module

The network creation module spawns a mesh network according to the
user specified inputs. It also mangles the iptables for specified address
range.

The network creation module also creates neighbor table for every
network device in a cluster, in the network. As many clusters as desired
can be simulated by simply adding a rule in the iptables. Every neighbor
table contains entries for the devices or nodes it is connected to. Every
entry consists of the type of device (FFD or router denoted as R and end
device or RFD as E) and the ipaddress along with the port number (for
example, 1.0.0.1:9154).

Following is the algorithm for spawning a mesh network

1. Enter number of clusters(n) and depth for each cluster(d)

2. n represents the cluster id for any given cluster

a. 1st octet of every cluster represents cluster id

3. while n, for every cluster and for given depth (d),
maximum number of devices in cluster is 765
a. compute IP address and port number for network device

if last octet of IP address gets count > 255
 start utilizing 3rd octet
if 3rd octet of IP address gets count > 255
 start utilizing 2nd octet
if 2nd octet of IP address gets count > 255
 stop adding any more devices to the cluster

b. create a neighbor file for the network device
if (network device is a router (R))

Neighbor file  IP address of parent node

 Neighbor file  IP addresses of child nodes

 else if(network device is an end device (E))

Neighbor file  IP address of parent node

 34

c. create an executable copy of client program and a server
program for the network device

d. connect neighboring nodes
Neighbor file IP address of left neighbor
Neighbor file  IP address of right neighbor

a. increment counter for port number and ip address

 . 4. Close all the open files and exit

Every network device in the mesh network has two parts, one part (server part)
that handles incoming requests from other network devices and other part (client
part) that processes these requests and creates response messages and sends
them to other network devices.

Routing in mesh topology is on the lines of Zigbee‟s mesh topology. A message
can be routed from a source node (FFD or RFD) to any destination node (FFD or
RFD).

If a device finds that there is no entry for the specified destination device, then it
initiates a route discovery process. It sends a route request or RREQ message to
all the routers or FFDs present in its neighbor file. The RREQ message frame
consists of the message identifier, source node IP address, destination node IP
address, sender‟s IP address. The frame looks like below:

RREQ Msg ID Src IP Dest IP Sender IP
Figure 12: RREQ message frame in WiSeNetor

The route discovery table consists of message Identifier, source node IP address
and destination node IP address. The route discovery process continues through
one or several hops until the destination is reached. The destination device
sends an RREP or a route response message to the sender node recorded in the
route discovery process. A RREP message consists of fields like destination
node IP address and source node IP address.

RREP Destination IP Source IP
Figure 13: RREP message frame in WiSeNetor

Every intermediate node creates a routing table for the specified destination
node. Every entry in the routing table consists of destination IP address and the
next hop node IP address. This process of forwarding the RREP message
continues until the source node has been reached.

If a device finds an entry in the routing table, it sends a RTE message to the next
hop address in the routing table and does not initiate a route discovery process.
The RTE message frame looks like below:

 35

RTE Message

 Figure 14: RTE message frame in WiSeNetor

 36

Following flowchart depicts working of the server program

 Figure 15: Working of Mesh Server Program

Set up a socket to

listen

Send port number

to Spamulator at

STDOUT

Accept a

connection

Valid

incoming

request

Yes

No

RREQ RREP RTE

 A C B

 Stop

 37

 Figure 16: Sub process that handles RREQ request

 A

Is this the

destination

node?

Create RREP

message

No

 Yes

Invoke client

program to process

the request.

 Stop

 38

 Figure 17: Sub process that handles RREP request

 B

Create routing

table entry

Route

discovery

process

completed?

 Stop

Replace sender

address with current

node address in

RREP message

Yes

 No

Invoke client program

to handle RREP

message

 Stop

 39

 Figure 18: Sub process that handles RTE message

 C

Invoke client

program to handle

RTE message

 Stop

 40

Following flowchart depicts how the mesh client handles various requests like
RREQ, RREP and RTE.

 Figure 19: Handling of RREQ message by mesh client program

Check if

routing table

entry exists

already

Yes
Forward RTE

message to

next hop

address

No

Check if route

discovery

entry exists

No
Create a route

discovery entry

(id, source,

sender) in

route discovery

table

Yes

Reconstruct RREQ

frame with sender

address as current

node address

Send RREQ message

to all neighboring

routers.

 Stop

 41

 Figure 20: Handling of RREP message by mesh client program

Extract sender of

this RREQ message
Route

Discovery File

Send RREP message

to the sender of

RREQ message.

 Stop

Extract next hop

address in path to

specified

destination address

Routing

Table

Send message to

next hop address

 Stop

 42

Simulation Results

Mesh network was tested for scalability and correctness of routing for a given
message. There is one PAN coordinator per network and its fixed IP address is
60.0.0.0. There can be multiple clusters and every cluster has a cluster head.
These cluster heads are direct children of the PAN coordinator. There are
maximum routers per node and end devices per node. Mesh network can
support up to 15,000 nodes in a network.

Following graph shows time elapsed to spawn a mesh network versus number of
nodes in the mesh network. Time elapsed in spawning a network is directly
proportional to number of nodes in mesh network. Time required in spawning a
mesh network increases as the number of nodes increases.

0

1000

2000

3000

4000

5000

6000

7000

8000

16
00

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

Number of nodes

T
im

e
 e

la
p

s
e
d

 i
n

 s

Mesh Network

Figure 22: Time elapsed in spawning mesh network Vs number of nodes

 43

Following are sample test results for input parameters entered by the user.

Number of clusters: 3

Cluster Head for cluster#1: 1.0.0.0

Cluster Head for cluster#2: 2.0.0.0

Cluster Head for cluster#3: 3.0.0.0

Depth of cluster#1: 20

Depth of cluster#2: 20

Depth of cluster#3: 20

Total number of nodes in network: 2296

At this point, the network is spawned and neighbor table for every node is
created. Following table depicts neighbor table for cluster head 1.0.0.130. First
column depicts device type of neighboring device and second column depicts IP
address of neighboring device and its port number.

R 1.0.0.127:9279

E 1.0.0.131:9283

E 1.0.0.132:9284

R 1.0.0.133:9285

R 1.0.0.187:9339

R 1.0.0.73:9225

Send message from Node: 1.0.0.130 (Router)
Send message to Node: 3.0.0.102 (End device)

Log files are created for every node which helps the user in tracking the progress
of routing in the network. Following is a sample log file for source node and
destination file.

RREQ 1 3.0.0.102 1.0.0.130 1.0.0.130:9282
RREQ
Contents of log file created by source device 1.0.0.130

Invoking send rreq

I am in send rreq

Message: RREQ 13.0.0.102 1.0.0.130 1.0.0.130:9282

Invoking send rrep

I am in RREP

RREP 3.0.0.102 1.0.0.130 1.0.0.127:9279

1.0.0.130 9282 RREQ 1 3.0.0.102 1.0.0.130

1.0.0.130:9282

 44

RTE filename: /home/gauri/meshfiles/1.0.0.130rte.txt

No routing table for this node

Sending message to 1.0.0.127:9279 sender1.0.0.130:9282

NEW cmd frame in RREQ RREQ 1 3.0.0.102 1.0.0.130

1.0.0.130:9282

Sending message to 1.0.0.131:9283 sender1.0.0.130:9282

NEW cmd frame in RREQ RREQ 1 3.0.0.102 1.0.0.130

1.0.0.130:9282

Sending message to 1.0.0.132:9284 sender1.0.0.130:9282

NEW cmd frame in RREQ RREQ 1 3.0.0.102 1.0.0.130

1.0.0.130:9282

Sending message to 1.0.0.133:9285 sender1.0.0.130:9282

NEW cmd frame in RREQ RREQ 1 3.0.0.102 1.0.0.130

1.0.0.130:9282

Sending message to 1.0.0.187:9339 sender1.0.0.130:9282

NEW cmd frame in RREQ RREQ 1 3.0.0.102 1.0.0.130

1.0.0.130:9282

Sending message to 1.0.0.73:9225 sender1.0.0.130:9282

NEW cmd frame in RREQ RREQ 1 3.0.0.102 1.0.0.130

1.0.0.130:9282

Also, route discovery table (if a routing table entry for destination does not exist)
is created by every device that falls on the route to the destination.
Following is a route discovery table entry (message id, source, sender) created
by the source device, 1.0.0.130.

1 1.0.0.130 1.0.0.130:9282

Following is the route discovery table entry created by the destination device.

1 1.0.0.130 3.0.0.100:9822

After the route discovery process is completed, routing table entry (destination,
next hop) for the destination device is created by every device in the route.
Following is the routing table entry created by the source device 1.0.0.130.

3.0.0.102 1.0.0.127:9279

Contents of log file created by destination device, 3.0.0.102

RREQ 1 3.0.0.102 1.0.0.130 3.0.0.100:9822

Invoking send req

I am in send rreq

Message: RREQ13.0.0.1021.0.0.1303.0.0.100:9822

Destination reached 3.0.0.102

 45

Validation of WiSeNetor

Bangkok, Thailand faces the problem of traffic jams. An inter vehicle
communication system that provides real-time road information was proposed to
mitigate this problem of traffic jams. The proposed system uses several base
stations along the roads and treats cars as nodes in a wireless system.
Performance of several wireless systems including Zigbee for inter vehicle
communication has been studied in (Eamsomboon,P., Keeratiwintakorn,P., &
Mitrpant, C , 2008). The experiment uses real map of busiest section of the city
as the topology, which is mesh topology, and AODV as the routing protocol.

In this section, we compare the performance of WiSeNetor and Zigbee used in
vehicles in Bangkok metropolitan area as we increase the number of nodes.
Performance is in terms of end-to-end delay of a message and average number
of hops.

end-to-end delay = received packet timestamp –
sent packet timestamp

0

1

2

3

4

5

100 200 300 400 500 600

Number of nodes

T
im

e
 e

la
p

s
e
d

 i
n

 s

WiSeNetor

Inter Vehicle

Communication

System

Figure 23: End-to-End delay for increasing number of nodes

Figure 23 depicts the end-to-end delay for a message in WiSeNetor and in the
inter vehicle communication system. It can be seen that the end-to-end delay
increases as the number of nodes in the network increases. The increase in the
end-to-end delay is not drastic though. Each test case was run one hundred
times and time elapsed was recorded. Figure 23 depicts average time elapsed in
seconds for given test case.

 46

0

2

4

6

8

10

12

14

100 200 300 400 500

Number of Nodes

N
u

m
b

e
r

o
f

h
o

p
s WiSeNetor

Inter Vehicle

Communicatio

n System

Figure 24: Number of hops as number of nodes increases

Figure 24 depicts the number of hops as number of nodes increases in the
network. Each test case was run 100 times and average number of hops was
recorded. Figure 24 depicts the average number of hops for given test case. The
figure shows that the number of hops increases drastically as the number of
nodes increases. This is also true in real-world Zigbee systems because of the
short range communication in the network.

This experiment validates the WiSeNetor and the results obtained are in
accordance with the results obtained in the inter vehicle communication system.

 47

Conclusion
WiSeNetor will prove to be a good teaching tool or a research tool. WiSeNetor
simulates a scalable wireless sensor network with cluster tree and mesh
topologies successfully. The simulator was able to support up to 15,000 nodes in
the wireless sensor network. Routing of messages in cluster tree topology was
done successfully in accordance with IEEE 802.15.4 specification and in mesh
network the Zigbee routing protocol was used. It was found that end to end delay
for any message through a cluster tree network was more than that of the mesh
network. Therefore, it can be concluded that the cluster tree topology may be
used as a backup mechanism in case the mesh network fails due to some
reason. Simulation results of WiSeNetor matched the simulation results specified
in (Eamsomboon,P, 2008) which validates the WiSeNetor.

Wireless sensor network is an upcoming technology and many companies have
successfully deployed these networks in various domains. Meshnetics with
Zigbee have deployed a wireless sensor network to reduce the energy
consumption by 37% in the building automation domain (Zigbee Alliance,
Success Stories). EpiSensor with Zigbee have deployed a Zigbee network in the
Antarctic to facilitate climate change research.

Future Work
In this project, a scalable wireless sensor network with cluster tree topology and
mesh topology were successfully implemented. The mesh network routing
protocol was implemented according to the Zigbee specification. Zigbee
specification also describes about the security architecture for wireless mesh
networks. Therefore, WiSeNetor may be used as a foundation for building the
security infrastructure. Various attacks on the security of a wireless mesh
network may be simulated and counter measures to avoid those attacks may
also be simulated.

 48

References

Eamsomboon,P., Keeratiwintakorn,P., & Mitrpant, C (October 24, 2008) .

The Performance of Wi-Fi and Zigbee Networks for Inter-Vehicle
Communication in Bangkok Metropolian area.

 ITS Telecommunications, 2008.
 doi: 10.1109/ITST.2008.4740296

Wikimedia Foundation, Inc. (October 17, 2004). Wireless Sensor Networks.
 http://en.wikipedia.org/wiki/Wireless_Sensor_Networks

Hill, J.L. (2004), System Architecture for wireless sensor network.
 In Proceedings of the 2004 Americas Conference on Information
 Systems.

 http://www.eecs.harvard.edu/~mdw/course/cs263/papers/jhill-thesis.pdf

Picture for Environmental data collection system (2007). Retrieved from
 http://blog.xbow.com/photos/uncategorized/2007/10/18/nodedeployment_2.jpg

Aycock, J., Crawford, H., & deGraaf, R. (2008), Spamulator: The Internet on a
 Laptop. Annual Joint Conference Integrating Technology into Computer
 Science Education, 142-147.
 doi: http://doi.acm.org/10.1145/1384271.1384311

Gutierrez, J.A., Callaway, E., & Barrett, R. (2003),
 IEEE 802.15.4 Low-Rate Wireless Personal Area Networks: Enabling
 Wireless Sensor Networks. Institute of Electrical & Electronics Engineering

Zigbee Alliance (January 17, 2008)
 Zigbee Specification

Lisee, M., Chen, G., Szymanski, B., & Rensselaer Polytechnic Institute. (2006)
 SENSE: Sensor Network Simulator and Emulator
 http://www.ita.cs.rpi.edu/sense/index.html

Source Forge, Network Simulator
 http://sourceforge.net/projects/nsnam/

Aycock, J., University of Calgary. (October 9, 2007),

http://en.wikipedia.org/wiki/Wireless_Sensor_Networks
http://www.eecs.harvard.edu/~mdw/course/cs263/papers/jhill-thesis.pdf
http://blog.xbow.com/photos/uncategorized/2007/10/18/nodedeployment_2.jpg
http://doi.acm.org/10.1145/1384271.1384311
http://www.ita.cs.rpi.edu/sense/index.html
http://sourceforge.net/projects/nsnam/

 49

Writing Spamulator Extensions
 Unpublished documentation

Boucher, M., Josefsson, M., Kadlecsik, J., McHardy, P., Morris, J., Welte, H., &
Russell.
Iptables(8) Linux man page
http://linux.die.net/man/8/iptables

Zigbee Alliance, Success Stories
http://www.zigbee.org/Markets/SuccessStories/tabid/228/Default.aspx

http://www.sensorsmag.com/articles/0203/38/main.shtml

http://www.sensorsmag.com/sensors/Feature+Articles/What-a-Mesh-Part-
2mdashNetworking-Architectures-
an/ArticleStandard/Article/detail/575800?contextCategoryId=34388

http://linux.die.net/man/8/iptables
http://www.zigbee.org/Markets/SuccessStories/tabid/228/Default.aspx
http://www.sensorsmag.com/articles/0203/38/main.shtml
http://www.sensorsmag.com/sensors/Feature+Articles/What-a-Mesh-Part-2mdashNetworking-Architectures-an/ArticleStandard/Article/detail/575800?contextCategoryId=34388
http://www.sensorsmag.com/sensors/Feature+Articles/What-a-Mesh-Part-2mdashNetworking-Architectures-an/ArticleStandard/Article/detail/575800?contextCategoryId=34388
http://www.sensorsmag.com/sensors/Feature+Articles/What-a-Mesh-Part-2mdashNetworking-Architectures-an/ArticleStandard/Article/detail/575800?contextCategoryId=34388

 50

Appendix A
Appendix A describes the main code snippets from the WiSeNetor software. This
appendix includes code snippet from the server and client programs for both, the
mesh network and the cluster tree network.

1. Code snippet for server in a mesh network: This code snippet depicts the
overall working of the server program. It sets up a connection to
communicate with the client, parses the command frame from the
incoming request and then invokes appropriate function to handle the
incoming request. Incoming requests can be RREP, RREQ and RTE.

// Set up socket to listen at

 sock = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 int on = 1;

 int ret = setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

 listen(sock, 5);

 // Send port number to Spamulator

 socklen_t len = sizeof(sin);

 getsockname(sock, (sockaddr*)&sin, &len);

 port = sin.sin_port;

 write(STDOUT_FILENO, &port, sizeof(port));

 // Finally, accept the connection

 clilen = sizeof(cli_addr);

 conn = accept(sock, NULL,NULL);

 if(conn < 0)

 {

 exit(0);

 }

 // create a log file to dump messages from the client

 string addr = argv[1];

 string filename= "/home/gauri/logmessages/"+addr+"out.txt";

 string cmd = "touch "+filename;

 system(cmd.c_str());

 time(&seconds);

 srand((unsigned int) seconds);

 // Now talking to client....

 while(1)

 {

 // write data recieved from client

 fflush(stdout);

 bzero(recv_data,1024);

 read(conn,recv_data,1023);

 if(recv_data[0]=='R' && recv_data[1]=='R' && recv_data[2]=='E')

 {

 rdata = recv_data;

 cmd = "echo " + rdata + ">>" +filename;

 system(cmd.c_str());

 size_t loc;

 51

 loc=rdata.find_first_of(" ");

 string msg = rdata.substr(0,loc) ;

 cmd = "echo " + msg + ">>" +filename;

 system(cmd.c_str());

 if(msg.compare("RREQ") == 0)

 {

 cmd = "echo Invoking send req >>" +filename;

 system(cmd.c_str());

 send_rreq(recv_data,argv[1],argv[2]);

 sent = 1;

 }

 if(msg.compare("RREP") == 0)

 {

 cmd = "echo Invoking send rrep >>" +filename;

 system(cmd.c_str());

 send_rrep(recv_data,argv[1],argv[2]);

 sent = 1;

 }

 }

 if(recv_data[0]=='R' && recv_data[1]=='T' && recv_data[2]=='E')

 {

 rdata = recv_data;

 /* extract destination address */

 size_t loc;

 loc=rdata.find_last_of(" ");

 string cframe = rdata.substr(0,loc) ;

 string dest = rdata.substr(loc+1) ;

 if(dest.compare(addr)==0)

 {

 cmd = "echo Destination Reached >>" +filename;

 system(cmd.c_str());

 exit(1);

 }

 cmd = "echo Invoking send RTE >>" +filename;

 system(cmd.c_str());

 send_rte(recv_data,argv[1],argv[2]);

 sent = 1;

 }

 if(sent == 1)

 break;

 }//end of outer while

 close(conn);

 shutdown(conn, 2);

2. Code snippet for client program

The server program invokes the client program to handle every incoming
request. The client program runs as a separate process. If an entry is not
found in the routing table for given destination, a route discovery entry is
made and the message is forwarded to the neighboring nodes. Following
is the code snippet from the main function which depicts the overall
functioning of the client.

 /* check command type : RREQ or RREP */

 int ret = chech_cmd_type(argv3);

 if(ret == 1)// RREQ

 52

 {

 sent = 0;

 string destination = find_destination(argv3);

int retval = find_routingtable_entry(destination,argv[1],argv1);

if(retval == 1)

 {

 return 0;

 }

/* create route discovery entry if not present */

 int is_present = create_discovery_entry(argv1,argv3);

if(is_present == 1)//if already present do not

broadcast message again

 {

 string log = "echo create discovery returned 1

>>" + logfile;

 system(log.c_str());

 return 0;

 }

/* if not found, send RREQ(id,dest,src) to neighbors */

 /* open file to check for neighbors */

 ifstream myfile (rbuffer);

 if (myfile.is_open())

 {

 while (getline (myfile,line) != NULL)

 {

if ((devtype.compare("R") == 0) ||

(destination.compare(addrpart) == 0))

 {

 // log message and send message to child node

cmd = "echo Sending message to "+addr+">>"+logfile;

 system(cmd.c_str());

 len = addrpart.length();

 memset(srvr, '\0', BUFFER_MAX);

 addrpart.copy(srvr, len);

 //reconstruct command frame with new

sender address

string newframe = cmdfr + " " + argv1 +

":" + argv2;

 cmd = "echo NEW cmd frame in RREQ

"+newframe+">>"+logfile;

 system(cmd.c_str());

 len = newframe.length();

 memset(cmdframe, '\0', 100);

 newframe.copy(cmdframe, len);

 /* call sendmessage routine to broadcast the route

discovery message to neighbors */

 send_message(srvr,port,cmdframe);

 }

 }

 }//end of while

 myfile.close();

 53

 }//end of outermost if

 }//end of if ret == 1 i.e. RREQ

else if(ret == 2)//RREP

 {

 string cmd = "echo Sending RREP message >>"+logfile;

 system(cmd.c_str());

 send_rrep(argv1,argv3,argv[3],logfile);

 }

 else if(ret == 3)//RTE

 {

 string cmd = "echo Sending RTE message >>"+logfile;

 system(cmd.c_str());

 string destination = find_destination(argv3);

 /* if not found, send RREQ(id,dest,src) to neighbors */

 int present =

find_routingtable_entry(destination,argv[1],argv1);

 if(present == 1)

 {

 cmd = "echo RTE message realyed >>"+logfile;

 system(cmd.c_str());

 }

 }

3. The following code snippet is used to spawn a mesh network. This
program creates nodes in the network by assigning an IP address, a port
number and a device type to them. This program also creates a neighbor
table for every node , which is a list of other nodes that a node is
connected to.

 pan_file.open(pan,ios::app);
 if(pan_file.is_open())

 {

 for (k=0;(k<MAX_ROUTERS) && (count<= 765);k++) // number of immi. children

to PAN (here 10)

 {

 //neighbor[k][0] = cnum + ".0.0.0:" + pport;

 for (i=1;(i<depth[d]) && (count <= 765);i++)//number of levels in

the cluster

 {

 if((count == 256) || (count == 511))

 {

 //restart counter

 cnt = 0;

 }

 if(count == 765)

 {

 cout<<"*******Network cannot add any more

nodes"<<endl;

 }

 sprintf(ct,"%d",cnt) ;

 sct = ct;

 54

 port_num++;

 sprintf(pport,"%d",port_num);

 if(count <= 255)

 {

 parents[i] = cnum + ".0.0." + sct + ":" + pport;

 neighbor[k][i] = cnum + ".0.0." + sct + ":" + pport;

 client = cnum + ".0.0." + sct;

 }

 if((count > 255) && (count <=510))

 {

 parents[i] = cnum + ".0." + sct + ".255:" + pport;

 neighbor[k][i] = cnum + ".0." + sct + ".255:" +

pport;

 client = cnum + ".0." + sct + ".255";

 }

 if((count > 510) && (count <= 765))

 {

 parents[i] = cnum + "." + sct + ".255.255:" + pport;

 neighbor[k][i] = cnum + "." + sct + ".255.255:" +

pport;

 client = cnum + "." + sct + ".255.255";

 }

 //convert client from string type to char array

 string::size_type len = client.length();

 memset(clientarray,'\0',20);

 client.copy(clientarray,len);

 bzero(pfilename,50);

 strcpy(pfilename,"meshrouting/");

 strcat(pfilename,clientarray);

 strcat(pfilename,".txt");

 compileprograms(parents[i],client);

 count++;

 cnt++;

 myfile[i].open (pfilename,ios::app);

 if(myfile[i].is_open())

 {

 myfile[i]<<"R "<<parents[i-1]<<endl;

 myfile[i-1]<<"R "<<parents[i]<<endl;

 if(i == 1)

 pan_file<<"R " <<parents[1]<<endl;

 for(j=0;(j<2) && (count <= 765);j++)//number of

children each parent has

 {

 if((count == 256) || (count == 511))

 {

 //restart counter

 cnt = 0;

 }

 if(count == 765)

 {

 cout<<"*******Network cannot add any

more nodes"<<endl;

 //return 0;

 }

 sprintf(ct,"%d",cnt) ;

 sct = ct;

 55

 port_num++;

 sprintf(pport,"%d",port_num);

 if(count <= 255)

 {

 child_ip = cnum + ".0.0." + sct +

":" + pport;

 client = cnum + ".0.0." + sct;

 }

 if((count > 255) && (count <=510))

 {

child_ip = cnum + ".0." + sct +

".255:" + pport;

 client = cnum + ".0." + sct + ".255";

 }

 if((count > 510) && (count <= 765))

 {

child_ip = cnum + "." + sct +

".255.255:" + pport;

client = cnum + "." + sct +

".255.255";

 }

 //cskip = calculate_cskip(i+1);

 //convert client from string type to char

array

 string::size_type len = client.length();

 memset(clientarray,'\0',20);

 client.copy(clientarray,len);

 bzero(filename,50);

 strcpy(filename,"meshrouting/");

 strcat(filename,clientarray);

 strcat(filename,".txt");

 ofstream childfile(filename,ios::app);

 if (childfile.is_open())

 {

 childfile << "R "<<parents[i]<<endl;

 compileprograms(child_ip,client);

 myfile[i] << "E "<<child_ip<<endl;

 }

 childfile.close();

 count++;

 cnt++;

 }

 }

 else

 {

 cout<< "can't open file"<<endl;

 exit(1);

 }

 n=0;

 }//end of for(i=0 ...

 for(i=0;i<depth[d];i++)

 myfile[i].close();

 }//end of for(k=0 ...

 /* Connect neighbors */

 connect_neighbors(neighbor,depth[d]);

 }//end of pan file open

 56

 pan_file.close();

 }//end of for (d=0 ...

 connect_clusters(clusters,number);

4. The following code snippet is from the server program that handles
incoming routing request in a cluster tree network. A valid routing request
starts with a delimiter „*‟. Upon receipt of a valid incoming routing request,
a client program is invoked to handle it.

// Set up socket to listen at

 sock = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 int on = 1;

 int ret = setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

 listen(sock, 5);

 // Send port number to Spamulator

 socklen_t len = sizeof(sin);

 getsockname(sock, (sockaddr*)&sin, &len);

 port = sin.sin_port;

 write(STDOUT_FILENO, &port, sizeof(port));

 // Finally, accept the connection

 conn = accept(sock, NULL, NULL);

 write(conn,recv_data,sizeof(recv_data));

 time(&seconds);

 srand((unsigned int) seconds);

 // Now talking to client....

 while(1)

 {

 sent = 0;

 // write data recieved from client

 read(conn,recv_data,40);

 write(conn,recv_data,sizeof(recv_data));

 //check the delim - "*"

 if(recv_data[0] == '*')

 {

 char * ptr;

 //check if destination has been reached

 if(strcmp(argvs[1],argv[1]) == 0)

 {

 cmd = "echo Destination Reached: "+ addr + ">>" +

filename;

 system(cmd.c_str());

 sent = 1;

 break;

 }

 char *execargs[] = { (char*)filename2,

(char*)argv[1],(char*)argv[2], (char*)argvs[1], (char*)argvs[2],NULL};

 57

 pid_t pid;

 int status;

 if ((pid = fork()) < 0)

 { /* fork a child process */

 exit(1);

 }

 else if (pid == 0)

 { /* for the child process: */

 if (execvp((const char *)filename2,execargs) < 0)

 { /* execute the command */

 exit(1);

 }

 }

 else

 { /* for the parent: */

 while (wait(&status) != pid) /* wait for completion

*/

 ;

 }

 //int ret = execvp((const char *)filename2,execargs);

5. This code snippet is from the client program invoked by the server

handling routing requests in a cluster tree network. If the node is present
in the routing table, the message is sent down the tree, otherwise the
message is sent to the parent node. This continues until the destination
node is reached.

// myfile points to routing table for this node

if (myfile.is_open())

 {

 while (! myfile.eof())

 {

 getline (myfile,line);

 // extract IP address and port number of child and parent

nodes

. . . .

 //store address of parent node ... will need in case dest

is not present

 if(addr_child.compare("P")== 0)

 {

 parentnodeaddr = addrpart;

 parentnodeport = port;

 }

 string totaladdr = argv3 + ":" + argv4;

 if((addr_child.compare("P")!=0) &&

(addr_child.compare("N")!=0))

 {

 //check if destination is present in the routing

table if present, send message

 if(totaladdr.compare(addr_child) == 0)

 {

 cmd1 = "echo Destination found in routing

table >>"+logfile;

 system(cmd1.c_str());

 // log message and send message to child

node

 string cmd = "echo Sending message to

"+addr_child+">>"+logfile;

 58

 system(cmd.c_str());

 len = addrpart.length();

 memset(srvr, '\0', BUFFER_MAX);

 addrpart.copy(srvr, len);

 send_message(srvr,port,argv[3],argv[4]);

 sent = 1;

 }//end of outer if

 }//end of while

 if(sent !=1)

 {

 //send message to parent node

 len = parentnodeaddr.length();

 memset(srvr, '\0', BUFFER_MAX);

 parentnodeaddr.copy(srvr, len);

 send_message(srvr,parentnodeport,argv[3],argv[4]);

 string cmd = "echo Sending message to parent:

"+parentnodeaddr+">>"+logfile;

 system(cmd.c_str());

 }

 myfile.close();

 }//end of outermost if

	WiSeNetor: A Scalable Wireless Sensor Network Simulator
	Recommended Citation

	Wireless sensor network

