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Abstract

The Web contains massive amount of documents from across the globe to the 

point where it has become impossible to classify them manually.  This project’s 

goal is to find a new method for clustering documents that are as close to humans’ 

classification as possible and at the same time to reduce the size of the 

documents.  This project uses a combination of Latent Semantic Indexing (LSI) 

with Singular Value Decomposition (SVD) calculation as well as Support Vector 

Machine (SVM) classification.  With SVD, data sets are decomposed and can be 

truncated to reduce the data sets size.  The reduced data set will then be used to 

cluster.  With SVM, clustered data set is used for training to allow new data to be 

classified based on SVM’s prediction.  The project’s result show that the method of 

combining SVD and SVM is able to reduce data size and classifies documents 

reasonably compared to humans’ classification.



Table of Contents

1. Introduction 1

2. Support Vector Machine 2

2.1 What SVM is Used For 2

2.2 Motivation for SVM 3

2.3 How SVM Works 4

2.3.1 Simple SVM Example 6

2.3.2 SVM is Not That Simple 10

2.4 LIBSVM: A Java Library for SVM 11

2.4.1 Choosing Parameter C 12

2.4.2  4 Basic Kernel Types 13

3. Data Preparation Using SVD 13

3.1 Singular Value Decomposition (SVD) 14

3.1.1 SVD Example 14

3.1.2 Checking the Results using SVM 18

3.2 Analysis of the Rank Approximation 22

4. The Project 23

4.1 Tf-idf 24

4.2 Using Larger Data Set 27

4.3 Result Analysis 27



5. Conclusion 29

5.1 Future Work 30

References 31

Appendix A: Program UML Diagram 33

Appendix B: Program Algorithms 34

Appendix C: Java Documentations 37

Appendix D: Content of Deliverables 41



List of Tables and Figures

Tables
Table 1. Simple Data in 1-Dimension 6
Table 2. Simple Data in 2-Dimension 7
Table 3. Calculation Results of Positive, Negative, and Hyperplane 9
Table 4. Results from SVM’s Prediction on Original Data 19
Table 5. Results from SVM’s Prediction on Reduced Data 20
Table 6. Cluster Results from Different Ranking Approximation 22
Table 7. LSI Matrix 24
Table 8. Results: Clustering with SVD vs. Humans Classification First 
Data Set 27
Table 9. Results: Clustering with SVD vs. Humans Classification 
Second Data Set 28

Figures
Figure 1. The Separating Problem 4
Figure 2. SVM Process Flow 5
Figure 3. SVM Convex Hulls 6
Figure 4.  Simple Data in an Input Space 7
Figure 5.  Simple Data in a Feature Space 8
Figure 6.  Simple Data in a Feature Space Separated by a Hyperplane 10
Figure 7.  Equation to Determine the Soft-Margin Hyperplane 11
Figure 8.  Parameter C Example 12
Figure 9. Truncated V Matrix on a Graph 21
Figure 10. Data Process Flow of the Project 26





1. Introduction

Ever since the World Wide Web has become popular, document clustering has 

become increasingly more important.  With billions of documents on the Web, it is 

impossible to classify all these documents by humans.  The challenge is to find a 

way to organize this massive data in some meaningful structure.  This project 

proposes a method that can cluster documents reasonably.

The project deals with clustering high dimensional data.  The data used are 

processed documents organized in a text file that contains category labels and 

term frequency–inverse document frequency (tf–idf) values.  Data sets used in the 

research are classified by humans and have been processed into tf-idf values.  By 

using human-classified data set, we can compare our clustering method with 

humans’ classification.  

The first few sections of the report discuss and analyze Support Vector Machine 

(SVM) and Latent Semantic Indexing (LSI).  This will allow the reader to 

understand how these methods are applied to the project.  The last few sections 

discuss the algorithms used and the analysis of the results after applying methods 

from previous sections.  
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2. Support Vector Machine

Vladimir Vapnik and his colleagues first introduced SVM in 1963.  Support Vector 

Machine (SVM) is a learning machine that uses supervised learning to perform 

data classification and regression (“Support vector machine,” 2006).  The meaning 

of supervised learning is learning from examples or from a teacher.  For instance, 

children learn to tell the difference between objects (e.g. dogs from cats, women 

from men, fruits from vegetables) by having those objects pointed out to them 

(Cristianini, N., & Shawe-Taylor, J., 2000).  Every time they see a new object, they 

can determine what it is by recognizing similarities from what they already know. 

They are in fact putting the new object in a category.  Supervised learning is the 

same.  In SVM, each line within the data set is given a label and SVM learns the 

data and puts the new data in the group that is closest to the learned data.

2.1 What SVM is Used For

SVM is primarily used for categorization.  Some examples of SVM usage include 

bioinformatics, signature/hand writing recognition, image and text classification, 

pattern recognition (Cristianini, N., & Shawe-Taylor, J., 2000), and e-mail spam 

categorization (Drucker, H., Wu, D., & Vapnik, V. N., 1999).  Many research 

documents such as the ones mentioned above have shown that SVM can classify 

reasonably well.  In this project, SVM is used for text classification. 
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Text classification is a method used to put text into meaningful groups.  Beside 

SVM, there are many other methods for text classification such as Bayes and k-

Nearest Neighbor.  Based on many research papers (Joachims, T., 1998), SVM 

outperforms many, if not all, popular methods for text classification.  The studies 

also show that SVM is effective, accurate, and can work well with small amount of 

training data. 

2.2 Motivation for SVM

The concept of SVM is quite amazing once the reader understands the math 

behind it.  For motivational purpose, the following images show the classification 

problem.  Each dot on the images represents a document that has been grouped 

in a two-dimensional space.  The goal is to find the best boundary that will 

separate these documents.  Figure 1(a) looks quite simple; one needs to only find 

a straight line between the groups. Naturally, the line that lies exactly in the middle 

of the groups is chosen.  However, Figure 1(b) shows a data set behavior that is 

much more complex.  Drawing a straight line to separate the two groups is 

impossible and much harder in hundreds or even thousands dimensional space. 

Nevertheless, SVM can do it!  
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(a) (b)

Figure 1.  The Separating Problem
Source:    Author’s Research

2.3 How SVM Works

The idea for SVM is to find a boundary (known as a hyperplane) or boundaries that 

separate clusters of data.  SVM does this by taking a set of points and separating 

those points using mathematical formulas.  The following figure illustrates the data 

flow of SVM.
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Figure 2. SVM Process Flow
Source:   DTREG

In Figure 2, data are input in an input space that cannot be separated with a linear 

hyperplane.  To separate the data linearly, points are map to a feature space using 

a kernel method.  Once the data in the feature space are separate, the linear 

hyperplane gets map back to the input space and it is shown as a curvy non-linear 

hyperplane.  This process is what makes SVM amazing. 

The SVM’s algorithm first starts learning from data that has already been 

classified, which is represented in numerical labels (e.g. 1, 2, 3, etc.) with each 

number representing a category.  SVM then groups the data with the same label in 

each convex hull.  From there, it determines where the hyperplane is by calculating 

the closest points between the convex hulls (Bennett, K. P., & Campbell, C., 2000). 

The figure below illustrates this.  Once SVM determines the points that are closest 

to each other, it calculates the hyperplane, which is a plane that separates the 

labels.  

5

Input Space

Feature Space

Input Space



Figure 3. SVM Convex Hulls
Source:   Bennett, K. P., & Campbell, C., 2000

2.3.1 Simple SVM Example

Let us use a few simple points to illustrate the concept of SVM.  The following 

example is similar to Dr. Guestrin’s lecture (Guestrin, C., 2006). Given the 

following points with corresponding classes (labels) in Figure 4, find a hyperplane 

that separated the points.

Table 1. Simple Data in 1-Dimension

Source: Author’s Research

6

Class X1

+1 0
-1 1
-1 2
+1 3



Input Space

0 1 2 3 4

Class +1
Class  -1

Figure 4.  Simple Data in an Input Space
Source:    Author’s Research

As Figure 4 shows, these points lay on a 1-dimensional plane and cannot be 

separated by a linear hyperplane.  The first step is to find a kernel that maps the 

points into the feature space, then within the feature space, find a hyperplane that 

separates the points.  A simple kernel that would do the trick is Φ(X1) = (X1, X1
2). 

This kernel is actually a polynomial type.  As the reader sees, this kernel will map 

the points to a 2-dimensional feature space by multiplying the points to the power 

of 2.  From calculating the kernels, we get (0, 0, +1), (1, 1, -1), (2, 4, -1), (3, 9, +1)

Table 2. Simple Data in 2-Dimension

Class X1 X1
2

+1 0 0
 -1 1 1
 -1 2 4
+1 3 9

Source: Author’s Research
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Feature Space

0
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4

6

8

10

0 1 2 3 4

Class +1
Class -1

Figure 5.  Simple Data in a Feature Space
Source:    Author’s Research

The next step is finding a hyperplane.  This can be done by using the following 

equations, which are introduced by Vapnik, V. N. in his book, “The Nature of 

Statistical Learning Theory” in chapter 5.

〈w • x〉 + b = +1 (positive labels) (1)
〈w • x〉 + b = -1 (negative labels) (2)
〈w • x〉 + b =  0 (hyperplane) (3)

From these equations, find the unknowns, w and b.  Expanding the equations for 

the SVM problem will get:

w1x1 + w2x2 + b = +1
w1x1 + w2x2 + b = -1
w1x1 + w2x2 + b =  0

Solve w and b for the positive labels using equation, w1x1 + w2x2 + b = +1.

w1x1 + w2x2 + b = +1

 w10 + w20 + b = +1
 w13 + w29 + b = +1

8



Solve w and b for the negative labels using equation, w1x1 + w2x2 + b = -1.

w1x1 + w2x2 + b = -1

 w11 + w21 + b = -1
 w12 + w24 + b = -1

By using linear algebra, we find that the solution is w1 = -3, w2 = 1, b = 1, which 

satisfies the above equations.  Many times, there are more than one solution or 

there may be no solution, but SVM can find the optimal solution that returns a 

hyperplane with the largest margin.

With the solutions: w1 = -3, w2 = 1, b = 1, positive plane, negative plane, and 

hyperplane can be calculated.

Table 3. Calculation Results of Positive, Negative, and Hyperplane 
Positive Plane: 
〈w • x〉 + b = +1
w1x1 + w2x2 + b = +1
 -3x1 + 1x2 + 1 = +1
 x2  = 3x1

X1 X2

0 0
1 3
2 6
3 9

Negative Plane:
 〈w • x〉 + b = -1
w1x1 + w2x2 + b = -1
 -3x1 + 1x2 + 1 = -1
  x2  = -2 + 3x1

X1 X2

0 -2
1 1
2 4
3 7

Hyperplane:
〈w • x〉 + b =  0
w1x1 + w2x2 + b = 0
 -3x1 + 1x2 + 1 = 0
  x2  = -1 + 3x1

X1 X2

0 -1
1 2
2 5
3 8

Source: Author’s Research
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Feature Space
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Figure 6.  Simple Data in a Feature Space Separated by a Hyperplane
Source:    Author’s Research

Thus, we have the model that contains the solution for w and b and with margin 2/

√( w • w) .  The margin is calculated as follow.

 2/√( w • w) (4)

 2/√(-32 + 12)   margin = 0.632456

In SVM, this model is used to classify new data.  With the solutions, new data can 

be classified into category.  For example, if the result is less than or equal -1, the 

new data belongs to the -1 class and if the result is greater than or equal to +1, the 

new data belongs to the +1 class.  

2.3.2 SVM is Not That Simple

In reality, most data set, if not all data set, are not as clean and well behaved as 

the example on the previous section.  There will be some points that are on the 

wrong side of the class, points that are far off from the classes, or points that are 
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mixed together in a spiral or checkered pattern.   Fortunately, researchers have 

looked into those problems and tackled them.

To solve the few points that are in the wrong class, SVM minimized the following 

equation to create what is called a soft-margin hyperplane.

(5)
s.t. yi (〈w • xi〉 - b) ≥  1 - ξi 
and i = 1, 2, 3, … l

Figure 7.  Equation to Determine the Soft-Margin Hyperplane
Source:    Vapnik, V. N., 2000

Here, C is a given value.  This value is important to train data using SVM for the 

project. The parameter C will be explained in the next section.  If the reader would 

like to understand more in depth of how SVM works refer to Vapnik’s book, “The 

Nature of Statistical Learning Theory”.

2.4 LIBSVM: A Java Library for SVM

A good SVM library can take years to develop.  LIBSVM is a well-known library for 

SVM that is developed by Chih-Chung Chang and Chih-Jen Lin.  This project will 

use LIBSVM to train and predict data.  LIBSVM has 5 SVM types, 4 kernel 

methods, and many functions to help prepare and process data.
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2.4.1 Choosing Parameter C

The parameter C in LIBSVM determines the soft-margin.  When C is very small 

(Figure 8(a)), SVM only considers about maximizing the margin and the points can 

be on the wrong side of the plane.   When the C value is very large (Figure 8(b)), 

SVM will want very small slack penalties to make sure that all data points in each 

group are separated correctly.  Figure 8 shows this.

 

(a) (b)

Figure 8.  Parameter C Example
Source:    LIBSVM

In Figure 8(a), C is set to the value of 10 and the reader can see that SVM 

purposely classifies one of the points with the incorrect data group in favor of 

having a larger margin.  However, in Figure 8(b), when C is set to 1000, SVM is in 

favor of getting all the labeled data points in the correct group, thus having a 

smaller margin.  In the project, most of the parameters used are the default 
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parameters recommended by Chih-Chung Chang and Chih-Jen Lin, with the 

exception of parameter C and sometimes the selection of kernel methods.

2.4.2 4 Basic Kernel Types

The kernel functions developed for SVM are still an on-going research.  One of the 

aspects of SVM is that one can develop his or her own kernel to fit the data type 

used.  Fortunately, LIBSVM has implemented 4 basic kernel types: linear, 

polynomial, radial basis function, and sigmoid as follow.

-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)

The reader can experiment with each kernel to determine which one works best 

with the data set.  In the article “A Practical Guide to Support Vector 

Classification”, Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin recommend 

the readers to begin with radial basis function (RBF) kernel.  In this project, RBF 

will be used.

3. Data Preparation Using SVD

Originally, this project’s goal was to use SVM to separate data from LSI matrix into 

categories and to reduce its size.  However, in order to separate the data, SVM 

requires training data to be in categories.  This project’s intention is to cluster these 

data, however, SVM does not cluster the data, it can only classify data.  The 

author has spent many hours researching for an unsupervised SVM; unfortunately, 
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there is not such proven working method.  Thus, the author uses a different 

approach, clustering data using Singular Value Decomposition (SVD) and then 

predicting the category of the new data using SVM based on the clustered data.

3.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a method that separates a matrix into 

three parts; left eigenvectors, singular values, and right eigenvectors (Garcia, E., 

2006).  It can be used to decompose data such as images and text.  Since SVM 

requires supervised learning, SVD is chosen to cluster the data and give the data 

its label.  The following example used is from Grossman and Frieder’s textbook 

and a tutorial by Dr. E. Garcia to show how LSI is constructed and from there how 

data are being used as training data for SVM.  This allow us to create an 

unsupervised learning SVM.     

3.1.1 SVD Example

Given a matrix A, we can factor it into three parts: U, S, and VT.

A = 

D1 D2 D3 D4
a 1 1 1 0
arrived 0 1 1 0
damaged 1 0 0 0
delivery 0 1 0 0
fire 1 0 0 0
gold 1 0 1 1
in 1 1 1 0
of 1 1 1 0
shipment 1 0 1 0
silver 0 2 0 1
truck 0 1 1 1
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Where the documents contain the following terms:

D1: Shipment of gold damaged in a fire
D2: Delivery of silver arrived in a silver truck
D3: Shipment of gold arrived in a truck
D4: Gold Silver Truck

Note that in Grossman and Frieder’s textbook and Dr. E. Garcia’s tutorial, the 

fourth document is a search query however for our program, we included that 

query as part of the data.  Aside from LIBSVM, the project will use a basic java 

matrix package (JAMA) developed by a team at the MathWorks and the National 

Institute of Standards and Technology (NIST) (Hicklin, J., Moler, C., & Webb, P., 

2005). The following SVD calculation is done using the JAMA java package.

Doing SVD to A will give U, S, and VT.

U = 

 0.3966  -0.1282  -0.2349   0.0941
 0.2860   0.1507  -0.0700   0.5212
 0.1106  -0.2790  -0.1649  -0.4271
 0.1523   0.2650  -0.2984  -0.0565
 0.1106  -0.2790  -0.1649  -0.4271
 0.3012  -0.2918   0.6468  -0.2252
 0.3966  -0.1282  -0.2349   0.0941
 0.3966  -0.1282  -0.2349   0.0941
 0.2443  -0.3932   0.0635   0.1507
 0.3615   0.6315  -0.0134  -0.4890
 0.3428   0.2522   0.5134   0.1453

S = 

 4.2055 0.0000 0.0000 0.0000
 0.0000 2.4155 0.0000 0.0000
 0.0000 0.0000 1.4021 0.0000
 0.0000 0.0000 0.0000 1.2302
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V =

 0.4652 -0.6738 -0.2312 -0.5254
 0.6406  0.6401 -0.4184 -0.0696
 0.5622 -0.2760  0.3202  0.7108
 0.2391  0.2450  0.8179 -0.4624

VT =

  0.4652  0.6406  0.5622  0.2391
 -0.6738  0.6401 -0.2760  0.2450
 -0.2312 -0.4184  0.3202  0.8179
 -0.5254 -0.0696  0.7108 -0.4624

If the matrices, U, S, and VT are multiplied together, the original matrix A is 

reconstructed.  One of the nice properties of SVD is that after the matrix is 

decomposed its dimension could be reduced by choosing to keep only the largest 

singular values in the S matrix.  In this example, singular values 4.2055 and 

2.4155 are kept.  This is also called a rank 2 approximation.  To accomplish this, 

the last 2 columns of U and V, and the last 2 columns and rows of S are dropped. 

Thus, the following values of the matrices are left.

U’ = 

 0.3966  -0.1282
 0.2860   0.1507
 0.1106  -0.2790
 0.1523   0.2650
 0.1106  -0.2790
 0.3012  -0.2918
 0.3966  -0.1282
 0.3966  -0.1282
 0.2443  -0.3932
 0.3615   0.6315
 0.3428   0.2522
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S’ =

 4.2055  0.0000
 0.0000  2.4155

V’ = 

 0.4652  -0.6738
 0.6406   0.6401
 0.5622  -0.2760
 0.2391   0.2450

With V’ containing the document vectors, as follows:
 
D1’ (0.4652, -0.6738)
D2’ (0.6406, 0.6401)
D3’ (0.5622, -0.2760)
D4’ (0.2391, 0.2450)

The goal is to use SVD to cluster data. This is done by calculating cosine 

similarities between each document.  This will return the distance between the 

vector documents.

sim(D’, D’)  = (D’• D’) / (|D’| |D’|) (6)

Calculate for D1’:

sim(D1’, D2’) = (D1’• D2’) / (|D1’| |D2’|)
sim(D1’, D3’) = (D1’• D3’) / (|D1’| |D3’|)
sim(D1’, D4’) = (D1’• D4’) / (|D1’| |D4’|)
….
until D4’ is calculated and compared

Example result for D1’:

sim(D1’, D2’) =  ((0.4652 * 0.6406) + (-0.6738 * 0.6401))  = -0.1797
 √( (0.4652)2 + (-0.6738) 2 ) * √( (0.6406)2 + (0.6401) 2 )

sim(D1’, D3’) =  ((0.4652 * 0.5622) + (-0.6738 * -0.2760))  = 0.8727
 √( (0.4652)2 + (-0.6738) 2 ) * √( (0.5622)2 + (-0.2760) 2 )
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sim(D1’, D4’) =  ((0.4652 * 0.2391) + (-0.6738 * 0.2450))  = -0.1921
 √( (0.4652)2 + (-0.6738) 2 ) * √( (0.2391)2 + (0.2450) 2 )

From the result, the reader can see that the first document, D1 is most similar to 

D3, since it returns the highest value.  Doing this procedure for each document, 

the following results return.

D1: 3
D2: 4
D3: 1
D4: 2

Each document is paired with another document that it is closest.  Then they are 

grouped into clusters; D1 and D3 in one cluster (label as 1) and D2 and D4 in 

another cluster (label as 2).  

Result:

label 1: 1 3 
label 2: 2 4

This process of preparing the data is very costly.  One good thing is this process 

does not need to be done on the fly.  For future work, this process can be 

improved to make it much more efficient.  For example, since finding the closest 

document can be done independently, it can be calculated in parallel.

3.1.2 Checking the Results using SVM

SVM is a method that only learns from what is given to it.  This could be data 

collected and putted into categories by humans or it could be data that is clustered 

by an application. How accurate the data is depends on the training inputs. SVM 
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will try to predict the label of the data based on the training input.  In this section, 

we want to know how well SVM predicts the clustered data. 

The following data is inputted with the corresponding labels based on the previous 

section’s results.  To run the data on SVM, we will use the radial basis function 

kernel and a C value of 10,000 to ensure that all labels are in the correct group.

 
SVM input format:

1 1:1.00 2:0.00 3:1.00 4:0.00 5:1.00 6:1.00 7:1.00 8:1.00 9:1.00 10:0.00 11:0.00
2 1:1.00 2:1.00 3:0.00 4:1.00 5:0.00 6:0.00 7:1.00 8:1.00 9:0.00 10:2.00 11:1.00
1 1:1.00 2:1.00 3:0.00 4:0.00 5:0.00 6:1.00 7:1.00 8:1.00 9:1.00 10:0.00 11:1.00
2 1:0.00 2:0.00 3:0.00 4:0.00 5:0.00 6:1.00 7:0.00 8:0.00 9:0.00 10:1.00 11:1.00

Table 4. Results from SVM’s Prediction on Original Data
Documents use for 

Training
Predict the 
Following 
Document

SVM 
Prediction 

Result

SVD 
Cluster 
Result

D1, D2, D3 D4 1.0 2
D1, D2, D4 D3 1.0 1
D1, D3, D4 D2 2.0 2
D2, D3, D4 D1 1.0 1

Source: Author’s Research

The result shows that SVM is 75% correct in its prediction.  In the result, using D1, 

D2, and D3 as training data, SVM predicts that D4 belongs to label 1; however 

SVD calculation result shows that D4 is closest to D2, which is label 2.  Using the 

original data set is not a good way to predict the labels since the data contain 

noise terms such as “of”, “in”, and “a”.  One of the reasons SVD was chosen to 

cluster data is due to its ability to reduce the matrices, hence, the truncated V’ 

matrix is used instead.
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SVM input format (truncated V matrix):

1 1:0.4652 2:-0.6738
2 1:0.6406 2:0.6401
1 1:0.5622 2:-0.2760
2 1:0.2391 2:0.2450

Table 5. Results from SVM’s Prediction on Reduced Data
Documents use for 

Training
Predict the 
Following 
Document

SVM 
Prediction 

Result

SVD 
Cluster 
Result

D1, D2, D3 D4 2.0 2
D1, D2, D4 D3 1.0 1
D1, D3, D4 D2 2.0 2
D2, D3, D4 D1 1.0 1

Source: Author’s Research

With the same settings on SVM, but using the truncated V’ matrix, the result shows 

that SVM prediction is 100% accurate.  Thus, SVM predicted the same as SVD on 

all of the documents.  Since V’ has only 2 columns, we can analysis the data 

graphically.
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Truncated V Matrix
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Figure 9. Truncated V Matrix on a Graph
Source: Author’s Research

On the graph, the reader can see that D1 and D3 are obviously closer to each 

other than the other documents and D4 is slightly closer to D2 than the others.  By 

analyzing the terms for each documents, it is shown that “D1: Shipment of gold 

damaged in a fire” and “D3: Shipment of gold arrived in a truck” are clustered 

together since they share the words “Shipment of gold”.  “D2: Delivery of silver 

arrived in a silver truck” and “D4: Gold Silver Truck” are clustered together since 

they share “silver truck” and “silver” appears in D2 two times.  This shows that LSI 

is based on co-occurrence of the terms (Garcia, E., 2006).
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3.2 Analysis of the Rank Approximation

Ranking approximation in SVD is important since it reduces the data noise and 

size.  There is no right answer to which approximation value is the best.  In the 

below section, the ranking approximation is analyzed.

Table 6. Cluster Results from Different Ranking Approximation
Rank 1 Rank 2 Rank 3 Rank 4
D1: 4
D2: 4
D3: 4
D4: 3

D1: 3
D2: 4
D3: 1
D4: 2

D1: 3
D2: 3
D3: 1
D4: 3

D1: 2
D2: 3
D3: 2
D4: 2

label 1: 1 4 2 3 label 1: 1 3 
label 2: 2 4

label 1: 1 3 2 4 label 1: 1 2 3 4

Source: Author’s Research

D1: Shipment of gold damaged in a fire. 
D2: Delivery of silver arrived in a silver truck. 
D3: Shipment of gold arrived in a truck.
D4: Gold Silver Truck

By using the rank approximation, essential values in each document are kept.  In 

the result for rank 1 approximation, matrices are truncated leaving only one 

column.  Although the results show that there are some pairing between 

documents, this is not so.  This is because the algorithm forces each document to 

pick one other document that is closest to itself and in the end, 4 is selected since 

it is the last document the algorithm use to compare.  This is also the same with 

pairing D4 with 3 (3 being the last document that is compared).  All the calculations 

for cosine similarities result in 1.0, except for comparing D1 with D2, which show 

results as 0.9877.  This result makes sense since between D1 and D2, the only 

common terms are “of”, “in”, and “a”, which are also common with other 

documents.  With rank 1, the documents are too close to each other.  
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Rank 2 approximation’s results have already been looked at in the previous 

section.  In this data set, it seems that rank 2 is the prefer value.  Rank 3 now 

included importance on additional values.  It is easy to see why D1 and D3 are 

paired and so as for D2 and D3, since they have more terms that are in common 

with each other.  For the pair D4 and D3, both shared terms: “gold” and “truck”, but 

D2 also shares terms: “silver” and “truck”.  However, D2 has “silver” twice.   In rank 

4, the data set used is “as-is” with no truncation.  As one can see, most documents 

are paired with D2.  It is believed that the reason for this is because D2 has the 

most terms.  This assumption is also pointed out by Dr. E. Garcia’s tutorial.  For 

this project, small ranking approximation will be used since it seems to yield the 

best results.

4. The Project

Now that a simple example has been shown in the previous sections, the project 

will use the same process to cluster larger data set.  The purpose is to see how 

well the data clusters using SVD and running the clustered data using SVM to 

predict new data.  One might wonder why use SVM when SVD can do the same 

job.  Based on the algorithms, SVM is faster and it has the ability to separate the 

data nicely.  With SVM, new data is classified without having to process cosine 

similarities.
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4.1 Tf-idf

In order to use SVM for this project, the documents need to be represented in 

numerical values.  A way to do this is to calculate the term frequency–inverse 

document frequency (tf–idf) values.  

(7)

 (8)

Equation (7) and (8) show one way of calculating tf-idf.  Tf stands for term 

frequency with ni as the number of occurrences of a term in a document and ∑k nk 

as the number of occurrences of all terms in the same document.  The tf equation 

is then multiplied by the inverse document frequency (idf) equation.  Idf, in 

equation (8), is the log of |D|, which is the total number of all considered 

documents, divided by | dj  ⊃ ti |, which is the number of documents that a term 

appears (“Tf–idf,” 2006).  Table 7 shows an example of the structure of the matrix.

Table 7. LSI Matrix 
Term1 Term2 Term3 Term4 Term5 … Termn

Doc1 tf-idf1 tf-idf2 tf-idf3 tf-idf4 tf-idf5 … tf-idfn

Doc2 … … tf-idf …
Doc3 … … tf-idf …
Doc4 … … tf-idf …
… … … … …
Docm tf-idf tf-idf tf-idf tf-idf tf-idf tf-idf tf-idf

Source:   Author’s Research
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Fortunately, there are many data sets in tf-idf format that have already been 

human-classified for the public to use to compare their results such as (Fan, R., 

2006) and (Reuters-21578).  Therefore, it is not necessary to compute the tf-idf 

values for the project.

Once a matrix of tf-idf values has been obtained, it needs to be decomposed using 

SVD.  Both data sets that are used for training and predicting need to be truncated 

with SVD by the same ranking approximation value.   This way the same data 

properties are used.  There are two ways to do this.  One way is to calculate the 

new data that needs to be predicted using SVD with the same ranking as the 

training data and taking the truncated V matrix as the new data.  Another way is to 

multiply the new data with the U’ and S’-1 matrix of the training data.  

SVM Prediction Data = NewDataMatrix * trainingU’ * trainingS’-1   (9)

Based on experience, the later method (equation 9) yields better results.  Figure 

10, shows the data process flow. 
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Figure 10.  Data Process Flow of the Project
Source:   Author’s Research
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4.2 Using Larger Data Set

The previous sections give background research on the approach used to cluster a 

data set. Now we would like to use a larger data set to test the method further. 

The data set that is used is Reuters-21578, which is the most widely used data set 

for text categorization.  Reuters-21578 is a collection of newswire articles that have 

been human-classified by Carnegie Group, Inc. and Reuters, Ltd.  The data that is 

used for this project is part of the already processed Reuters-21578 by (Joachims, 

T., 2004).  Due to the expensive calculation of SVD, the data is further separated 

into 200 lines (rows) and 9928 terms (columns) per data set.  In Table 8, “SVD 

Cluster Accuracy” will measure how close our SVD clustering method compares to 

humans classification and the “SVM Prediction Accuracy” will measure how 

accurate it is to use the SVD clustered data for training and then afterwards, use it 

to predict new data.  A different set of Reuters-21578 that is 200 lines by 9928 

terms is used at the new data for SVM prediction. 

4.3 Result Analysis

Table 8. Results: Clustering with SVD vs. Humans Classification First Data Set
First Data Set from Reuters-21578 (200 x 9928)

# of Natural 
Cluster

SVD Cluster 
Accuracy

SVM Prediction 
Accuracy

Rank 002 80 75.0% 65.0%
Rank 005 66 81.5% 82.0%
Rank 010 66 60.5% 54.0%
Rank 015 64 52.0% 51.5%
Rank 020 67 38.0% 46.5%
Rank 030 72 60.0% 54.0%
Rank 040 72 62.5% 58.5%
Rank 050 73 54.5% 51.5%
Rank 100 75 45.5% 58.5%

Source:   Author’s Research
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Table 9. Results: Clustering with SVD vs. Humans Classification Second Data Set
Second Data Set from Reuters-21578 (200 x 9928)

# of Natural 
Cluster

SVD Cluster 
Accuracy

SVM Prediction 
Accuracy

Rank 002 76 67.0% 84.5%
Rank 005 73 67.0% 84.5%
Rank 010 64 70.0% 85.5%
Rank 015 64 63.0% 81.0%
Rank 020 67 59.5% 50.0%
Rank 030 69 68.5% 83.5%
Rank 040 69 59.0% 79.0%
Rank 050 76 44.5% 25.5%
Rank 100 71 52.0% 47.0%

Source:   Author’s Research

Based on the results, the highest percentage accuracy for SVD clustering is 81.5% 

for rank 5 approximation.  This accuracy percentage is reasonably good.  Based 

on observation, the lower ranking approximation values do better than the higher 

approximation values.  This supports many researchers’ claim that truncated SVD 

gives better results.  As for SVM prediction, the results are not surprising, since 

SVM can only predict what is given it to train. Therefore, its prediction percentage 

is about the same as SVD.

There are several reasons why the highest accuracy is 81.5%.  When calculating 

SVD and using cosine similarities calculation to cluster, the documents form small 

clusters naturally.  Having too many small clusters is a bit of a problem; therefore, 

a new algorithm is needed on top of the clustering algorithm to reduce the cluster 

size to a desirable number.  Briefly, what the algorithm does is for each small 

cluster, it calculates the average of the vector documents within that cluster and 

compare it, using cosine similarities, to another cluster. The cluster that yields the 
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highest value will be combined with the selected cluster.  For more detail on the 

algorithm, refer to Appendix B.  As the reader can see, reducing the number of 

clusters from about 64-80 to just two clusters will reduce the accuracy.  Because 

the data used to test in Table 8 and 9 are classified in only 2 categories, the 

algorithm needs to reduce the clusters to 2 clusters so that it is possible to 

compare the results.  Also, humans’ classification is more subjective than a 

program so the methods used to classify are different from each other.

5. Conclusion

The project’s goal is to find a method that can cluster high dimensional data.  After 

many months of research, the chosen method is to use a combination of SVD and 

SVM.   In section 2, the concept of SVM is explained through a small set of data in 

a 2-dimenional feature space.  With the use of kernel methods, SVM can classify 

data in high dimensional space.  Although SVM is an excellent method for data 

classification, it cannot cluster the data.  Because of this, the project goes further 

into researching a method that can cluster and reduce the data.  In section 3, SVD 

is used to accomplish this task.  The section starts with clustering small data set. 

Using small data set allows the reader to understand and analyze SVD. The 

experiment shows that SVD can cluster and reduce the data’s size greatly.  In 

section 4, SVD is used with SVM on much larger data sets.  The method is then 

compared with data that are classified by humans.  From the experiment and 

analysis, the results show that the method proposed is able to cluster documents 

reasonably.  However, there are plenty of rooms to improve this method such as 
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making the algorithms more efficient.  Overall, the result of the project is 

satisfactory.

5.1 Future Work

As mentioned previously, there are still a lot more work that could be done to 

improve this project.  One way is to create a method that stores the data sets into 

a database.  This way accessing the data each time will be much faster.  In 

addition, a database can store massive amount of data.  Another way is when 

calculating the distance between vectors using cosine similarities, parallel 

processing can be used to speed up the time.  Also, the libraries, LIBSVM and 

JAMA, used in this project is excellent for small size data set, however, they need 

modification to accommodate larger data processing.  For example, JAMA cannot 

process matrices that have m rows less than n columns (m < n) and it uses a 

double matrix array, which limits the size one can use.  We can also look for more 

efficient kernels to use on SVM.  Lastly, a nice graphical user interface for a user-

friendly environment would be good.
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Appendix A: Program UML Diagram
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Appendix B: Program Algorithms

In the project, two algorithms are used to do most of the processing for data 

clustering.  The first one is SVDCluster, which calculates the cosine similarities 

and puts the documents into clusters.  The second one is reduceCluster, which 

reduces the clusters to the user’s inputted cluster value by taking the average of 

each cluster and computing each cluster’s cosine similarities.  Clusters with the 

highest cosine similarities are merged together until the total number of clusters is 

the same as the user’s inputted number of clusters.

SVDCluster:

process SVD to get U, S, and V Matrix
truncate V matrix

for(int i=0; i < tV.getRowDimension(); i++) {

 Matrix Q1 = tV.getMatrix(i, i, 0, tV.getColumnDimension()-1);

for(int k=0; k < tV.getRowDimension(); k++) {

if( (i != k) || ((k == 0)&&(i == 0)) ) {
    for(int j=0; j < tV.getColumnDimension(); j++) {

    top = top + (Q1.get(0,j) * tV.get(k,j));
    lenQ1 = lenQ1 + Math.pow(Q1.get(0,j), 2);
    lenV = lenV + Math.pow(tV.get(k,j), 2); 
    }

    similaritiesQ1 = top/(Math.sqrt(lenQ1)*Math.sqrt(lenV));
    
if(currentSimilarities <= similaritiesQ1) {

    currentSimilarities = similaritiesQ1;
    closestDoc = k;
    }

    
    Set similaritiesQ1, top, lenQ1, and lenV to 0.
    } 
    }
    Cluster[i] = closestDoc;

}
return Cluster; 
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Appendix B: Program Algorithms (cont’d)

reduceCluster:

while(reducedClusterList.size() > numberOfCluster) {

//get the i cluster
for(int l = 0; l < tV.getColumnDimension(); l++) {

for(int j = 0; j < reducedClusterList.get(currentLabel).size(); j++) {
average = average + tV.get(reducedClusterList.get(currentLabel).get(j), l);
}

selectLine[l] = average/ reducedClusterList.get(currentLabel).size();
average = 0;

}

//compare all other clusters
for(int i = 0; i < reducedClusterList.size(); i++) {

if(i != currentLabel)
{

for(int l = 0; l < tV.getColumnDimension(); l++){
for(int j = 0; j < reducedClusterList.get(i).size(); j++){
average = average + tV.get(reducedClusterList.get(i).get(j), l); 
}
compareLine[l] = average/reducedClusterList.get(i).size();
average = 0;

}

//calculate consine similarities
for(int j=0; j < selectLine.length; j++){

top = top + (selectLine[j] * compareLine[j]);
lenS = lenS + Math.pow(selectLine[j], 2);
lenC = lenC + Math.pow(compareLine[j], 2); 

}
sim = top/(Math.sqrt(lenS)*Math.sqrt(lenC));

Set top, lens, and lenC to 0;

if(currentLabel==0 && i == 1) {
currSim = sim;
deleteLine = i; 

}
else if(i == 0){
  currSim = sim;
  deleteLine = i;
}
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Appendix B: Program Algorithms (cont’d)
if(currSim <= sim){
currSim = sim;
deleteLine = i;
}

}
}

reducedClusterList.get(currentLabel).addAll(reducedClusterList.get(deleteLine));
reducedClusterList.remove(deleteLine);

currentLabel++;
if(reducedClusterList.size() <= currentLabel) {

currentLabel = 0;
}

}
return reducedClusterList;
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Appendix C: Java Documentations

Static Public Member Functions 

Vector< Vector< Integer > > reduceCluster (Vector< Vector< Integer > > 
reducedClusterList, int numberOfCluster)

Vector< Vector< Integer > > removeDuplicate (Vector< Vector< Integer > > 
reducedClusterList)

void writeSVMFormat (int[] labels, Matrix truncatedV, 
String filename, String originalFile) throws 
IOException

Vector< Vector< Integer > > group (int[] Cluster)
void convertForSVM (Matrix tU, Matrix inverseS, int 

Rank) throws IOException

double[][] read_problem (String filename) throws 
IOException  

int[] SVDCluster (int rank, String filename) throws 
IOException

Detailed Description

COPYRIGHT (C) 2006 Tam Ngo. All Rights Reserved. 
Purpose : This program uses the JAMA library to cluster 

data set and output the labels and document values to a text file. 
Author: 

Tam Ngo
Version: 

1.0 11/29/2006 

Constructor & Destructor

SVDCluster: calculate SVM and cosine similarities and put them in an array 
Parameters: 

filename: String file containing the training data
rank: int the rank approximation value

Returns: 
int[] an array contain the paired documents and labels
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Appendix C: Java Documentations (cont’d)

Member Function

void SVDCluster.convertForSVM  ( Matrix  tU,  Matrix  inverseS, int  Rank ) 
throws IOException [static]
convertForSVM: convert the new data into the truncated V' format. Use this data 
for SVM predict. 
Parameters: 

tU : Matrix truncated U from the training data
inverses : Matrix truncated S inverse from the training data
Rank : int rank value to name the data with it's rank

Returns: 
void

Vector<Vector <Integer> > SVDCluster.group(nt[ ]  Cluster)  [static]
group: group pairs of document and labels to other pair of document and labels to 
form a cluster. 
Parameters: 

Cluster : gets an array of documents and cluster pairs
Returns: 

Vector<Vector <integer> > the list of grouped cluster
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Appendix C: Java Documentations (cont.)

double [][] SVDCluster.read_problem ( String  filename )  throws IOException 
[static]
read_problem: load the training data from a filename 
Parameters: 

Filename : file containing the training data
Returns: 

double[][] a matrix of the training data

Vector<Vector <Integer> > SVDCluster.reduceCluster  (  Vector< Vector< Integer > > 
reducedClusterList, int  numberOfCluster)  [static]
reduceCluster: method reduces the number of cluster based on the 
numberOfCluster parameter value. It will calculate the average vector document 
for between clusters and find the consine similiarties of the two. Cluster that 
returns the highest result will be combined with the selected cluster. 
Parameters: 

numberOfCluster : reduce the number clusters to the this number, 
numberOfCluster

reducedClusterList : gets the vector list that contains the clusters
Returns: 

Vector<Vector <integer> > returns a new vector list that contains the 
reduced cluster

Vector<Vector <Integer> > SVDCluster.removeDuplicate ( Vector< Vector< Integer > 
>  reducedClusterList )  [static]
removeDuplicate: remove any duplicate values from the cluster list 
Parameters: 

reducedClusterList : gets the vector list that contains the clusters
Returns: 

Vector<Vector <integer> > returns a new vector list that cluster list without 
any duplicate.
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Appendix C: Java Documentations (cont’d)
void SVDCluster.writeSVMFormat  (  int[]  labels,  
    Matrix  truncatedV,  
  String  filename,  
  String  originalFile 
 )  throws IOException [static]
writeSVMFormat: write the results of the cluster list to a SVM format for training 
and calcuate the accuracy by comparing with the labels on the original file 
Parameters: 

labels : gets the list of labels; document lines paired with a label value
filename : output file in SVM format
originalFile : the original file contain the data set

Returns: 
void
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Appendix D: Content of Deliverables

Deliverables are contained in a CD with the following contents:

Directories Map: 

ClusterData
- JAMA package
- LIBSVM package
- User Manuel
- ClusterData  

- Data Clustering Program
- Data

- Training and Predicting Data Sets
Report

- report in .doc and .pdf format
Presentation

- PowerPoint project presentation
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