
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2006

Clustering High Dimensional Data Using SVM Clustering High Dimensional Data Using SVM

Tam P. Ngo
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ngo, Tam P., "Clustering High Dimensional Data Using SVM" (2006). Master's Projects. 33.
DOI: https://doi.org/10.31979/etd.ns2s-ejvc
https://scholarworks.sjsu.edu/etd_projects/33

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/33?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Clustering High Dimensional Data Using SVM

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Tam P. Ngo

December 2006

© 2006

Tam P. Ngo

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

__
 Dr. Tsau Young Lin

__
 Dr. Christopher Pollett

__
 Dr. H. Chris Tseng

APPROVED FOR THE UNIVERSITY

Abstract

The Web contains massive amount of documents from across the globe to the

point where it has become impossible to classify them manually. This project’s

goal is to find a new method for clustering documents that are as close to humans’

classification as possible and at the same time to reduce the size of the

documents. This project uses a combination of Latent Semantic Indexing (LSI)

with Singular Value Decomposition (SVD) calculation as well as Support Vector

Machine (SVM) classification. With SVD, data sets are decomposed and can be

truncated to reduce the data sets size. The reduced data set will then be used to

cluster. With SVM, clustered data set is used for training to allow new data to be

classified based on SVM’s prediction. The project’s result show that the method of

combining SVD and SVM is able to reduce data size and classifies documents

reasonably compared to humans’ classification.

Table of Contents

1. Introduction 1

2. Support Vector Machine 2

2.1 What SVM is Used For 2

2.2 Motivation for SVM 3

2.3 How SVM Works 4

2.3.1 Simple SVM Example 6

2.3.2 SVM is Not That Simple 10

2.4 LIBSVM: A Java Library for SVM 11

2.4.1 Choosing Parameter C 12

2.4.2 4 Basic Kernel Types 13

3. Data Preparation Using SVD 13

3.1 Singular Value Decomposition (SVD) 14

3.1.1 SVD Example 14

3.1.2 Checking the Results using SVM 18

3.2 Analysis of the Rank Approximation 22

4. The Project 23

4.1 Tf-idf 24

4.2 Using Larger Data Set 27

4.3 Result Analysis 27

5. Conclusion 29

5.1 Future Work 30

References 31

Appendix A: Program UML Diagram 33

Appendix B: Program Algorithms 34

Appendix C: Java Documentations 37

Appendix D: Content of Deliverables 41

List of Tables and Figures

Tables
Table 1. Simple Data in 1-Dimension 6
Table 2. Simple Data in 2-Dimension 7
Table 3. Calculation Results of Positive, Negative, and Hyperplane 9
Table 4. Results from SVM’s Prediction on Original Data 19
Table 5. Results from SVM’s Prediction on Reduced Data 20
Table 6. Cluster Results from Different Ranking Approximation 22
Table 7. LSI Matrix 24
Table 8. Results: Clustering with SVD vs. Humans Classification First
Data Set 27
Table 9. Results: Clustering with SVD vs. Humans Classification
Second Data Set 28

Figures
Figure 1. The Separating Problem 4
Figure 2. SVM Process Flow 5
Figure 3. SVM Convex Hulls 6
Figure 4. Simple Data in an Input Space 7
Figure 5. Simple Data in a Feature Space 8
Figure 6. Simple Data in a Feature Space Separated by a Hyperplane 10
Figure 7. Equation to Determine the Soft-Margin Hyperplane 11
Figure 8. Parameter C Example 12
Figure 9. Truncated V Matrix on a Graph 21
Figure 10. Data Process Flow of the Project 26

1. Introduction

Ever since the World Wide Web has become popular, document clustering has

become increasingly more important. With billions of documents on the Web, it is

impossible to classify all these documents by humans. The challenge is to find a

way to organize this massive data in some meaningful structure. This project

proposes a method that can cluster documents reasonably.

The project deals with clustering high dimensional data. The data used are

processed documents organized in a text file that contains category labels and

term frequency–inverse document frequency (tf–idf) values. Data sets used in the

research are classified by humans and have been processed into tf-idf values. By

using human-classified data set, we can compare our clustering method with

humans’ classification.

The first few sections of the report discuss and analyze Support Vector Machine

(SVM) and Latent Semantic Indexing (LSI). This will allow the reader to

understand how these methods are applied to the project. The last few sections

discuss the algorithms used and the analysis of the results after applying methods

from previous sections.

1

2. Support Vector Machine

Vladimir Vapnik and his colleagues first introduced SVM in 1963. Support Vector

Machine (SVM) is a learning machine that uses supervised learning to perform

data classification and regression (“Support vector machine,” 2006). The meaning

of supervised learning is learning from examples or from a teacher. For instance,

children learn to tell the difference between objects (e.g. dogs from cats, women

from men, fruits from vegetables) by having those objects pointed out to them

(Cristianini, N., & Shawe-Taylor, J., 2000). Every time they see a new object, they

can determine what it is by recognizing similarities from what they already know.

They are in fact putting the new object in a category. Supervised learning is the

same. In SVM, each line within the data set is given a label and SVM learns the

data and puts the new data in the group that is closest to the learned data.

2.1 What SVM is Used For

SVM is primarily used for categorization. Some examples of SVM usage include

bioinformatics, signature/hand writing recognition, image and text classification,

pattern recognition (Cristianini, N., & Shawe-Taylor, J., 2000), and e-mail spam

categorization (Drucker, H., Wu, D., & Vapnik, V. N., 1999). Many research

documents such as the ones mentioned above have shown that SVM can classify

reasonably well. In this project, SVM is used for text classification.

2

Text classification is a method used to put text into meaningful groups. Beside

SVM, there are many other methods for text classification such as Bayes and k-

Nearest Neighbor. Based on many research papers (Joachims, T., 1998), SVM

outperforms many, if not all, popular methods for text classification. The studies

also show that SVM is effective, accurate, and can work well with small amount of

training data.

2.2 Motivation for SVM

The concept of SVM is quite amazing once the reader understands the math

behind it. For motivational purpose, the following images show the classification

problem. Each dot on the images represents a document that has been grouped

in a two-dimensional space. The goal is to find the best boundary that will

separate these documents. Figure 1(a) looks quite simple; one needs to only find

a straight line between the groups. Naturally, the line that lies exactly in the middle

of the groups is chosen. However, Figure 1(b) shows a data set behavior that is

much more complex. Drawing a straight line to separate the two groups is

impossible and much harder in hundreds or even thousands dimensional space.

Nevertheless, SVM can do it!

3

(a) (b)

Figure 1. The Separating Problem
Source: Author’s Research

2.3 How SVM Works

The idea for SVM is to find a boundary (known as a hyperplane) or boundaries that

separate clusters of data. SVM does this by taking a set of points and separating

those points using mathematical formulas. The following figure illustrates the data

flow of SVM.

4

Figure 2. SVM Process Flow
Source: DTREG

In Figure 2, data are input in an input space that cannot be separated with a linear

hyperplane. To separate the data linearly, points are map to a feature space using

a kernel method. Once the data in the feature space are separate, the linear

hyperplane gets map back to the input space and it is shown as a curvy non-linear

hyperplane. This process is what makes SVM amazing.

The SVM’s algorithm first starts learning from data that has already been

classified, which is represented in numerical labels (e.g. 1, 2, 3, etc.) with each

number representing a category. SVM then groups the data with the same label in

each convex hull. From there, it determines where the hyperplane is by calculating

the closest points between the convex hulls (Bennett, K. P., & Campbell, C., 2000).

The figure below illustrates this. Once SVM determines the points that are closest

to each other, it calculates the hyperplane, which is a plane that separates the

labels.

5

Input Space

Feature Space

Input Space

Figure 3. SVM Convex Hulls
Source: Bennett, K. P., & Campbell, C., 2000

2.3.1 Simple SVM Example

Let us use a few simple points to illustrate the concept of SVM. The following

example is similar to Dr. Guestrin’s lecture (Guestrin, C., 2006). Given the

following points with corresponding classes (labels) in Figure 4, find a hyperplane

that separated the points.

Table 1. Simple Data in 1-Dimension

Source: Author’s Research

6

Class X1

+1 0
-1 1
-1 2
+1 3

Input Space

0 1 2 3 4

Class +1
Class -1

Figure 4. Simple Data in an Input Space
Source: Author’s Research

As Figure 4 shows, these points lay on a 1-dimensional plane and cannot be

separated by a linear hyperplane. The first step is to find a kernel that maps the

points into the feature space, then within the feature space, find a hyperplane that

separates the points. A simple kernel that would do the trick is Φ(X1) = (X1, X1
2).

This kernel is actually a polynomial type. As the reader sees, this kernel will map

the points to a 2-dimensional feature space by multiplying the points to the power

of 2. From calculating the kernels, we get (0, 0, +1), (1, 1, -1), (2, 4, -1), (3, 9, +1)

Table 2. Simple Data in 2-Dimension

Class X1 X1
2

+1 0 0
 -1 1 1
 -1 2 4
+1 3 9

Source: Author’s Research

7

Feature Space

0

2

4

6

8

10

0 1 2 3 4

Class +1
Class -1

Figure 5. Simple Data in a Feature Space
Source: Author’s Research

The next step is finding a hyperplane. This can be done by using the following

equations, which are introduced by Vapnik, V. N. in his book, “The Nature of

Statistical Learning Theory” in chapter 5.

〈w • x〉 + b = +1 (positive labels) (1)
〈w • x〉 + b = -1 (negative labels) (2)
〈w • x〉 + b = 0 (hyperplane) (3)

From these equations, find the unknowns, w and b. Expanding the equations for

the SVM problem will get:

w1x1 + w2x2 + b = +1
w1x1 + w2x2 + b = -1
w1x1 + w2x2 + b = 0

Solve w and b for the positive labels using equation, w1x1 + w2x2 + b = +1.

w1x1 + w2x2 + b = +1

 w10 + w20 + b = +1
 w13 + w29 + b = +1

8

Solve w and b for the negative labels using equation, w1x1 + w2x2 + b = -1.

w1x1 + w2x2 + b = -1

 w11 + w21 + b = -1
 w12 + w24 + b = -1

By using linear algebra, we find that the solution is w1 = -3, w2 = 1, b = 1, which

satisfies the above equations. Many times, there are more than one solution or

there may be no solution, but SVM can find the optimal solution that returns a

hyperplane with the largest margin.

With the solutions: w1 = -3, w2 = 1, b = 1, positive plane, negative plane, and

hyperplane can be calculated.

Table 3. Calculation Results of Positive, Negative, and Hyperplane
Positive Plane:
〈w • x〉 + b = +1
w1x1 + w2x2 + b = +1
 -3x1 + 1x2 + 1 = +1
 x2 = 3x1

X1 X2

0 0
1 3
2 6
3 9

Negative Plane:
 〈w • x〉 + b = -1
w1x1 + w2x2 + b = -1
 -3x1 + 1x2 + 1 = -1
 x2 = -2 + 3x1

X1 X2

0 -2
1 1
2 4
3 7

Hyperplane:
〈w • x〉 + b = 0
w1x1 + w2x2 + b = 0
 -3x1 + 1x2 + 1 = 0
 x2 = -1 + 3x1

X1 X2

0 -1
1 2
2 5
3 8

Source: Author’s Research

9

Feature Space

0

2

4

6

8

10

0 1 2 3 4

Class +1
Class -1

Figure 6. Simple Data in a Feature Space Separated by a Hyperplane
Source: Author’s Research

Thus, we have the model that contains the solution for w and b and with margin 2/

√(w • w) . The margin is calculated as follow.

 2/√(w • w) (4)

 2/√(-32 + 12) margin = 0.632456

In SVM, this model is used to classify new data. With the solutions, new data can

be classified into category. For example, if the result is less than or equal -1, the

new data belongs to the -1 class and if the result is greater than or equal to +1, the

new data belongs to the +1 class.

2.3.2 SVM is Not That Simple

In reality, most data set, if not all data set, are not as clean and well behaved as

the example on the previous section. There will be some points that are on the

wrong side of the class, points that are far off from the classes, or points that are

10

mixed together in a spiral or checkered pattern. Fortunately, researchers have

looked into those problems and tackled them.

To solve the few points that are in the wrong class, SVM minimized the following

equation to create what is called a soft-margin hyperplane.

(5)
s.t. yi (〈w • xi〉 - b) ≥ 1 - ξi
and i = 1, 2, 3, … l

Figure 7. Equation to Determine the Soft-Margin Hyperplane
Source: Vapnik, V. N., 2000

Here, C is a given value. This value is important to train data using SVM for the

project. The parameter C will be explained in the next section. If the reader would

like to understand more in depth of how SVM works refer to Vapnik’s book, “The

Nature of Statistical Learning Theory”.

2.4 LIBSVM: A Java Library for SVM

A good SVM library can take years to develop. LIBSVM is a well-known library for

SVM that is developed by Chih-Chung Chang and Chih-Jen Lin. This project will

use LIBSVM to train and predict data. LIBSVM has 5 SVM types, 4 kernel

methods, and many functions to help prepare and process data.

11

2.4.1 Choosing Parameter C

The parameter C in LIBSVM determines the soft-margin. When C is very small

(Figure 8(a)), SVM only considers about maximizing the margin and the points can

be on the wrong side of the plane. When the C value is very large (Figure 8(b)),

SVM will want very small slack penalties to make sure that all data points in each

group are separated correctly. Figure 8 shows this.

(a) (b)

Figure 8. Parameter C Example
Source: LIBSVM

In Figure 8(a), C is set to the value of 10 and the reader can see that SVM

purposely classifies one of the points with the incorrect data group in favor of

having a larger margin. However, in Figure 8(b), when C is set to 1000, SVM is in

favor of getting all the labeled data points in the correct group, thus having a

smaller margin. In the project, most of the parameters used are the default

12

parameters recommended by Chih-Chung Chang and Chih-Jen Lin, with the

exception of parameter C and sometimes the selection of kernel methods.

2.4.2 4 Basic Kernel Types

The kernel functions developed for SVM are still an on-going research. One of the

aspects of SVM is that one can develop his or her own kernel to fit the data type

used. Fortunately, LIBSVM has implemented 4 basic kernel types: linear,

polynomial, radial basis function, and sigmoid as follow.

-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)

The reader can experiment with each kernel to determine which one works best

with the data set. In the article “A Practical Guide to Support Vector

Classification”, Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin recommend

the readers to begin with radial basis function (RBF) kernel. In this project, RBF

will be used.

3. Data Preparation Using SVD

Originally, this project’s goal was to use SVM to separate data from LSI matrix into

categories and to reduce its size. However, in order to separate the data, SVM

requires training data to be in categories. This project’s intention is to cluster these

data, however, SVM does not cluster the data, it can only classify data. The

author has spent many hours researching for an unsupervised SVM; unfortunately,

13

there is not such proven working method. Thus, the author uses a different

approach, clustering data using Singular Value Decomposition (SVD) and then

predicting the category of the new data using SVM based on the clustered data.

3.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a method that separates a matrix into

three parts; left eigenvectors, singular values, and right eigenvectors (Garcia, E.,

2006). It can be used to decompose data such as images and text. Since SVM

requires supervised learning, SVD is chosen to cluster the data and give the data

its label. The following example used is from Grossman and Frieder’s textbook

and a tutorial by Dr. E. Garcia to show how LSI is constructed and from there how

data are being used as training data for SVM. This allow us to create an

unsupervised learning SVM.

3.1.1 SVD Example

Given a matrix A, we can factor it into three parts: U, S, and VT.

A =

D1 D2 D3 D4
a 1 1 1 0
arrived 0 1 1 0
damaged 1 0 0 0
delivery 0 1 0 0
fire 1 0 0 0
gold 1 0 1 1
in 1 1 1 0
of 1 1 1 0
shipment 1 0 1 0
silver 0 2 0 1
truck 0 1 1 1

14

Where the documents contain the following terms:

D1: Shipment of gold damaged in a fire
D2: Delivery of silver arrived in a silver truck
D3: Shipment of gold arrived in a truck
D4: Gold Silver Truck

Note that in Grossman and Frieder’s textbook and Dr. E. Garcia’s tutorial, the

fourth document is a search query however for our program, we included that

query as part of the data. Aside from LIBSVM, the project will use a basic java

matrix package (JAMA) developed by a team at the MathWorks and the National

Institute of Standards and Technology (NIST) (Hicklin, J., Moler, C., & Webb, P.,

2005). The following SVD calculation is done using the JAMA java package.

Doing SVD to A will give U, S, and VT.

U =

 0.3966 -0.1282 -0.2349 0.0941
 0.2860 0.1507 -0.0700 0.5212
 0.1106 -0.2790 -0.1649 -0.4271
 0.1523 0.2650 -0.2984 -0.0565
 0.1106 -0.2790 -0.1649 -0.4271
 0.3012 -0.2918 0.6468 -0.2252
 0.3966 -0.1282 -0.2349 0.0941
 0.3966 -0.1282 -0.2349 0.0941
 0.2443 -0.3932 0.0635 0.1507
 0.3615 0.6315 -0.0134 -0.4890
 0.3428 0.2522 0.5134 0.1453

S =

 4.2055 0.0000 0.0000 0.0000
 0.0000 2.4155 0.0000 0.0000
 0.0000 0.0000 1.4021 0.0000
 0.0000 0.0000 0.0000 1.2302

15

V =

 0.4652 -0.6738 -0.2312 -0.5254
 0.6406 0.6401 -0.4184 -0.0696
 0.5622 -0.2760 0.3202 0.7108
 0.2391 0.2450 0.8179 -0.4624

VT =

 0.4652 0.6406 0.5622 0.2391
 -0.6738 0.6401 -0.2760 0.2450
 -0.2312 -0.4184 0.3202 0.8179
 -0.5254 -0.0696 0.7108 -0.4624

If the matrices, U, S, and VT are multiplied together, the original matrix A is

reconstructed. One of the nice properties of SVD is that after the matrix is

decomposed its dimension could be reduced by choosing to keep only the largest

singular values in the S matrix. In this example, singular values 4.2055 and

2.4155 are kept. This is also called a rank 2 approximation. To accomplish this,

the last 2 columns of U and V, and the last 2 columns and rows of S are dropped.

Thus, the following values of the matrices are left.

U’ =

 0.3966 -0.1282
 0.2860 0.1507
 0.1106 -0.2790
 0.1523 0.2650
 0.1106 -0.2790
 0.3012 -0.2918
 0.3966 -0.1282
 0.3966 -0.1282
 0.2443 -0.3932
 0.3615 0.6315
 0.3428 0.2522

16

S’ =

 4.2055 0.0000
 0.0000 2.4155

V’ =

 0.4652 -0.6738
 0.6406 0.6401
 0.5622 -0.2760
 0.2391 0.2450

With V’ containing the document vectors, as follows:

D1’ (0.4652, -0.6738)
D2’ (0.6406, 0.6401)
D3’ (0.5622, -0.2760)
D4’ (0.2391, 0.2450)

The goal is to use SVD to cluster data. This is done by calculating cosine

similarities between each document. This will return the distance between the

vector documents.

sim(D’, D’) = (D’• D’) / (|D’| |D’|) (6)

Calculate for D1’:

sim(D1’, D2’) = (D1’• D2’) / (|D1’| |D2’|)
sim(D1’, D3’) = (D1’• D3’) / (|D1’| |D3’|)
sim(D1’, D4’) = (D1’• D4’) / (|D1’| |D4’|)
….
until D4’ is calculated and compared

Example result for D1’:

sim(D1’, D2’) = ((0.4652 * 0.6406) + (-0.6738 * 0.6401)) = -0.1797
 √((0.4652)2 + (-0.6738) 2) * √((0.6406)2 + (0.6401) 2)

sim(D1’, D3’) = ((0.4652 * 0.5622) + (-0.6738 * -0.2760)) = 0.8727
 √((0.4652)2 + (-0.6738) 2) * √((0.5622)2 + (-0.2760) 2)

17

sim(D1’, D4’) = ((0.4652 * 0.2391) + (-0.6738 * 0.2450)) = -0.1921
 √((0.4652)2 + (-0.6738) 2) * √((0.2391)2 + (0.2450) 2)

From the result, the reader can see that the first document, D1 is most similar to

D3, since it returns the highest value. Doing this procedure for each document,

the following results return.

D1: 3
D2: 4
D3: 1
D4: 2

Each document is paired with another document that it is closest. Then they are

grouped into clusters; D1 and D3 in one cluster (label as 1) and D2 and D4 in

another cluster (label as 2).

Result:

label 1: 1 3
label 2: 2 4

This process of preparing the data is very costly. One good thing is this process

does not need to be done on the fly. For future work, this process can be

improved to make it much more efficient. For example, since finding the closest

document can be done independently, it can be calculated in parallel.

3.1.2 Checking the Results using SVM

SVM is a method that only learns from what is given to it. This could be data

collected and putted into categories by humans or it could be data that is clustered

by an application. How accurate the data is depends on the training inputs. SVM

18

will try to predict the label of the data based on the training input. In this section,

we want to know how well SVM predicts the clustered data.

The following data is inputted with the corresponding labels based on the previous

section’s results. To run the data on SVM, we will use the radial basis function

kernel and a C value of 10,000 to ensure that all labels are in the correct group.

SVM input format:

1 1:1.00 2:0.00 3:1.00 4:0.00 5:1.00 6:1.00 7:1.00 8:1.00 9:1.00 10:0.00 11:0.00
2 1:1.00 2:1.00 3:0.00 4:1.00 5:0.00 6:0.00 7:1.00 8:1.00 9:0.00 10:2.00 11:1.00
1 1:1.00 2:1.00 3:0.00 4:0.00 5:0.00 6:1.00 7:1.00 8:1.00 9:1.00 10:0.00 11:1.00
2 1:0.00 2:0.00 3:0.00 4:0.00 5:0.00 6:1.00 7:0.00 8:0.00 9:0.00 10:1.00 11:1.00

Table 4. Results from SVM’s Prediction on Original Data
Documents use for

Training
Predict the
Following
Document

SVM
Prediction

Result

SVD
Cluster
Result

D1, D2, D3 D4 1.0 2
D1, D2, D4 D3 1.0 1
D1, D3, D4 D2 2.0 2
D2, D3, D4 D1 1.0 1

Source: Author’s Research

The result shows that SVM is 75% correct in its prediction. In the result, using D1,

D2, and D3 as training data, SVM predicts that D4 belongs to label 1; however

SVD calculation result shows that D4 is closest to D2, which is label 2. Using the

original data set is not a good way to predict the labels since the data contain

noise terms such as “of”, “in”, and “a”. One of the reasons SVD was chosen to

cluster data is due to its ability to reduce the matrices, hence, the truncated V’

matrix is used instead.

19

SVM input format (truncated V matrix):

1 1:0.4652 2:-0.6738
2 1:0.6406 2:0.6401
1 1:0.5622 2:-0.2760
2 1:0.2391 2:0.2450

Table 5. Results from SVM’s Prediction on Reduced Data
Documents use for

Training
Predict the
Following
Document

SVM
Prediction

Result

SVD
Cluster
Result

D1, D2, D3 D4 2.0 2
D1, D2, D4 D3 1.0 1
D1, D3, D4 D2 2.0 2
D2, D3, D4 D1 1.0 1

Source: Author’s Research

With the same settings on SVM, but using the truncated V’ matrix, the result shows

that SVM prediction is 100% accurate. Thus, SVM predicted the same as SVD on

all of the documents. Since V’ has only 2 columns, we can analysis the data

graphically.

20

Truncated V Matrix

0.56, -0.28

0.47, -0.67

0.64, 0.64

0.24, 0.25

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8

Class 1 Class 2

Figure 9. Truncated V Matrix on a Graph
Source: Author’s Research

On the graph, the reader can see that D1 and D3 are obviously closer to each

other than the other documents and D4 is slightly closer to D2 than the others. By

analyzing the terms for each documents, it is shown that “D1: Shipment of gold

damaged in a fire” and “D3: Shipment of gold arrived in a truck” are clustered

together since they share the words “Shipment of gold”. “D2: Delivery of silver

arrived in a silver truck” and “D4: Gold Silver Truck” are clustered together since

they share “silver truck” and “silver” appears in D2 two times. This shows that LSI

is based on co-occurrence of the terms (Garcia, E., 2006).

21

D4

D2

D1

D3

3.2 Analysis of the Rank Approximation

Ranking approximation in SVD is important since it reduces the data noise and

size. There is no right answer to which approximation value is the best. In the

below section, the ranking approximation is analyzed.

Table 6. Cluster Results from Different Ranking Approximation
Rank 1 Rank 2 Rank 3 Rank 4
D1: 4
D2: 4
D3: 4
D4: 3

D1: 3
D2: 4
D3: 1
D4: 2

D1: 3
D2: 3
D3: 1
D4: 3

D1: 2
D2: 3
D3: 2
D4: 2

label 1: 1 4 2 3 label 1: 1 3
label 2: 2 4

label 1: 1 3 2 4 label 1: 1 2 3 4

Source: Author’s Research

D1: Shipment of gold damaged in a fire.
D2: Delivery of silver arrived in a silver truck.
D3: Shipment of gold arrived in a truck.
D4: Gold Silver Truck

By using the rank approximation, essential values in each document are kept. In

the result for rank 1 approximation, matrices are truncated leaving only one

column. Although the results show that there are some pairing between

documents, this is not so. This is because the algorithm forces each document to

pick one other document that is closest to itself and in the end, 4 is selected since

it is the last document the algorithm use to compare. This is also the same with

pairing D4 with 3 (3 being the last document that is compared). All the calculations

for cosine similarities result in 1.0, except for comparing D1 with D2, which show

results as 0.9877. This result makes sense since between D1 and D2, the only

common terms are “of”, “in”, and “a”, which are also common with other

documents. With rank 1, the documents are too close to each other.

22

Rank 2 approximation’s results have already been looked at in the previous

section. In this data set, it seems that rank 2 is the prefer value. Rank 3 now

included importance on additional values. It is easy to see why D1 and D3 are

paired and so as for D2 and D3, since they have more terms that are in common

with each other. For the pair D4 and D3, both shared terms: “gold” and “truck”, but

D2 also shares terms: “silver” and “truck”. However, D2 has “silver” twice. In rank

4, the data set used is “as-is” with no truncation. As one can see, most documents

are paired with D2. It is believed that the reason for this is because D2 has the

most terms. This assumption is also pointed out by Dr. E. Garcia’s tutorial. For

this project, small ranking approximation will be used since it seems to yield the

best results.

4. The Project

Now that a simple example has been shown in the previous sections, the project

will use the same process to cluster larger data set. The purpose is to see how

well the data clusters using SVD and running the clustered data using SVM to

predict new data. One might wonder why use SVM when SVD can do the same

job. Based on the algorithms, SVM is faster and it has the ability to separate the

data nicely. With SVM, new data is classified without having to process cosine

similarities.

23

4.1 Tf-idf

In order to use SVM for this project, the documents need to be represented in

numerical values. A way to do this is to calculate the term frequency–inverse

document frequency (tf–idf) values.

(7)

 (8)

Equation (7) and (8) show one way of calculating tf-idf. Tf stands for term

frequency with ni as the number of occurrences of a term in a document and ∑k nk

as the number of occurrences of all terms in the same document. The tf equation

is then multiplied by the inverse document frequency (idf) equation. Idf, in

equation (8), is the log of |D|, which is the total number of all considered

documents, divided by | dj ⊃ ti |, which is the number of documents that a term

appears (“Tf–idf,” 2006). Table 7 shows an example of the structure of the matrix.

Table 7. LSI Matrix
Term1 Term2 Term3 Term4 Term5 … Termn

Doc1 tf-idf1 tf-idf2 tf-idf3 tf-idf4 tf-idf5 … tf-idfn

Doc2 … … tf-idf …
Doc3 … … tf-idf …
Doc4 … … tf-idf …
… … … … …
Docm tf-idf tf-idf tf-idf tf-idf tf-idf tf-idf tf-idf

Source: Author’s Research

24

Fortunately, there are many data sets in tf-idf format that have already been

human-classified for the public to use to compare their results such as (Fan, R.,

2006) and (Reuters-21578). Therefore, it is not necessary to compute the tf-idf

values for the project.

Once a matrix of tf-idf values has been obtained, it needs to be decomposed using

SVD. Both data sets that are used for training and predicting need to be truncated

with SVD by the same ranking approximation value. This way the same data

properties are used. There are two ways to do this. One way is to calculate the

new data that needs to be predicted using SVD with the same ranking as the

training data and taking the truncated V matrix as the new data. Another way is to

multiply the new data with the U’ and S’-1 matrix of the training data.

SVM Prediction Data = NewDataMatrix * trainingU’ * trainingS’-1 (9)

Based on experience, the later method (equation 9) yields better results. Figure

10, shows the data process flow.

25

Figure 10. Data Process Flow of the Project
Source: Author’s Research

26

U’, S’-1

New Prediction Data

V’

Training Data

U, S, V

Training
Documents

SVD
Calculation

Truncate V, U,
S by Rank #

1 1:1.00 2:0.00 3:1.00
2 1:1.00 2:1.00 3:0.00
1 1:1.00 2:1.00 3:0.00
2 1:0.00 2:0.00 3:0.00

Prediction Data
1 1:1.00 2:0.00 3:1.00
2 1:1.00 2:1.00 3:2.00
1 1:1.00 2:1.00 3:0.00
2 1:1.00 2:0.00 3:1.00

Rank #

Cosine similarities
calculation

Documents pairing

Reduce clusters to
of clusters

Cluster #

Data with SVD Labels
1 1:0.0147 2:-0.0230
2 1:0.0181 2:-0.0228
1 1:0.0093 2:-0.0181
2 1:0.0131 2:-0.0193

Compare labels
with human

classified labels
Accuracy %

Prediction
Documents

New Prediction Data
= Prediction Data * trainingU’ * trainingS’-1

1 1:0.0147 2:-0.0230
2 1:0.0181 2:-0.0228
1 1:0.0093 2:-0.0181
2 1:0.0131 2:-0.0193

SVM Predict

SVM Train

Model File
Labels

Compare labels
with human

classified labels

Accuracy %

4.2 Using Larger Data Set

The previous sections give background research on the approach used to cluster a

data set. Now we would like to use a larger data set to test the method further.

The data set that is used is Reuters-21578, which is the most widely used data set

for text categorization. Reuters-21578 is a collection of newswire articles that have

been human-classified by Carnegie Group, Inc. and Reuters, Ltd. The data that is

used for this project is part of the already processed Reuters-21578 by (Joachims,

T., 2004). Due to the expensive calculation of SVD, the data is further separated

into 200 lines (rows) and 9928 terms (columns) per data set. In Table 8, “SVD

Cluster Accuracy” will measure how close our SVD clustering method compares to

humans classification and the “SVM Prediction Accuracy” will measure how

accurate it is to use the SVD clustered data for training and then afterwards, use it

to predict new data. A different set of Reuters-21578 that is 200 lines by 9928

terms is used at the new data for SVM prediction.

4.3 Result Analysis

Table 8. Results: Clustering with SVD vs. Humans Classification First Data Set
First Data Set from Reuters-21578 (200 x 9928)

of Natural
Cluster

SVD Cluster
Accuracy

SVM Prediction
Accuracy

Rank 002 80 75.0% 65.0%
Rank 005 66 81.5% 82.0%
Rank 010 66 60.5% 54.0%
Rank 015 64 52.0% 51.5%
Rank 020 67 38.0% 46.5%
Rank 030 72 60.0% 54.0%
Rank 040 72 62.5% 58.5%
Rank 050 73 54.5% 51.5%
Rank 100 75 45.5% 58.5%

Source: Author’s Research

27

Table 9. Results: Clustering with SVD vs. Humans Classification Second Data Set
Second Data Set from Reuters-21578 (200 x 9928)

of Natural
Cluster

SVD Cluster
Accuracy

SVM Prediction
Accuracy

Rank 002 76 67.0% 84.5%
Rank 005 73 67.0% 84.5%
Rank 010 64 70.0% 85.5%
Rank 015 64 63.0% 81.0%
Rank 020 67 59.5% 50.0%
Rank 030 69 68.5% 83.5%
Rank 040 69 59.0% 79.0%
Rank 050 76 44.5% 25.5%
Rank 100 71 52.0% 47.0%

Source: Author’s Research

Based on the results, the highest percentage accuracy for SVD clustering is 81.5%

for rank 5 approximation. This accuracy percentage is reasonably good. Based

on observation, the lower ranking approximation values do better than the higher

approximation values. This supports many researchers’ claim that truncated SVD

gives better results. As for SVM prediction, the results are not surprising, since

SVM can only predict what is given it to train. Therefore, its prediction percentage

is about the same as SVD.

There are several reasons why the highest accuracy is 81.5%. When calculating

SVD and using cosine similarities calculation to cluster, the documents form small

clusters naturally. Having too many small clusters is a bit of a problem; therefore,

a new algorithm is needed on top of the clustering algorithm to reduce the cluster

size to a desirable number. Briefly, what the algorithm does is for each small

cluster, it calculates the average of the vector documents within that cluster and

compare it, using cosine similarities, to another cluster. The cluster that yields the

28

highest value will be combined with the selected cluster. For more detail on the

algorithm, refer to Appendix B. As the reader can see, reducing the number of

clusters from about 64-80 to just two clusters will reduce the accuracy. Because

the data used to test in Table 8 and 9 are classified in only 2 categories, the

algorithm needs to reduce the clusters to 2 clusters so that it is possible to

compare the results. Also, humans’ classification is more subjective than a

program so the methods used to classify are different from each other.

5. Conclusion

The project’s goal is to find a method that can cluster high dimensional data. After

many months of research, the chosen method is to use a combination of SVD and

SVM. In section 2, the concept of SVM is explained through a small set of data in

a 2-dimenional feature space. With the use of kernel methods, SVM can classify

data in high dimensional space. Although SVM is an excellent method for data

classification, it cannot cluster the data. Because of this, the project goes further

into researching a method that can cluster and reduce the data. In section 3, SVD

is used to accomplish this task. The section starts with clustering small data set.

Using small data set allows the reader to understand and analyze SVD. The

experiment shows that SVD can cluster and reduce the data’s size greatly. In

section 4, SVD is used with SVM on much larger data sets. The method is then

compared with data that are classified by humans. From the experiment and

analysis, the results show that the method proposed is able to cluster documents

reasonably. However, there are plenty of rooms to improve this method such as

29

making the algorithms more efficient. Overall, the result of the project is

satisfactory.

5.1 Future Work

As mentioned previously, there are still a lot more work that could be done to

improve this project. One way is to create a method that stores the data sets into

a database. This way accessing the data each time will be much faster. In

addition, a database can store massive amount of data. Another way is when

calculating the distance between vectors using cosine similarities, parallel

processing can be used to speed up the time. Also, the libraries, LIBSVM and

JAMA, used in this project is excellent for small size data set, however, they need

modification to accommodate larger data processing. For example, JAMA cannot

process matrices that have m rows less than n columns (m < n) and it uses a

double matrix array, which limits the size one can use. We can also look for more

efficient kernels to use on SVM. Lastly, a nice graphical user interface for a user-

friendly environment would be good.

30

References

Bennett, K. P., & Campbell, C. (2000). Support Vector Machines: Hype or
Hellelujah?. ACM SIGKDD Explorations. VOl. 2, No. 2, 1-13

Chang, C & Lin, C. (2006). LIBSVM: a library for support vector machines,
Retrieved November 29, 2006, from http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cristianini, N. (2001). Support Vector and Kernel Machines. Retrieved November
29, 2005, from http://www.support-vector.net/icml-tutorial.pdf

Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines. Cambridge UK: Cambridge University Press

Drucker, H., Wu, D., & Vapnik, V. N. (1999). Support Vector Machines for Spam
Categorization. IEEE Transactions on Neural Networks, Vol. 10, No. 5,
1048-1054.

Fan, R.(2006). LIBSVM Data: Classification, Regression, and Multi-label.
Retrieved November 28, 2006, from
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Garcia, E. (2006). SVD and LSI Tutorial 4: Latent Semantic Indexing (LSI) How-to
Calculations. Retrieved November 28, 2006, from
http://www.miislita.com/information-retrieval-tutorial/svd-lsi-tutorial-4-lsi-
how-to-calculations.html

Guestrin, C. (2006). Machine Learning. Retrieved November 8, 2006, from
http://www.cs.cmu.edu/~guestrin/Class/10701/

Hicklin, J., Moler, C., & Webb, P. (2005). JAMA : A Java Matrix Package.
Retrieved November 28, 2006, from http://math.nist.gov/javanumerics/jama/

Hsu, C., Chang, C., & Lin, C. (2006). A Practical Guide to Support Vector
Classification. Retrieved November 28, 2006, from
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning
with Many Relevant Features.
http://www.cs.cornell.edu/People/tj/publications/joachims_98a.pdf

Joachims, T. (2004). Support Vector Machines. Retrieved November 28, 2006,
from http://svmlight.joachims.org/

Latent semantic analysis. (2006). Wikipedia. Retrieved December 8, 2005, from
http://en.wikipedia.org/wiki/Latent_Semantic_Indexing

31

Lin, T. Y. (2005). Granulating the Semantics Space of Web Documents.

Reuters-21578 Text Categorization Test Collection.
Retrieved November 28, 2006, from
http://www.daviddlewis.com/resources/testcollections/reuters21578/

Support vector machine. (2006). Wikipedia. Retrieved December 8, 2005, from
http://en.wikipedia.org/wiki/Support_vector_machine

Tf–idf. (2006). Wikipedia. Retrieved December 8, 2005, from
http://en.wikipedia.org/wiki/Tf-idf

SVM - Support Vector Machines. DTREG. Retrieved November 28, 2006, from
http://www.dtreg.com/svm.htm

Vapnik, V. N. (2000, 1995). The Nature of Statistical Learning Theory.
Springer-Verlag New York, Inc.

32

Appendix A: Program UML Diagram

33

Appendix B: Program Algorithms

In the project, two algorithms are used to do most of the processing for data

clustering. The first one is SVDCluster, which calculates the cosine similarities

and puts the documents into clusters. The second one is reduceCluster, which

reduces the clusters to the user’s inputted cluster value by taking the average of

each cluster and computing each cluster’s cosine similarities. Clusters with the

highest cosine similarities are merged together until the total number of clusters is

the same as the user’s inputted number of clusters.

SVDCluster:

process SVD to get U, S, and V Matrix
truncate V matrix

for(int i=0; i < tV.getRowDimension(); i++) {

 Matrix Q1 = tV.getMatrix(i, i, 0, tV.getColumnDimension()-1);

for(int k=0; k < tV.getRowDimension(); k++) {

if((i != k) || ((k == 0)&&(i == 0))) {
 for(int j=0; j < tV.getColumnDimension(); j++) {

 top = top + (Q1.get(0,j) * tV.get(k,j));
 lenQ1 = lenQ1 + Math.pow(Q1.get(0,j), 2);
 lenV = lenV + Math.pow(tV.get(k,j), 2);
 }

 similaritiesQ1 = top/(Math.sqrt(lenQ1)*Math.sqrt(lenV));

if(currentSimilarities <= similaritiesQ1) {

 currentSimilarities = similaritiesQ1;
 closestDoc = k;
 }

 Set similaritiesQ1, top, lenQ1, and lenV to 0.
 }
 }
 Cluster[i] = closestDoc;

}
return Cluster;

34

Appendix B: Program Algorithms (cont’d)

reduceCluster:

while(reducedClusterList.size() > numberOfCluster) {

//get the i cluster
for(int l = 0; l < tV.getColumnDimension(); l++) {

for(int j = 0; j < reducedClusterList.get(currentLabel).size(); j++) {
average = average + tV.get(reducedClusterList.get(currentLabel).get(j), l);
}

selectLine[l] = average/ reducedClusterList.get(currentLabel).size();
average = 0;

}

//compare all other clusters
for(int i = 0; i < reducedClusterList.size(); i++) {

if(i != currentLabel)
{

for(int l = 0; l < tV.getColumnDimension(); l++){
for(int j = 0; j < reducedClusterList.get(i).size(); j++){
average = average + tV.get(reducedClusterList.get(i).get(j), l);
}
compareLine[l] = average/reducedClusterList.get(i).size();
average = 0;

}

//calculate consine similarities
for(int j=0; j < selectLine.length; j++){

top = top + (selectLine[j] * compareLine[j]);
lenS = lenS + Math.pow(selectLine[j], 2);
lenC = lenC + Math.pow(compareLine[j], 2);

}
sim = top/(Math.sqrt(lenS)*Math.sqrt(lenC));

Set top, lens, and lenC to 0;

if(currentLabel==0 && i == 1) {
currSim = sim;
deleteLine = i;

}
else if(i == 0){
 currSim = sim;
 deleteLine = i;
}

35

Appendix B: Program Algorithms (cont’d)
if(currSim <= sim){
currSim = sim;
deleteLine = i;
}

}
}

reducedClusterList.get(currentLabel).addAll(reducedClusterList.get(deleteLine));
reducedClusterList.remove(deleteLine);

currentLabel++;
if(reducedClusterList.size() <= currentLabel) {

currentLabel = 0;
}

}
return reducedClusterList;

36

Appendix C: Java Documentations

Static Public Member Functions

Vector< Vector< Integer > > reduceCluster (Vector< Vector< Integer > >
reducedClusterList, int numberOfCluster)

Vector< Vector< Integer > > removeDuplicate (Vector< Vector< Integer > >
reducedClusterList)

void writeSVMFormat (int[] labels, Matrix truncatedV,
String filename, String originalFile) throws
IOException

Vector< Vector< Integer > > group (int[] Cluster)
void convertForSVM (Matrix tU, Matrix inverseS, int

Rank) throws IOException

double[][] read_problem (String filename) throws
IOException

int[] SVDCluster (int rank, String filename) throws
IOException

Detailed Description

COPYRIGHT (C) 2006 Tam Ngo. All Rights Reserved.
Purpose : This program uses the JAMA library to cluster

data set and output the labels and document values to a text file.
Author:

Tam Ngo
Version:

1.0 11/29/2006

Constructor & Destructor

SVDCluster: calculate SVM and cosine similarities and put them in an array
Parameters:

filename: String file containing the training data
rank: int the rank approximation value

Returns:
int[] an array contain the paired documents and labels

37

Appendix C: Java Documentations (cont’d)

Member Function

void SVDCluster.convertForSVM (Matrix tU, Matrix inverseS, int Rank)
throws IOException [static]
convertForSVM: convert the new data into the truncated V' format. Use this data
for SVM predict.
Parameters:

tU : Matrix truncated U from the training data
inverses : Matrix truncated S inverse from the training data
Rank : int rank value to name the data with it's rank

Returns:
void

Vector<Vector <Integer> > SVDCluster.group(nt[] Cluster) [static]
group: group pairs of document and labels to other pair of document and labels to
form a cluster.
Parameters:

Cluster : gets an array of documents and cluster pairs
Returns:

Vector<Vector <integer> > the list of grouped cluster

38

Appendix C: Java Documentations (cont.)

double [][] SVDCluster.read_problem (String filename) throws IOException
[static]
read_problem: load the training data from a filename
Parameters:

Filename : file containing the training data
Returns:

double[][] a matrix of the training data

Vector<Vector <Integer> > SVDCluster.reduceCluster (Vector< Vector< Integer > >
reducedClusterList, int numberOfCluster) [static]
reduceCluster: method reduces the number of cluster based on the
numberOfCluster parameter value. It will calculate the average vector document
for between clusters and find the consine similiarties of the two. Cluster that
returns the highest result will be combined with the selected cluster.
Parameters:

numberOfCluster : reduce the number clusters to the this number,
numberOfCluster

reducedClusterList : gets the vector list that contains the clusters
Returns:

Vector<Vector <integer> > returns a new vector list that contains the
reduced cluster

Vector<Vector <Integer> > SVDCluster.removeDuplicate (Vector< Vector< Integer >
> reducedClusterList) [static]
removeDuplicate: remove any duplicate values from the cluster list
Parameters:

reducedClusterList : gets the vector list that contains the clusters
Returns:

Vector<Vector <integer> > returns a new vector list that cluster list without
any duplicate.

39

Appendix C: Java Documentations (cont’d)
void SVDCluster.writeSVMFormat (int[] labels,
 Matrix truncatedV,
 String filename,
 String originalFile
) throws IOException [static]
writeSVMFormat: write the results of the cluster list to a SVM format for training
and calcuate the accuracy by comparing with the labels on the original file
Parameters:

labels : gets the list of labels; document lines paired with a label value
filename : output file in SVM format
originalFile : the original file contain the data set

Returns:
void

40

Appendix D: Content of Deliverables

Deliverables are contained in a CD with the following contents:

Directories Map:

ClusterData
- JAMA package
- LIBSVM package
- User Manuel
- ClusterData

- Data Clustering Program
- Data

- Training and Predicting Data Sets
Report

- report in .doc and .pdf format
Presentation

- PowerPoint project presentation

41

	Clustering High Dimensional Data Using SVM
	Recommended Citation

	© 2006
	Tam P. Ngo
	ALL RIGHTS RESERVED
	APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE
	Abstract
	Table of Contents
	1. Introduction
	2. Support Vector Machine
	2.1 What SVM is Used For
	2.2 Motivation for SVM
	2.3 How SVM Works
	2.3.1 Simple SVM Example
	2.3.2 SVM is Not That Simple
	2.4 LIBSVM: A Java Library for SVM
	2.4.1 Choosing Parameter C
	2.4.2 4 Basic Kernel Types
	3. Data Preparation Using SVD
	3.1 Singular Value Decomposition (SVD)
	3.1.1 SVD Example
	3.1.2 Checking the Results using SVM
	3.2 Analysis of the Rank Approximation
	4. The Project
	4.1 Tf-idf
	4.2 Using Larger Data Set
	4.3 Result Analysis
	5. Conclusion
	5.1 Future Work
	References
	Appendix A: Program UML Diagram
	Appendix B: Program Algorithms
	Appendix C: Java Documentations
	Appendix D: Content of Deliverables

	List of Tables and Figures
	Tables
	Figures

	1. Introduction
	2. Support Vector Machine
	2.1 What SVM is Used For
	2.2 Motivation for SVM
	2.3 How SVM Works
	2.3.1 Simple SVM Example
	2.3.2 SVM is Not That Simple
	2.4 LIBSVM: A Java Library for SVM
	2.4.1 Choosing Parameter C
	2.4.2 4 Basic Kernel Types
	3. Data Preparation Using SVD
	3.1 Singular Value Decomposition (SVD)
	3.1.1 SVD Example
	If the matrices, U, S, and VT are multiplied together, the original matrix A is reconstructed. One of the nice properties of SVD is that after the matrix is decomposed its dimension could be reduced by choosing to keep only the largest singular values in the S matrix. In this example, singular values 4.2055 and 2.4155 are kept. This is also called a rank 2 approximation. To accomplish this, the last 2 columns of U and V, and the last 2 columns and rows of S are dropped. Thus, the following values of the matrices are left.
	3.1.2 Checking the Results using SVM
	3.2 Analysis of the Rank Approximation
	4. The Project
	4.1 Tf-idf
	5. Conclusion
	5.1 Future Work
	References
	Appendix D: Content of Deliverables

