San Jose State University

SJSU ScholarWorks

Faculty Publications, Meteorology and Climate Science

Meteorology and Climate Science

July 2014

Hemispheric Comparison of Cirrus Cloud Evolution Using in Situ Measurements in HIAPER Pole-to-Pole Observations

Minghui Diao National Center for Atmospheric Research, minghui.diao@sjsu.edu

Mark Zondlo Princeton University

Andrew Heymsfield National Center for Atmospheric Research

Stuart Beaton National Center for Atmospheric Research

Follow this and additional works at: https://scholarworks.sjsu.edu/meteorology_pub

Part of the Climate Commons, and the Meteorology Commons

Recommended Citation

Minghui Diao, Mark Zondlo, Andrew Heymsfield, and Stuart Beaton. "Hemispheric Comparison of Cirrus Cloud Evolution Using in Situ Measurements in HIAPER Pole-to-Pole Observations" *Faculty Publications, Meteorology and Climate Science* (2014).

This Presentation is brought to you for free and open access by the Meteorology and Climate Science at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications, Meteorology and Climate Science by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

AMS Cloud physics - 234 Advanced Study Program NCAR

Hemispheric comparison of cirrus cloud evolution using

Cirrus cloud and ice supersaturation

Cirrus clouds have large but highly uncertain impacts on Earth's climate [Chen et al. 2000]. However, due to lack of datasets with both microscale resolution and global coverage, it is unclear if hemispheric differences exist in cirrus cloud microphysical properties and their evolution. Here we compare the time evolution of cirrus clouds' horizontal segments: ice crystal regions (ICRs) and ice supersaturated regions (ISSRs) at temperature (T) \leq - 40 °C and show different result with previous studies.

HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011)

Latitudinal: 87°N to 67°S **Vertical:** ~600 transects from surface to the upper troposphere and lower stratosphere (UT/LS) Resolution: ~200 m Duration: HIPPO ~400 hr Here HIPPO deployment #2 – 5 are used, with ice crystal measurements.

	1								
			HIPI	PO#1	Water	vapo	or disti	ibutio r	ו
		14000 -						- Flight Trac	k of GV –
		12000 -							-
		10000 -							
	tude (km)	8000	MA						Π
	Alti	6000 -							
		4000 -							
		2000 -							
		-60	-40	-20	Latitud	2 le (degrees	20 41 3)) 60	8
GV			Me	asur	emer	nt		Accu	racv
netrun		nte_							

Water vapor 6% (Zondlo et al., 2010) hygrometer Ice particle number 25-1600 µm density (Nc) and mean diameter (Dc)

Definitions of ice crystal regions (ICRs) and ice supersaturated regions (ISSRs)

GV

VCSEL

2-DC

ISSRs Phase 1: Clear-sky ISSRs ISSRs **Phase 2: Ice crystal nucleation Phase 3: Ice crystal early growth Phase 4: Ice crystal later growth Phase 5: Sedimentation/evaporation** one ISSR + ICR sample

<	– L _{ICR,}	1	<		ICR,2
	ICR	→ ISSR ← L _{ISSR,1}		ICR	
<					>

References:

[1] Diao, M., Zondlo, M. A., Heymsfield, and A. J., Beaton. Hemispheric comparison of cirrus cloud evolution using in situ measurements in HIAPER Pole-to-Pole Observations. Geophysical Research Letters, 41, 10.1002/2014GL059873, 2014.

[2] Diao, M., Zondlo, M. A., Heymsfield, A. J., Beaton, S. P. and Rogers, D. C.: Evolution of ice crystal regions on the microscale based on in situ observations, Geophysical Research Letters, 40, 3473-3478, doi:10.1002/grl.50665, 2013.

[3] Diao, M. Zondlo, M. A., Heymsfield, A. J., Avallone, L. M., Paige, M. E., Beaton, S. P., Campos, T. and Rogers, D. C. Cloud-scale ice supersaturated regions spatially correlate with high water vapor heterogeneities. Atmos. Chem. Phys. Discuss., 13, 22249–22296, 2013.

Percentage of each phases	NH	SH
Clear-sky ISS	28%	31%
Coexisting ISSR+ICR	11%	11%
Subsaturated ICRs	61%	58%
Comparable to prev	vious sim	nulations