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ABSTRACT 

In recent years, multimedia has become a commonly used tool for presenting contents to 

the users.  The employment of multimedia is no longer limited to only the entertainment 

industry, but spans in other areas as well.  In academics, lectures are recorded to audio 

and video for storage and distribution to students.  Free online multimedia hosting 

services are popularly cherished, such as “youtube.com” and “yahoo video”, and with the 

increasing affordability of digital camera, hundreds, or maybe thousands, of home-made 

videos and music audio are created daily and published online.  Low-cost digital 

recorders such as webcams also help promote the use of video for surveillance, both for 

commercial and personal use.  Suddenly, there comes the need for digital multimedia 

delivery, which happens naturally with the advancement in Internet bandwidth and the 

popularity of multimedia sharing.  Multimedia delivery comes in two methods: 

downloading and streaming.  Streaming requires more complex structure, but rewards 

with better user experience.  Although streaming is the method of choice today, 

downloading is still useful in ad-hoc situation where streaming is not feasible. 

This project aims to provide streaming-like capability to mobile devices.  Since mobile 

gadgets are limited in resources compared to personal computers (PC), streaming 

sometimes is the only way to deliver media contents to user.  This work targets devices in 

the so-called “ad-hoc situation”, and also seeks to save the cost associated with 

multimedia streaming, which traditionally uses the operator wireless network, by using a 

LAN-connected proxy and the Bluetooth medium.  It is also to serve the educational 

purpose in learning about multimedia streaming on cellular phones. 

This project experiments with several approaches to implement streaming on mobile 

phones.  It discusses each approach in details.  Finally, a library and a sample application 

are implemented to demonstrate the solution. 
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1 INTRODUCTION 

For a long time, tapes, compact discs, and digital storage such as hard-drive or memory 

cards, have been the main forms of multimedia contents distribution.  The increasing ease 

of access to the Internet in the last decade, the general population has widely adopted the 

Internet as the distribution channel for digital contents, especially multimedia.  At the 

early stage, media download was the only method of data delivery.  Point-to-Point 

software like Napster enabled users to share contents by uploading and downloading the 

contents from other users’ machines.  This method serves well for users who were willing 

to start the download process and view the media at a later time.  However, as the quality 

of digital multimedia improves, the size of the media grows substantially.  The Internet, 

even with the latest advancements in network speed, cannot keep up.  A user, wanting to 

see what is in a video, would have to wait for the entire video to be downloaded before he 

or she could view it.  This long delay is inefficient and degrades user experience.  

Downloading cannot be a solution for applications with stringent requirements for real-

time multimedia delivery.   

It soon became clear that a new method needed to be derived to satisfy near real-

time multimedia delivery requirement.  Faster network is not a complete solution, as 

advancement in network speed is not as fast as advancement in media data.  Media 

contents have to be divided into independent segments, with each capable of being 

presented to the user.  In other words, the media has to be formatted in small presentable 

units; and since each unit is small enough, it can be transferred to the user’s machine 

quickly for view.  This method in effect produces a continuous stream of viewable video 

segments, and thus the technical term “streaming” was coined [1]. 

In the last few years, personal computers are no longer the only form of multimedia 

player used in streaming.  As people spend more time on the road, compact digital 

gadgets such as mobile phone have become popular.  The demand for multimedia 

playback on these small devices also grows.  Users want to have the ability to listen to 

music or watch movies on their mobile phones while waiting at the train station, on bus, 

etc., and to be able to monitor their house from the remote web camera.  The real-time 
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requirement, the slow cellular network, and the limited resources on mobile devices again 

confirm the applicability and usefulness of multimedia streaming [2, 3]. 

  This project seeks to deliver multimedia to the mobile device, targeting 

multimedia-ready devices lacking streaming support.  The required configuration is that 

some multimedia is ready on a remote server, and that the mobile device is capable of 

interpreting this media data format.  Two different approaches have been taken and 

implemented before the final solution is derived.  The first approach uses two network 

connections, one TCP and one UDP, to handle the communication with the Darwin 

streaming server.  However, the cellular operator only allows TCP traffic while blocking 

UDP, for security reason, and thus media data cannot reach the device.  The second 

method implements the TCP-interleaving method which uses only one TCP connection.  

In this case, the mobile device, although able to receive media data, fails to present it 

because the device is incapable of playing partially streamed media. 

It becomes apparent that the mobile device can only play complete media data. 

Hence, a solution is derived by splitting the original media into multiple sub-clips, which 

are then downloaded in advance to provide a continuous playback effect.  TCP/IP is used 

for the download.  However, TCP/IP is costly on cellular network, and thus Bluetooth is 

also provided for sub-clip delivery.  This multi-subclip solution requires a custom media 

server, a custom streaming protocol, a Bluetooth proxy, and a client library capable of 

handling the streaming and Bluetooth protocols.  With this approach, all the sub-clips 

comprising the original media data can be fetched and played successfully. 

The paper first gives an overview of multimedia and multimedia encoding in 

Section 2.  It then goes briefly over the two methods of multimedia delivery, 

downloading and streaming, with the pros and cons, in Section 3.  Section 4 describes the 

standard real-time media streaming in more details, as well as the common protocol 

implementations.  Section 5 discusses multimedia streaming on mobile devices.  The 

design of the mobile streaming library – the goal of this project – is covered in Section 6.  

We conclude the project in Section 7, and provide some potential future work in Section 

8.  The material used as references in this project is listed in Section 9. 
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2 DIGITAL MULTIMEDIA BASICS 

Multimedia production begins with the recording process, in which the moving picture 

and possibly sound are captured using a camera.  If an analog camera is used, as in the 

early days, the resulting analog media data has to be digitized.  The raw digital data is 

then processed - encoded to a specific format, compressed, and stored in a container file – 

for the media player to interpret and present on the intended display.  

Multimedia contents contain one or more channels of information, also called 

tracks, consisting of text, graphics, animation, video, and audio.  Each track delivers a 

different type of information, i.e. video and audio deliver the media contents, while text 

provides subtitle/translation and graphics delivers interactivity to enhance user 

perception. 

A digital audio or video track is a continuous sequence of still sound or pictures.  

Each of these still units is a frame, a snapshot of the media a single point in time.  The 

frames are captured and displayed at constant rate, called frame per second (fps).  When 

played one after another, the frames seem to be moving.  When played at high speed, 

faster than the human eyes can differentiate, we perceive a moving audio or video. 

Considering a video frame of 720 pixels wide by 480 pixels high, each uses a color 

depth of 24 bits (3 bytes), will need 720x480x3 or 1 megabyte (MB) of storage.  If the 

frames are captured at 25 fps, it takes 25 MB per second, or 1.5 gigabyte (GB) per 

minute, or 90 GB per hour of movie.  The higher quality or bigger dimension, the longer 

it takes to digitize and convert the video to a suitable format for display.  It is impractical 

to support video of big sizes and high quality, either for storage or distribution.  Thus, 

multimedia production and usage is an expensive and time-consuming process. 

2.1 ENCODING/DECODING 

When moving pictures or audio signals are captured and digitized, they are usually in the 

raw format, and need to be converted to a format suitable to a particular medium type, i.e. 

MPEG2 format for video on DVD, MP3 format for audio, etc.  This process is called 

encoding.  The media format specifies how the media data is structured, how it should be 

delivered to the display device, and how it should be interpreted.  Since moving pictures 
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and sound are represented as frames, the format describes the number of frames per 

second, the structure of the frames, the relation between consecutives frames, how each 

frame is represented, how frames from different tracks, such as audio and video in a 

movie, are to by synchronized in time, etc.  In contrast to encoding, which is the media 

producer, and may be done directly by a digital recorder or separately on the complete 

media contents using transcoding software or hardware, decoding is used on the 

consumer side.   The media player must be capable of understanding the format of the 

encoded media to decode and present it on a television or computer monitor.  The 

decoder reads in the data streaming and divides the data into frames.  In some format, 

frames are not independent, and must be recreated from previous and/or following 

frames, as in MPEG4.  Then, the frames can be displayed on the display device. 

2.2 COMPRESSION 

In contrast with television, which has the fully dedicated cable infrastructure for data 

transfer, multimedia over the Internet is a disappointment.  Due to bandwidth restriction 

of the telephone system, the most popular method of network multimedia delivery, it is 

just not possible to deliver and display full-motion video with stereo sound.  Low-quality, 

or low-bandwidth, media is not appealing to the viewers, and thus media data shared over 

the Internet are usually limited to short and small dimension videos. 

The answer to the media giant delivered over the small-pipe network is 

compression.  Media compression refers to the process of transforming the data to use 

fewer bits.  Before multimedia can be efficiently compressed, media contents must be 

filtered to keep only the necessary information and throw away redundant data – 

information that does not contribute to the user perception of the media.  Psycho-

acoustical research teaches us that there are certain sound frequencies and color spectra 

that the human ears and eyes cannot detect or tell whether they are included or not.  Thus, 

this useless information can be safely thrown away without affecting the perceived data.  

Also, the human eyes cannot distinguish small differences in color, and thus groups of 

very similar colors can be averaged out or generalized in bigger groups. Other redundant 

information such as the black background enclosing the viewable area can also be filtered 

to further cut down media size. 
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Media compression techniques are categorized as either lossless or lossy.  With 

lossless techniques, some considerable level of data compression can be achieved while 

guaranteeing full reconstruction of the original data.  Lossless compression algorithms, 

while preserving the media data, seek to represent the same data using as few bits as 

possible.  This process employs tricks such as writing consecutive and similar data using 

shorter syntax, i.e. “BLUEx50” to represent fifty consecutive words “BLUE”, using 

shorter code to represent the most frequently occurring binary data (as used in Huffman 

coding), writing only the difference between consecutive frames, or using a color map 

and storing only the index to the color in the map instead of the longer full color code. 

Lossy compression yields very high compression rate at the cost of degrading 

media quality.  This process throws away data, redundant or not, at each level of 

compression. This includes using lower bit-rate, lower sampling rate and/or frame rate, 

reducing video dimension or audio volume, and shorter media duration, etc.  Using lossy 

compression methods, the media data can be compressed significantly, i.e., by shrinking 

to half of its original width and height, the size is reduced by a factor of four.  Lossy 

compression is an irreversible process; and the higher the compression rate is used, the 

lower the media quality becomes. 

2.3 MEDIA CONTAINER 

Media data are encoded, compressed, and contained in a computer file called a container.  

A container is used to interleave, or mix, different data types in a specified format, 

allowing the data to be retrieved in such a way that is most suitable to the data consumer.  

Video data usually contain video, audio, and optionally chapter and subtitle tracks.  These 

components are synchronized in time, and must be retrieved, decoded, and displayed at 

the same time.  Containers allow multiple tracks to be interleaved in one or multiple files, 

and retrieved for playback in synchronized manner, as if each frame represents data for 

all the components.  Container files also carry meta-data (tags) besides media data.  This 

meta-data describes the different components in the container, as well as information 

required for stream synchronization.  There are many container formats: WAV, AIFF, 

AVI, ASF, MOV, OGM, MP4, 3GP, etc.  Among these, 3GP is designed for mobile 

devices, and thus is used in this project. 
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2.4 MEDIA HINTING 

Before a file can be streamed – being retrieved and viewed at the same time – it must be 

hinted.  Hinting adds information about the various tracks in a media file that tells a 

streaming server how to read and serve the data to a streaming client.  Some encoding 

software, such as QuickTime, also hints the converted media file.  Hinting can also be 

done on the complete converted file using software such as the open source GPAC tool 

suite. 

Below is a video file that has not been hinted.  Mp4info tells us that there are two 

tracks in the video: a video track encoded in MPEG-4 Simple format, and an audio track 

encoded in MPEG-4 AAC format. 

 

Figure 1.  Un-hinted media file 

The following is the content description of the same video file, but is hinted.  There 

are two additional tracks describing the two main tracks.  These latter tracks are used as 

clues to the streaming software to stream the contents to the client. 

 

Figure 2.  Hinted media file 
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3 MULTIMEDIA RETRIEVAL METHODS 

Besides the many ways of delivering a movie to a user via physical media: on a VHS 

tape, a CD or DVD, etc., there are only two ways of delivering digital audio/video over 

the Internet: download or streaming [17]. 

3.1 DOWNLOAD 

Downloading requires the user to wait for the download process to complete before he or 

she can start viewing.  Throughout the download delay, the partial data is unusable.  The 

download process is also more susceptible to failure, as many things can go wrong, such 

as a broken connection, errors on the server side or client side, user losing patience and 

canceling the download, etc. 

Once a media is completely downloaded, it is literally guaranteed to be without 

glitches.  It can be stored on local storage and played back as many times as the user 

desires.  The media plays smoothly without any delay besides the limitations of the 

hardware.  However, response time plays a major role to user experience.  With millions 

of video clips on the Internet, most of the time a user will be skimming through the first 

few seconds of the video before deciding to view the entire clip.  Downloading does not 

facilitate that experience.  The user may waste time and bandwidth downloading 

something he or she may not like, or most likely will skip that video.  It is said that the 

easiest way to discourage the audience or kill a movie is a big fat download delay. 

3.2 STREAMING 

Streaming allows the user to view the media while it is still downloading.  After starting 

the streaming process, the user waits for some initial data to be delivered.  As soon as 

enough data is on the client side, it is played, while more data is still being downloaded.  

This process continues incrementally until the end.  In its simplest form, streaming works 

like a pipe: buffered data is played on one end, while new data comes in on the other end 

to fill up the pipe. 

There are many benefits to streaming, such as shorter wait time, preview feature, 

more tolerant of failure, less memory requirement, and real-time playback. Although 

there still is a delay at the beginning, it is insignificant compared to media download.  
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The user gets to see, or preview, what is in the movie before he or she is committed to 

getting the entire file.  If some data is corrupted in the middle of the streaming session, 

the streaming software can throw away that unusable data, and waits until good frames 

arrive.  Although the user will see a gap, it is still far better than having to restart the 

entire movie, as with downloading. 

Memory footprint is the amount of memory required for an application to operate, 

i.e., the memory required to open QuickTime and play a movie.  It is most likely not a 

problem with a personal computer, but is an important factor that decides the success of 

multimedia on small devices, such as mobile phone.  These gadgets have little memory, 

with a few megabytes at the low end.  It is not acceptable, if not impossible, to download 

the entire video onto these devices for playback.  High data transfer cost on cellular 

networks greatly helps user learn to appreciate the preview feature. 

For real-time applications such as video surveillance, there is no concept of media 

start or stop time.  The video starts when the user wants to initiate the monitoring process, 

and continues indefinitely until the user stops it.  In this case, media download is 

inapplicable, and streaming is the only option. 

Multimedia streaming, although offering many benefits, carries quite a few 

drawbacks.  For example, when network is slow, data cannot be delivered as fast as it is 

consumed, the user will experience more “buffering” delays in between.  Since user 

experience must be honored as much as possible, the video data rate has to well match 

the playback rate.  Regardless of how much more network speed may be improved, there 

is always a lot more data than the network can carry, and network capacity will always be 

the bottleneck for data transfer.  This limits streaming to low bit-rate, low frame-rate, and 

small dimension multimedia contents.  Thus, streaming is most useful to people who 

want to quickly view the media in exchange for quality, while downloading is for the 

patient. 
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4 REAL-TIME MEDIA STREAMING 

4.1 PROTOCOL DESCRIPTION 

Real-time media streaming is a specification consisting of these standard protocols: 

Session Description Protocol (SDP), Real-time Streaming Protocol (RTSP), Real-time 

Transport Protocol (RTP), and Real-time Control Protocol (RTCP). 

4.1.1 SESSION DESCRIPTION PROTOCOL (SDP) 

Session Description Protocol (RFC 4566) [4] describes the multimedia contents, and is 

used to deliver meta-information about the media to the client.  The client uses this 

information to negotiate and establish a streaming session with the streaming server.  

This meta-data includes the following: 

• Connection:  network type, address type, and address. 

• Bandwidth 

• Session:  session version and id. 

• Media properties:  media protocol, media type (audio/video), tracks, track ids, 

track durations, track mapping, dimension and frame size (for video), encoding 

formats, etc. 

Figure 3 shows a video’s meta-data in SDP format. 
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Figure 3.  SDP captured using Ethereal 

Most important among these properties are the session id, track id, and track type 

for each track (also called stream).  Session id is used in all later requests.  Track type is 

used by media handlers on the client, and track id is used to request a specific 

track/stream.  SDP is used by RTSP at the start of the streaming session. 

4.1.2 REAL-TIME STREAMING PROTOCOL (RTSP) 

Real-time Streaming Protocol, an IETF standard proposed in RFC 2326 [5], is designed 

to allow a client to remotely control the streaming session, using VCR-like commands 

“Play”, “Record”, “Pause”, “Resume”, and “Stop”.  RTSP standardizes the interaction 

and message exchange between the client and server, and specifies the session life-cycle.  

The client sends RTSP requests to the server to learn about server capability (OPTIONS) 
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and media description (DESCRIBE), to establish the session (SETUP), to control the 

session (PLAY, RECORD, PAUSE) and to terminate the session (TEARDOWN).  RTSP 

request format is similar to that of HTTP.  However, unlike HTTP, RTSP is a stateful 

protocol.  RTSP commands and response follow HTTP syntax: each line is terminated 

with a pair of Carriage-Return/Line-Feed (CRLF), and the last line is a blank, also ending 

in a CRLF.  Both the server and client need to maintain the session state, and transition 

from one state to the next, or previous, as requested by the RTSP command and response. 

A streaming session starts out with the client sending an OPTIONS inquiry about 

supported operations to the server.  The server then responds with the supported 

operations on that media. 

 

Figure 4.  RTSP OPTIONS request and response 

Next, the client requests the server for a description of the media, and server sends 

back the meta-data in SDP format. 
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Figure 5.  RTSP DESCRIBE request and response 

The client establishes the streaming session by sending the SETUP command.  The 

following snapshot shows that the server replies with the transport type (RTP-over-UDP) 

and the server port the client must connect to for each track (6970 and 6971).  

 

Figure 6.  RTSP SETUP request and response 
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After this, the client can send PLAY to start receiving streamed data.  The server 

starts sending the media data contained in RTP packets following the response. 

 

Figure 7.  RTSP PLAY request and response 

PAUSE is sent to temporarily stop the streaming. 

 

Figure 8.  RTSP PAUSE request and response 

Finally, to request that the session be terminated, the client sends the TEARDOWN 

request, as follows: 

 

Figure 9.  RTSP TEARDOWN request and response 
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After a session is closed down, any further request sent will be answered with a 

“Bad request” response. 

The following diagram summarizes the RTSP requests and responses involved in a 

streaming session. 

 

Figure 10.  RTSP interaction diagram [10]  
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4.1.3 REAL-TIME TRANSPORT PROTOCOL (RTP) 

Real-time Transport Protocol [6] is an application protocol used for transporting real-time 

data.  It is specified in RFC 3550, and defines end-to-end network transport functions for 

transmitting data over unicast or multicast network services.  RTP does not dictate the 

underlying network and transport layers, nor does it guarantee quality of service (QoS).  

In real-time application, on-time data delivery is more usually important than 

guaranteed delivery.  For example, in a telephone call, we would prefer hearing the other 

party’s voice with as little delay as possible, and would rather repeat the sentence than 

breakups in the conversation.  Since data delivery is not guaranteed, UDP can offer 

higher speed and does not suffer delay incurred by retransmission.  UDP is a better 

candidate for real-time requirement, and thus is used in RTP implementations to carry 

RTP data in its payload.  

4.1.4 REAL-TIME CONTROL PROTOCOL (RTCP) 

Real-time Control Protocol [6] (also defined in RFC 3550) is used to complement RTP.  

It compensates for the lack of QoS in RTP, by providing out-of-band transmission 

statistics, control and feedbacks.  In a conference telephone call, or in a multimedia 

session with multiple audiences, RTCP specifies the rate at which the participants, either 

sender or receiver, can send reports about the RTP packet transmission and reception.  

Since there is no guarantee that RTP packets will get to the receiver, RTCP Sender 

Report is used to inform receivers about the transmitted RTP packet count, the sent octet 

count, the current RTP sequence number, jitter, delay, packet loss, and timestamp used 

for synchronization.  Likewise, RTCP Receiver Report tells the sender about the RTP 

packet statistics on the receiving side. 

RTCP also carries Source-Description (SDES) packet containing information about 

the participant, such as name, email, phone number, location, etc. RTCP BYE packet is 

sent when a participant leaves a multi-user session.  There is also an Application-defined 

packet type, intended for experimental use in new applications or features. 

RTCP packets are encapsulated in UDP packets, and since RTCP packets are 

usually small, they can be combined to occupy the entire UDP payload.  There are certain 
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rules for controlling RTCP channel bandwidth allocation.  Please consult RFC 3550 for 

more information about RTCP specification. 

4.2 COMMON PROTOCOL IMPLEMENTATIONS 

The real-time streaming standard identifies three channels: RTSP, RTP, and RTCP, 

without mandating how they are implemented.  However, the standard specifies the 

characteristics of the data channels, and provides recommendations for the IP network.  

RTSP commands and responses require accuracy and guarantee of service.  This is best 

served by TCP/IP since TCP provides retransmission to guarantee that the data will be 

received and in the correct order.  RTCP data is less important and thus can be 

transmitted over UDP.  RTP packets, due to more focus on being on time and less on 

guarantee of delivery, is also best served by UDP. 

Currently, there are three non-proprietary methods of implementing real-time 

streaming on the IP network.  These methods are used for different network 

configurations: open access to both TCP and UDP, access only to TCP, and only indirect 

HTTP access via proxy. 

4.2.1 RTSP-OVER-TCP / RTP-OVER-UDP [5] 

The real-time streaming standard identifies three channels: RTSP, RTP, and RTCP, 

without mandating how they are implemented.  Naturally, and if possible, utilizing UDP 

for RTP is the better choice. Thus, for networks allowing both TCP and UDP, which is 

the usual configuration for PC, the RTSP-over-TCP and RTP-over-UDP are used.  RTSP 

requests and responses are not transmitted frequently, not time-critical, require high 

accuracy and guarantee of service, and thus are transmitted via TCP.  Also, in this 

network configuration, UDP traffic is not fire-walled.  Streaming client can send and 

receive RTP and RTCP packets via UDP.  This provides better throughput for real-time 

data. 

This is the ideal method for streaming, where different types of data are 

communicated based on different requirements to better utilize the network capacity.  A 

firewall can still be employed with special policy to allow UDP traffic without 

compromising the network security. 
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The following diagram shows three distinct connections, established to serve three 

different channels. 

 

Figure 11.  Standard streaming using TCP and UDP 

4.2.2 INTERLEAVING-OVER-TCP [5, 7] 

Some networks are more restrictive and only allow outbound-established TCP 

connections.  This is most often seen in mobile networks employing the General Packet 

Radio Services (GPRS) system to transmit IP packets.  In this situation, UDP cannot be 

used, and if used, packets will be blocked at the carrier’s IP gateway.  The RTSP/RTP 

streaming standard also specifies an alternative method of interleaving.  There is only one 

full-duplex TCP connection, initiated outbound from the client to the external server, and 

thus can go through the firewall. 

Different types of data are communicated over the same TCP connection.  

However, RTP and RTCP packets must be distinguishable and therefore are delimited by 

an ASCII dollar sign ($), to indicate the start of the packets.  It is followed by a one-byte 

channel identifier (similar to the port number), a two-byte length, and finally the RTP or 

RTCP packet. 
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Figure 12.  Streaming using TCP-Interleaving 

The RTSP commands and responses are similar to the TCP/UDP case.  The 

differences lie in the SETUP command and how the RTP/RTCP data are transferred. 

 

Figure 13.  RTSP SETUP request and response using TCP-Interleaving 

Here, notice the parameter interleaved=2-3 in the SETUP request, informing the 

server to use TCP-interleaving, allocating channel number 2 for RTP and 3 for RTCP.  

The server agrees and confirms the request of using interleaving. 
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Next, RTP and RTCP packets are transferred following this format. 

 

Figure 14.  Interleaved RTP and RTCP packet formats 

TCP-interleaving by design cannot be as efficient as the TCP/UDP approach 

because of one single connection versus two dedicated connections.  By delivering RTP 

packets in a connection-oriented fashion, real-time requirements cannot be satisfied.  

There is also the extra cost to handle the complexity of the interleaving and de-

interleaving the data.  Thus, unless the network configuration forces us to, TCP/UDP 

should be used in favor of TCP-interleaving. 

4.2.3 TUNNELING-OVER-HTTP 

Another variation of TCP-interleaving, called tunneling-over-HTTP [8, 9], is used in the 

most restrictive networks, where only indirect web-browsing (HTTP using TCP port 80) 

via HTTP proxy servers is allowed.  Since the HTTP proxies run over TCP and only 

service HTTP clients from the same network, RTSP, RTP and RTCP packets are 

transmitted over the same TCP connection on port 80, but disguise as HTTP packets.  

The client originates all the requests, including getting the RTP data.  This procedure 

requires that all requests and replies are not cached by HTTP proxy servers, requests can 

be identified as pairs to form a full-duplex connection, and that related requests are 

ensured to connect to the same RTSP server in spite of load-balancing systems using 

multiple HTTP servers. 
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Figure 15.  Streaming via HTTP-Tunneling [9] 

In the above diagram, all RTSP, RTP, and RTCP traffic is done via HTTP GET or 

POST request/response to convey indefinite amount of data in the reply and message 

body respectively.  In the case of using POST, the RTSP request must be base64-encoded 

to prevent HTTP proxy server from interpreting the RTSP request in the POST body as a 

malformed HTTP request. 

It should be noted that tunneling-over-HTTP has the worst efficiency and 

performance.  It also suffers the most complexity.  However, Quicktime Streaming 

Server claims it can support this method successfully.  See “Tunneling RTSP and RTP 

Over HTTP” for more details. 

5 MOBILE STREAMING 

Media streaming on mobile device is similar to streaming on a PC.  The only differences 

are in the network media between the carrier and mobile handset, and the media contents.  

In fact, both PC client and mobile streaming client can use the same server with no 

change in configuration. 

A PC client uses the IP network to access the media content, while a mobile client 

uses both the mobile wireless GPRS network and the IP network. 
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Figure 16.  Mobile streaming architecture 

As depicted in the picture above, the cellular carrier gateway runs on the IP 

network, similar to the PC client.  The gateway bridges the two network technologies 

together: the GPRS wireless and IP networks.  The gateway converts IP packets to GPRS 

packet format and then forwards them to the cellular tower, which again forwards to the 

cellular device. 

In terms of media content difference, mobile devices have significantly smaller 

screen size, compared to PC.  Also, the cellular network runs at much slower speed than 

the IP network.  These are two of the several main reasons why streaming of only small 

dimension, low quality multimedia contents is supported. 

To enable multimedia playback hosted at a remote machine, two basic capabilities 

are needed: 1) network connectivity to establish a connection with the remote server for 

media delivery, and 2) the ability to play the delivered media.  The J2ME Generic 

Connection Framework (GCF) is the approach to network connectivity, and satisfies the 
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first requirement.  The second requirement is made possible by Multimedia API 

(MMAPI) that provides multimedia playback.  We will discuss GCF and MMAPI in the 

following sections. 

5.1 GENERIC CONNECTION FRAMEWORK (GCF) 

J2ME does not provide the full network protocol stack seen on Windows or UNIX 

systems.  Such a full-blown implementation is too resource-intensive for these small-

footprint devices.  Instead, a simple and lightweight system called Generic Connection 

Framework (GCF) is used to create the network connection at runtime.  When a 

connection is required, GCF dynamically looks up a class implementing the protocol 

name specified in the request URL.  For example, the following code creates and opens a 

TCP socket connection to the URL host.domain.com:port 

(SocketConnection)Connector.open(“socket://host.domain.com:port”); 

and the following code is used to create a UDP connection 

(DatagramConnection)Connector.open(“datagram://host.domain.com:port”); 

GCF is the only way to implement network application in J2ME, and will be used 

to implement media delivery in the streaming library. 

5.2 J2ME MULTIMEDIA API (MMAPI) [11] 

Multimedia on mobile device running Java is handled by the J2ME Multimedia API 

(MMAPI) of the JSR 135 specification.  It provides a simple and flexible framework for 

playback and recording of audio and video on resource-constrained devices. 

Multimedia processing involves the following steps: 

• Protocol handling:  retrieves media content from a source such as local storage, 

database, or streaming server and feeds the content to the media-handing 

system. 

• Media content handling:  parses, decodes and renders the media content to 

output subsystem such as the audio speaker and display screen. 

MMAPI defines the high-level interfaces to abstract media retrieval and rendering.  

Device manufacturers will provide the implementation that best fits their products.  

MMAPI is intended for powerful devices with advanced multimedia capabilities such as 
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personal digital assistant (PDA) and the very high-end mobile phones.  For the mass-

market mobile devices, the Mobile Information Device Profile (MIDP) 2.0 (JSR 118) 

[19], which is part of the J2ME framework, provides a compatible subset of multimedia 

functionality.  MIDP 2.0 Media API serves as the building block for MMAPI, and is 

directly compatible.  The most important feature that differentiates MIDP Media API 

from MMAPI is the lack of support for custom DataSource, which is excluded in MIDP 

2.0. 

5.2.1 PROTOCOL HANDLING 

Protocol handling involves streaming session establishment, session management, media 

request and response, and media delivery. First, a connection must be opened to the 

remote streaming server.  Next, the session is established between the client and the 

server to prepare for media delivery.  This involves information exchanges between the 

two entities to agree on session parameters.  Session states must be maintained on both 

server and client, and requests and responses are exchanged to let the server know which 

piece of media the client is interested in.  The media contents can then be transported to 

the client for playback.  Client terminates the network connection when the streaming 

session finishes. 

All of the steps above require the client to communicate with the server over the 

internet.  Hence, GCF is used for protocol handling. 

5.2.2 MEDIA PLAYBACK 

In MMAPI, the interfaces DataSource and Player are defined for protocol handling and 

content handling.  A DataSource represents the source of the media content.  It 

implements the specific protocol and encapsulates the details of how the media is 

retrieved using that protocol.  Different DataSource implementations are provided to 

support various sources, such as the file protocol, the http protocol, and rtsp protocol.  

DataSource has the following main operations: 

• connect() – connects to the remote streaming server. 

• disconnect() – terminates the session with the streaming server. 

• getStreams() – return all the tracks or streams. 
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• start() – initiates server to start sending data. 

• stop() – stops the media data transfer. 

The Player interface controls the rendering of time-based audio and video contents.  

It defines methods to manage the player’s lifecycle, to create media controls used to 

manipulate the presentation (audio volume control, video display control, etc.), and to 

“provide the means to synchronize with other Players” [11]. 

Player has five states in its lifecycle: UNINITIALIZED (player created), 

REALIZED (media information acquired), PREFETCHED (scarce and exclusive system 

resources, i.e. audio device, acquired), STARTED (playing), and CLOSED (player 

destroyed and resources released).  Some of the Player’s main operations are: realize(), 

prefetch(), deallocate(), start(), stop(), and close().  The following diagram describes the 

Player’s state machine. 

 

Figure 17.  J2ME MMAPI player state machine 

The transition operations may in turn invoke operations on the DataSource object to 

send requests to set up the streaming session, query for media information, start the data 

transfer, pause the stream(s), and close or tear down the session. 

Player instances are created by the factory class Manager.  This class provides 

three methods to create players: 

1. Using an InputStream obtained by reading a file, memory, or network 

connection. 

2. Using a URL location to a remote location. 
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3. Using a DataSource, as mentioned above. 

The following diagram shows how these interfaces work together to enable 

multimedia playback. 

 

Figure 18.  J2ME MMAPI simplified component diagram 

6 STREAMING LIBRARY 

MIDP 2.0 Media API does not support real-time media streaming, and thus can only be 

used for media download or media on the local storage.  Although the MMAPI 

specification is designed for real-time streaming and supports custom DataSource, many 

mobile phones that claim to be MMAPI-compliant do not have real-time streaming 

capability or extensibility of DataSource. 

In this project, a streaming library is developed to provide the streaming capability 

to these semi-MMAPI-compliant devices.  It enables multimedia playback from a remote 

media source, using an approach different from Media Download, mentioned in Section 
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3.1.  It also makes use of the free Bluetooth medium to get rid of the data cost associated 

with the traditional way of doing networking on mobile devices. 

6.1 MOTIVATIONS 

There have been many semi-MMAPI-compliant mobile phones on the market.  As new 

devices are manufactured to meet the high demand for multimedia, one would think that 

most, if not all, of recently made phones would be equipped with real-time streaming.  

However, reality proves the opposite: many low-end to medium devices are still being 

produced semi-MMAPI-compliant, due to 1) lack of hardware, 2) manufacturing cost 

reduction, 3) time-to-market constraint, and 4) technical resources constraint.  Thus, it is 

motivational to bring the multimedia streaming capability to this subset of mobile 

devices. 

6.2 REQUIREMENTS 

The library is targeted at devices that do not have streaming support in Java, and thus will 

need to: 

• Provide a module implemented in Java that J2ME applications can use to 

facilitate multimedia streaming-like capability. 

• Provide a Bluetooth proxy implementation to avoid using cellular network. 

6.3 ARCHITECTURE DESIGN 

The targeted mobile devices already can play local media files encoded in a number of 

formats, such as MPEG-4, MIDI, etc.  The assumption is that they will not need the 

media decoders, and all the library has to deliver is the protocol handling feature to 

retrieve the media contents that the device already has the decoders for. 

For contents, the media is encoded in MPEG-4 and uses 3GP container format.  The 

streaming library is provided as a module, and the J2ME application sits on top of this 

module.  The following diagram shows the intended use of the library. 
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Figure 19.  Custom streaming library module 

The cellular tower and the carrier gateway are left out for clarity.  The module 

handles all the networking and interaction with the remote server, and supplies the media 

data to the media player via the J2ME application.  Although the diagram shows the 

library sits below the media player layer, it is actually a part of the J2ME application. 

6.3.1 DIRECT DELIVERY USING WIRELESS TCP/IP NETWORK 

TCP and UDP are among the protocols supported by GCF.  TCP and UPD connections 

can be established using socket and datagram in the protocol name as in Section 5.2.1.  

Using TCP and UDP connection provides a direct mapping from TCP to RTSP channel, 

and UDP connection(s) to RTP and RTCP, as in the real-time streaming specification. 

IP packets are carried over the cellular GPRS data network and forwarded to the 

streaming server.  For new devices with WiFi capability, the phone can join the home 

wireless network and use the IP network directly.  The following diagram shows a mobile 

device using the WiFi network topology to access the streaming server. 
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Figure 20.  Custom streaming library in a WiFi environment 

6.3.2 DELIVERY OVER A BLUETOOTH PROXY 

Bluetooth is a short-range and low-speed radio technology used in many mobile gadgets.  

Bluetooth capability has recently become popular on PC using an add-on USB chip 

called a dongle.  The rationale for using Bluetooth in the streaming library is that a 

Bluetooth-enabled PC can be used as a proxy, and the local are network (LAN) can be 

borrowed to deliver media contents from an IP network to a mobile device, for free.  

Bluetooth is a generic technology which can be used to build other application protocols.  

To facilitate this usage, a Bluetooth proxy needs to be implemented, which runs on a 

LAN-connected PC, to interact with the streaming server on the client’s behalf.  

Bluetooth support in J2ME is in JSR 82 specification.  The following diagram shows the 

suggested stacks involved in the streaming-over-Bluetooth approach between a mobile 

device and a LAN-connected PC. 
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Figure 21.  Streaming library and Bluetooth proxy 

Even though the LAN side is omitted, it is just a normal LAN connection.  The PC 

can either be connected to a wired LAN, or a wireless (802.11) local network. 

6.4 PROJECT DESIGN 

Three approaches have been considered and are discussed in details below.  The most 

appropriate method is chosen as the solution.  The first two methods use the open-source 

Darwin streaming server, while the last one uses a custom server. 

6.4.1 TCP/UDP APPROACH [10] 

This method uses a custom DataSource to implement the streaming protocol.  The custom 

DataSource, RTPDataSource, implements the specific delivery protocol, in this case, by 

using both TCP and UDP.  The following diagram shows a simplified view of the classes 

involved. 
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Figure 22.  Class diagram for the TCP/UDP approach 

In this approach, a TCP connection is used for the RTSP channel, and for each 

track, a pair of UDP connections is used for RTP and RTCP channels. 

The class RTPDataSource implements the interface DataSource, and contains an 

instance of ProtocolHandler, which handles all the RTSP requests and responses. With 

knowledge of the media from the DESCRIBE response, ProtocolHandler creates a 

collection of SourceStreamHandler instances to represent the tracks, with each 

encapsulating an RTPReader and RTCPReader that receive RTP packet and RTCP 

packet from RTP and RTCP channels, respectively. 

A SourceStreamHandler object contains a TCPSourceStream instance that 

implements the interface SourceStream.  A SourceStreamHandler can be of either audio 

or video type, and creates the appropriate controls for that track.  It also carries track-

specific information, such as track id, RTP and RTCP port numbers. 

TCPSourceStream uses a CircularByteBuffer object to store the accumulated RTP 

packet data that will be consumed by the Player.  The circular buffer has APIs for reading 

data from and writing data to it. 
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An RTPReader class is implemented to handle incoming RTP packets.  These 

packets are received, reconstructed, and then dispatched to the owning 

SourceStreamHandler object.  RTPReader is implemented in a Thread to work in a 

concurrent, non-blocking fashion. 

Similarly, an RTCPReader object is used to handle the RTCP channel.  It reads and 

reconstructs RTCP packets, and also forwards them to the associated stream handler. 

An RTP packet is represented by an instance of the class RTPPacket.  This class 

can decode a binary buffer to reconstruct the RTP packet with properties like payload 

type, sequence number, timestamp, and the actual data, etc.  A handful of other classes 

are used to represent only the prominent RTCP packet types: Bye, Receiver Report, and 

Sender Report.  Naturally, they are named ByePacket, RRPacket, and SRPacket. 

RTPDataSource’s operations are directly mapped to the operations on 

ProtocolHandler, such as connect(), disconnect(), start(), and stop(). 

 

Figure 23.  Operation mappings 

The table above maps operations from the Player interface to operations on the 

custom DataSource, and then to operations on ProtocolHandler.  ProtocolHandler takes 

care of the actual networking between client and server, and also keeps track of the 

session state, such as Described, Setup, Playing, or Stopped.  “xxx” means there is no 

matching operation.  These mappings are formed by observing and debugging the media 

framework. 
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When realize() is called on the Player object , it invokes connect() on the custom 

DataSource.  According to the MMAPI specification, realize() examines the media data; 

and according to the media streaming standard, the DESCRIBE request is used to retrieve 

media information.  Thus, these operations are associated together. 

“prefetch() acquires the scarce and exclusive resources and processes as much data 

as necessary to reduce the start latency” [11].  However, there is not any way to acquire 

device’s hardware resources, such as speaker and display, and also there is any matching 

operation on the DataSource interface, it is not associated with any operation (no-op). 

The operation start() on Player calls start() on DataSource to resume the data 

transfer.  At this point, we need to send the SETUP request if we have not done so, then 

send the PLAY request to begin or resume the data transfer. 

The operation stop() on Player calls stop() on DataSource, which “will pause the 

playback at the current media time” [11].  Therefore, ProtocolHandler sends PAUSE to 

the server.   And finally, close() – used to close the Player and release all resources – is 

mapped to disconnect() on DataSource, which causes the TEARDOWN request to be 

sent by ProtocolHandler. 

This approach adheres well to the real-time multimedia streaming specification.  

However, it does not work at the last mile of the cellular network.  The problem this 

implementation faces is the cellular carrier, being very conscious of the security risks 

involved in opening UDP ports, has blocked all incoming UDP traffic at their IP gateway.  

UDP packets destined for the phone are not forwarded to the device.  The phone can send 

RTSP commands to the Darwin server, and receive RTSP responses successfully.  By 

sniffing the traffic on the server with Ethereal, we can see that RTP and RTCP packets 

are sent out by Darwin server, but none of them reaches the mobile device.  This is 

confirmed by testing in the emulator running on a PC.  The UDP connections can be 

established between the client running on the emulator and Darwin server.  The client 

library can also receive UDP packets originating from the server machine.  Appendix A 

shows the detailed class diagram of the TCP/UDP approach. 

 



 38 

6.4.2 TCP-INTERLEAVING APPROACH [5] 

Since UDP packets are not forwarded by the carrier’s gateway, we switch to using TCP-

interleaving.  As discussed in Section 4.2.2, TCP-interleaving uses one TCP connection 

to multiplex RTSP request/response and RTP/RTCP packets.  The challenge then lies in 

the de-multiplexing of data and reconstructing the packets for the various channels. 

 

Figure 24.  Class diagram for the TCP-Interleaving approach 

The class diagram for this approach resembles that of the TCP/UDP.  We have the 

familiar RTPDataSource entity implementing the DataSource interface, and also the 

TCPSourceStream class implementing the SourceStream interface.  Again, 

TCPSourceSgtream contains a CircularByteBuffer object, used to buffer media data. 

Similarly, we have the ProtocolHandler class bridging the custom DataSource and 

TCPSourceStream, through the abstract class SourceStreamHandler.  Each 

SourceStreamHandler instance manages a track in the media. 

There is no longer an RTCPReader entity.  The class RTPReader now reads and 

recreates both RTP and RTCP packets, since they are sent on the same connection.  The 
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TCP connection is also shared with ProtocolHandler, which needs to send and receive 

RTSP request and responses. 

SETUP rtsp://mstream.dyndns.org:554/crazydancing.3gp/trackID=65536 RTSP/1.0

CSeq: 2

TRANSPORT: RTP/AVP/TCP;interleaved=0-1

RTSP/1.0 200 OK

Server: DSS/5.5.4 (Build/489.13; Platform/Win32; Release/Darwin; )

Cseq: 2

Last-Modified: Fri, 12 Jan 2007 06:32:32 GMT

Cache-Control: must-revalidate

Session: 91061896640550

Date: Wed, 28 Feb 2007 04:11:40 GMT

Expires: Wed, 28 Feb 2007 04:11:40 GMT

Transport: RTP/AVP/TCP;interleaved=0-1

SETUP rtsp://mstream.dyndns.org:554/crazydancing.3gp/trackID=65536 RTSP/1.0

CSeq: 2

TRANSPORT: RTP/AVP/TCP;interleaved=0-1

RTSP/1.0 200 OK

Server: DSS/5.5.4 (Build/489.13; Platform/Win32; Release/Darwin; )

Cseq: 2

Last-Modified: Fri, 12 Jan 2007 06:32:32 GMT

Cache-Control: must-revalidate

Session: 91061896640550

Date: Wed, 28 Feb 2007 04:11:40 GMT

Expires: Wed, 28 Feb 2007 04:11:40 GMT

Transport: RTP/AVP/TCP;interleaved=0-1

 

Figure 25.  Sample interleaved SETUP request/response 

The example above shows the SETUP request and response to establish an 

interleaving session.  The special parameter “interleaved=0-1” is used to request that 

RTP and RTCP data be interleaved on the same connection, identified by channel 

number: 0 for RTP and 1 for RTCP.  This same parameter is sent back in the response to 

acknowledge the request. 

The same convention of using even channel numbers for RTP and the next higher 

odd numbers for RTCP is followed.  A track thus owns two channel numbers, an even for 

RTP channel and an odd for RTCP channel.  RTPReader does not know anything about 

the different tracks.  It can only tell if the interleaved data is an RTP packet or an RTCP 

packet, by looking at the channel number parity: even channel number – RTP packet; odd 

channel number – RTCP packet.  It parses the binary data, reconstructs the packet, and 

sends it to RTPDataSource, along with the channel number.  RTPDataSource then 

forwards this packet and the associated channel number to ProtocolHandler for packet 

handling. 

ProtocolHandler needs to keep track of which SourceStreamHandler owning which 

channels.  It maintains this information in two hash tables, mapping from channel number 
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to SourceStreamHandler object.  Using the reported channel, ProtocolHandler looks up 

the correct SourceStreamHandler object and passes the packet to it. 

SourceStreamHandler receives the packet, and if it is an RTP packet, sends it to 

TCPSourceStream for buffering.  The media data encapsulated in the RTP packet is 

removed and inserted into the circular data buffer. 

The operation mappings between Player, DataSource, and ProtocolHandler are the 

same as in the TCP/UDP approach.  Appendix B shows the complete TCP-interleaving 

class diagram. 

Since this approach does not use UDP connection, it succeeds in getting the RTP 

and RTCP packets delivered to our streaming library.  Like before, we run Darwin server 

on the server PC, and use Ethereal to sniff the network packets.  Three tests are 

conducted for comparison, using: 

1. Native streaming on Sony Ericsson W850i:  Since we cannot tap into the native 

streaming code, we have to sniff for network traffic on the server machine.  The 

UDP packets (column #1) are captured on the server using Ethereal, and recorded 

in the first test case.  We inspect each UDP packet for the length of the 

encapsulated RTP packet (column #2), and the length of the media data contained 

in that RTP packet payload (column #3). 

2. TCP-Interleaved on emulator:  Using the client streaming library in the J2ME 

application on the emulator, we can print out each RTP packet that RTPReader 

constructs from the interleaved data.  Since UDP is not used, we record only the 

RTP packet length (column #4) and media data length (column #5) in the payload. 

3. TCP-Interleaved on W850i:  This time, the same test as in (2) is conducted, but 

on the real device.  Running the same application on the Sony Ericsson W850i, 

we log each incoming RTP packets in the phone’s local storage, and upload the 

log file to the server at the end of the session for viewing.  Again, the RTP packet 

length and payload length are recorded in the log, shown in columns #6 and #7, 

respectively. 
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The total number of RTP packets sent and received matches in three tests, 96 

packets.  For RTP packets, the octets sum up to be 68,647 bytes in all three cases; and so 

do the sums of the payload octets, at 67,496 bytes.  Although we have not inspected and 

compared each packet’s content, we are confident that the client streaming library using 

TCP-interleaving is working properly.  Appendix C shows the complete recordings of the 

three tests described above. 

Media data encapsulated in RTP packets can now be collected and properly inserted 

into the source streams.  However, we get into a different issue: the phone is only semi-

MMAPI-compliant.  The Player object, although being given a custom DataSource 

object, just treats it like it does with a local input stream.  When local input stream is 

used, the entire media file is loaded into memory and the memory buffer is passed to the 

player.  A custom DataSource being treated like an input stream is no difference from 

whole media download.  A true MMAPI-compliant implementation fetches data from the 

DataSource, little by little, and presents it when just enough data has been buffered.  

Three high-end phones, a Nokia and two Sony Ericsson devices, have been tested with 

TCP-interleaving.  Not only that none of the tested phones provides true MMAPI 

implementation with custom DataSource support, but also none of the mobile phones on 

the market is reported to be fully MMAPI-compliant. 

6.4.3 MULTI- SUBCLIP APPROACH 

In this approach, the intended media file is broken into smaller sub-clips - each is 

complete by itself and can be played independently.  The original media file can be split 

based on duration or sub-clip file size using Mp4box from the GPAC tool suite.  The 

shorter the sub-clips are (either in duration or size), the less time it takes to download the 

individual clips.  However, this method is similar to playing a multi-disc movie: we have 

to remove the current disc and insert in the next one.  This process takes time, and there is 

a gap in between the sub-clips.  Thus, short clips reduce download delay at the cost   of 

increasing gaps between clip playbacks. 

Mp4box from the GPAC tool suite is used to split the following media file into ten-

second clips.  There really is no rule on how long each clip should be, either in time 

duration or size.  Experiments are conducted with the splitting process to find the most 
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optimal configuration - one which does not produce: 1) a long download delay per clip 

and 2) the slideshow-effect because of fast switching among very short clips.  To satisfy 

these two criteria, the clips should be as long as possible (in terms of file size) without 

sacrificing clip download time.  Having shorter clips also means there are more clips per 

video, which in effect creates a bigger description file. 

In this experiment, the demo video is split into 10-second subclips of varying sizes.  

The choice of using a fixed clip-duration rather than fixed clip-size is made to ensure that 

the flashing effect is only seen at regular intervals.  This choice helps demonstrate the 

clip switching effect, and may also enhance user experience. Also, since videos targeting 

mobile devices are most likely encoded using fixed bit-rate, splitting based on duration 

produces little variation in clip size, as in the following example, where clip sizes range 

from 72.3 KB to 79.2 KB. 

 

Figure 26.  Splitting video file using mp4box (GPAC) 

The client library will need some knowledge about the media and the associated 

clips.  We design a custom media description language, mirroring SDP.  Darwin 

streaming server can no longer be used.  Instead, a server is developed to handle request 

for a media file and deliver the sub-clips in response.  A custom RTSP language is 
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created to enable the communication between the client and the custom server.  Our 

custom RTP is used to deliver media data.  It does not really have a format, and will be 

addressed as the RTP channel instead. 

6.4.3.1 NAMING CONVENTION 

To distinguish between our custom formats and the various standards defined in the 

RFCs, we will append the letter “c” to the custom format, i.e., SDP-c, and append the 

RFC number to the standard format, i.e., SDP-4566. 

6.4.3.2 CUSTOM SDP 

RTSP uses the SDP standard defined in RFC 4566 to convey the media information, such 

as type and format, media transport and session description metadata to the client.  The 

following snapshot shows the SDP-4566 media description for a video file named 

CrazyDancing.3gp. 

 

Figure 27.  Sample SDP-4566 packet 
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The SDP-4566 syntax above tells the session name in “s=\crazydancing.3gp”, 

connection information in “c=IN IP4 0.0.0.0”, the two media streams: one video in 

“m=video 0 RTP/AVP 96” and one audio in “m=audio 0 RTP/AVP 97” along with their 

track ids.  The audio and video lines also describe the encoding, such as AMR sampled at 

8 KHz, and H263 video format of size 176x144. 

Our streaming client is interested only in the media information, but not the 

protocol and session description.  It has to know the media format, and since the original 

media file is split into smaller clips, it also needs to know the number of clips constituting 

the requested media, and for each clip, its duration and size.  The clips must be requested 

and played in the correct order so that they form a continuous media session.  These 

requirements result in the following custom SDP-c format: 

 

Figure 28.  Custom SDP format 

The attribute “m=” gives the name of the original media that this SDP describes.  

The attribute “t=” tells the media format.  The “p=” lines list all the sub-parts of the 

media.  Each p-line contains the (clip) part id, followed by the part name, the starting 

time in milliseconds, the part duration in milliseconds, and finally the length of that part 

in bytes.  The figure below shows the media description for a video named 

KnightRider.3gp in the SDP-c format. 
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Figure 29.  Sample custom SDP packet 

The video KnightRider.3gp has a type of “video/3gpp” and consists of six parts, 

starting with KnightRider_001.3gp as the first clip, followed by KnightRider_002.3gp, 

etc. and ending with KnightRider_006.3gp.  For each part, the duration in milliseconds 

and length in bytes are also included, i.e., 9,472 ms with a length of 72,589 bytes for the 

first sub-video, which starts at time 0.  

The SDP–c-formatted information is encapsulated in the DESCRIBE response, to 

tell the client what it needs to request, and in which order.  This custom SDP format 

offers high flexibility like the original SDP specification, allowing more attributes to be 

added.  If extensibility is required, the client library, and possibly the server, will need to 

be changed to understand the new information that it may be interested in. 

6.4.3.3 CUSTOM RTSP 

A new set of RTSP syntaxes are also developed to fit the customized protocol.  Mirroring 

the conventional RTSP specification, the new protocol has the following requests: 

• DESCRIBE:  to obtain the media meta-data in the custom SDP format. 

• SETUP:  to obtain a unique session id that is used to associate a client with a 

session and network connections. 

• PLAY:  to request a specific sub-clip. 

• TEARDOWN:  to terminate the session with the server. 

As each clip is completely playable by itself and resides in the client’s memory, 

there is no need for a PAUSE command.   The client can just issue a local Pause request 

when needed. 
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All RTSP-c commands follow the RTSP-2326 command syntax by including a 

“Cseq:” header,  used to pair the request and reply.  Lines in request and response also 

end with a pair of CarriageReturn/LineFeed (CRLF), and the request and response is 

terminated with two pairs of CRLF. 

The DESCRIBE request contains the command “DESCRIBE” followed by the 

media request URL and the RTSP version.  Media request URL is in the familiar format 

rtsp://host.domain:[port]/media-file, where port is optional. 

The client issues the SETUP request to obtain a session id used in successive 

requests.  The session id is used by the server to associate the different channels, in case 

of using TCP/IP, and to locate and identify the different clients. The SETUP request also 

starts with REQUEST as the command, followed by the rtsp URL and ended with rtsp-

version. 

The PLAY request and reply require more headers to convey information about the 

requested media clip.  Below is the format for the PLAY request: 

 

Figure 30.  RTSP-c PLAY request 

The TERMINATE request serves the same purpose as in RTSP-2326.  Upon 

receiving this command, the server replies with an OK, terminates all connection 

channels with client, and cleans up resources used to service that client session. 

Figure 31 shows a complete streaming session, using the custom SDP and RTSP, 

which plays only the first clip of the media.  It shows where SDP-c is used along with all 

the commands described in this section. 

6.4.3.4 CUSTOM RTP CHANNEL 

The multimedia streaming standard uses RTP packets to carry media data, possibly in a 

separate channel.  Our custom streaming design does not break media data into packets, 
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but rather delivers unit of whole clips.  RTP-c channel specifies only the API, and the 

implementation is dependent on the underlying network protocol in use. 

For network supporting multiple connections, such as IP, a separate connection can 

be established for the RTP channel.  However, for network topology that allows only a 

single connection between two devices, such as Bluetooth, the same Bluetooth 

connection is used to carry both RTSP and RTP traffics.  In this case, RTP is 

implemented as a virtual channel, rather than a dedicated and physical channel. 

The RTP-c API is designed to be very simple.  The calling library uses it to send a 

session id so the remote server can pair it with the corresponding RTSP channel, if 

separate connections are used.  The caller also uses the RTP-c channel to read back a 

stream of media data after a successful PLAY response. 

6.4.3.5 CLIENT MEDIA MANAGER 

At the high-level, there are three tasks associated with the multi-clip approach: 

• Maintaining media information:  such as the various clips, clip order, clip start- 

time, duration and length.  This is required to maintain a continuous stream of 

clips to form the original media. 

• RTSP protocol handling:  to send and process RTSP request and response, as well 

as to retrieve clip data. 

• Managing clip playback:  each clip is played independently, but in a series to 

form a longer piece of multimedia. 

All the above tasks are dealt with using a media manager.  The media manager is 

the entry point to this method of streaming, from the application’s point of view.  

Applications do not know anything about SDP-c, RTSP-c, and RTP-c.  All they know 

about is the media manager and the media manager does the all the work associated with 

the tasks described above. 
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DESCRIBE rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 1

RTSP/1.0 200 OK

CSeq: 1

Content-length: 237

m=KRON.3gp

t=video/3gpp

p=1 KRON_001.3gp 0 10000 76284

p=2 KRON_002.3gp 10000 10000 79240

p=3 KRON_003.3gp 20000 10000 75326

p=4 KRON_004.3gp 30000 10000 75030

p=5 KRON_005.3gp 40000 10000 77828

p=6 KRON_006.3gp 50000 9750 72352

SETUP rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 2

RTSP/1.0 200 OK

CSeq: 2

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

PLAY rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 3

File: KRON_001.3gp

FileSize: 76284

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

RTSP/1.0 200 OK

CSeq: 3

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

TEARDOWN rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 6

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

RTSP/1.0 200 OK

CSeq: 6
 

Figure 31.  Custom RTSP streaming session 
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6.5 PROJECT IMPLEMENTATION 

6.5.1 SHARED MODULE(S) 

The streaming client library and streaming serve are implemented in Java.  The server 

uses Java 2 Standard Edition (J2SE), while the client library uses J2ME.  Since J2ME is a 

subset of J2SE, some components shared by both the client and the server are 

implemented as shared modules.  Three shared modules are identified: SDP, RTSP, and a 

utilities module. 

6.5.1.1 SDP MODULE 

This module consists of only one class: DML, standing for Descriptor Markup Language.  

It contains the structure for the SDP-c format, with properties to keep track of media 

name and type (“m=” and “t=” lines) and entries to keep track of individual clips (“p=” 

lines).  It can parse and interpret the textual form of SDP-c contained in the DESCRIBE 

response, as well as build a textual representation of the SDP-c format to send in the 

same response. 

6.5.1.2 RTSP MODULE 

This module consists of the following classes: 

• RTSPException:  a generic exception class used in RTSP request/response 

parsing. 

• RTSPTypes:  serves as the base class for RTSPRequest and RTSPResponse.  It 

declares RTSP header definitions, such as “DESCRIBE”, “SETUP”, “PLAY”, 

“CSeq:”, “Session:”, “File:”, “FileSize:”, and RTSP version, etc.  It also has 

API to add and retrieve the header values. 

• RTSPStatusCode:  maintains a list of error codes and error message mapping that 

are consistent with the RTSP-2326 standards. 

• RTSPRequest:  derives from RTSPTypes and represents an RTSP request.  It 

encapsulates the commands specific to a request, such as “DESCRIBE”. 

• RTSPResponse:  also derives from RTSPTypes and encapsulates an RTSP 

response. 

• RTSPReader:  an interface that defines APIs for reading lines of string from an 

RTSP channel.  It is used by RTSPRequest and RTSPResponse.  Network 
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protocol-specific implementation, such as TCP or Bluetooth, will derive from this 

interface. 

• RTSPWriter:  defines APIs for writing a string to an RTSP channel, and is used 

by RTSPRequest and RTSPResponse.  Similar to RTSPReader, network protocol-

specific derived classes, such as TCP and Bluetooth, will provide the 

implementation. 

• RTSPSocketReader:  socket-implementation for RTSPReader, used by both 

server and client socket library. 

• RTSPSocketWriter:  socket-implementation for RTSPWriter, used by both server 

and client socket library. 

6.5.1.3 UTILITIES MODULE 

This module defines classes used for debugging, logging, and string manipulations.  

6.5.2 STREAMING SERVER 

The server, implemented in the class StreamingServer, uses TCP/IP connections for 

communication and media delivery.  The server contains two threaded services, to 

concurrently support multiple client sessions.  The following figure shows the class 

diagram of the streaming server. 

 

Figure 32.  Custom streaming server class diagram 
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The RTSP service, implemented in the class RTSPService, binds to TCP/IP port 

5454 and listens for new client requests.  When a new session request arrives, 

RTSPService creates a new SessionHandler object to handle all of client’s RTSP 

requests.  SessionHandler is implemented as a thread so it can run on its own.  When the 

client sends a DESCRIBE request, SessionHandler checks its media collection to see if 

the requested media exists.  If the requested media is present, the handler uses a 

DMLParser object to read the media’s DML file.  DMLParser understands the format and 

constructs the DML object, then returns it to SessionHandler.  SessionHandler replies 

with an RTSP OK, along with the SDP-c formatted DML.  When SETUP is received, 

SessionHandler generates a unique session id and sends it in the response.  At the same 

time, it registers itself with the streaming server as a pending session, using a session key.  

The session will become complete when the RTP channel connection is established 

successfully. 

The class RTPService provides the implementation for the RTP service, which 

listens on TCP port 5455.  As a TCP connection is opened, it accepts and adds it to the 

read connection list of a Selector object (Java implementation of the Unix select() 

method).  The client is expected to send the session id next, and the service reports the 

new connection and the session id to the streaming server.  The streaming server then 

compares the session id with those in the pending session list, and if a match is found, the 

session is fully established and is removed from the list. 

The two established TCP connections are now owned by SessionHandler, which is 

responsible for the streaming session from now on.  RTSP requests and responses are 

sent over the RTSP connection, and media data is sent over the second connection. 

Figure 33 shows the main body pseudo-code of SessionHandler. 



 52 

 

Figure 33.  SessionHandler body 

There are other classes in the server module providing the implementations for 

RTSP and RTP connections.  These classes are RTSPSocketConn and RTPSocketConn, 

respectively, which provide the APIs for receiving an RTSP request and sending the 

response, and to stream the requested media’s contents.  The module also has logging 

support used for monitoring and debugging purposes. 

Figure 34 shows the server receiving and responding to a DESCRIBE and a SETUP 

requests.  This session is established using the Bluetooth client implementation.  The 

client of this session is the streaming proxy, which will relay this information back to the 

actual client - the mobile device. 
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Figure 34.  Streaming server in operation 

6.5.3 CLIENT STREAMING LIBRARY FRAMEWORK 

The client library is designed for extensibility with different network technologies.  The 

framework is broken down into packages and interfaces so that a new implementation 

specific to a network protocol can be easily added. 

The client streaming framework incorporates and extends the shared library module 

discussed above.  It consists of six main packages, outlined below: 

1. com.mstream.client:  contains UI component implementations for the sample 

streaming application.  These include the main application, the two video screen 

types (VideoCanvas and VideoForm), and SessionChooser and 

SessionChooserListener.  The video screen types are used for video display.  The 

SessionChooser class is for selection one of two supported session 
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implementations: Socket or Bluetooth.  The following classes belong to this 

package: 

• VideoScreen:  base class for VideoCanvas and VideoForm. 

• VideoCanvas:  canvas-based video display implementation. 

• VideoForm: form-based video display implementation. 

• SessionChooserListener:  provides a listener interface to notify when a session 

is selected for use. 

• SessionChooser:  provides the UI component for session browsing and 

selection. 

• StreamingClient:  the sample video streaming application. 

2. com.mstream.client.io:  this package contains the connection interfaces used for 

RTSP and RTP channels, a base class for the streaming session 

(StreamingSession), and the session factory.  The session factory is used to create 

Bluetooth streaming sessions.  The classes in this package are: 

• RTPConnection:  provides an interface for an RTP channel with APIs to send 

a session id and retrieve the requested media stream. 

• RTSPConnection:  abstracts the different RTSP channel implementations. 

• StreamingSession:  a base class representing a streaming session, which 

contains an RTSP- and an RTP connection objects. 

• SessionFactory:  produces Bluetooth streaming session objects. 

3. com.mstream.client.io.bluetooth:  is the Bluetooth implementation of the 

streaming client.  It contains Bluetooth-specific classes that extend the classes 

and/or implement the interfaces in the two packages above.  It contains the 

following classes: 

• BluetoothServiceInfo: an interface defining L2CAP message types and the 

UUID of the Bluetooth proxy service. 

• ProxyServiceDiscovery:  a utilities class used to discover the Bluetooth proxy 

services in proximity. 

• ServiceDiscoveryListener:  utilities classes used for proxy service discovery. 

• L2CapSession:  provides the Bluetooth-implementation for the 

StreamingSession class. 
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• RTSP_RTP_L2CapConn:  the implementation for both the RTP and RTSP 

connection interfaces.  It handles RTSP request/response and media retrieval. 

4. com.mstream.client.io.socket:  provides the streaming client implementation 

using socket, consisting of the following classes: 

• RTSPSocketConnection:  implements the RTSP connection using socket. 

• RTPSocketConnection:  implements the RTP connection interface using 

socket. 

• SocketSession:  provides the StreamingSession implementation using 

RTSPSocketConnection and RTPSocketConnection. 

5. com.mstream.client.util:  contains utilities classes. 

• BufferOverflowException:  an exception class used by the CircularByteBuffer 

and CircularCharBuffer. 

• CircularByteBuffer:  implements a circular buffer of bytes. 

• CircularCharBuffer:  implements a circular buffer of characters. 

• UUID:  provides unique identifiers. 

• Task:  an interface representing a unit of work. 

• TaskDispatcher:  implements a thread to execute and perform the tasks. 

6. com.mstream.client.media:  the core framework for the multimedia streaming 

library.  It defines the classes related to media handling and playback, and 

consists of: 

• DeviceConfig:  keeps device-specific information, such as how many open 

players the device can support. 

• SessionManager:  produces sequence numbers (CSeq) for RTSP requests. 

• MediaInfo:  maintains information about various tracks in a media. 

• MediaPartPlayer:  handles the playback of a single sub-clip. 

• MediaPlayerListener:  listener interface for various media playback event. 

• MediaPlayer:  combines all the classes and interfaces above to support media 

streaming and playback. 

7. com.mstream.test:  provides logging framework and other tests used during 

development. 
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• Logger:  the logging utilities class. 

• RMSLogger:  a J2ME application for viewing logs and sending them to a 

remote server. 

• NetworkTest and ProxyServiceDiscoveryTest:  network test application and 

Bluetooth proxy service discovery test. 

The following is the class diagram linking the important classes together. 

 

Figure 35.  Client library class diagram 

Notice the class RTSP_RTP_L2CapConn, which implements both the 

RTSPConnection and RTPConnection interface.  L2CAP permits one active connection 

between two Bluetooth devices; and so this implementation must multiplex both channels 

on one physical connection to handle both RTSP and RTP traffic. 

6.5.3.1 TCP/IP CLIENT LIBRARY 

TCP/IP client library is provided in the package com.mstream.client.socket.  We use TCP 

sockets to implement the two channels, RTSP and RTP, separately.  The RTSP 
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implementation is in the class RTSPSocketConnection, and the implementation for RTP 

channel is in the class RTPSocketConnection. 

The RTSP channel opens a socket connection and connects to port 5454 on the 

remote streaming server.  RTSPSocketConnection makes use of RTSPSocketReader and 

RTSPSocketWriter, provided in the shared module, to send an RTSP request and read 

back an RTSP response. 

The RTP channel connects its TCP sockets to port 5455 on the server.  The session 

id is sent over this socket to the server, and media is read back from this connection. 

SocketSession provides the implementation for StreamingSession.  It encapsulates 

both RTSPSocketConnection and RTPSocketConnection, and forms a uniform interface 

to service the higher layer, the MediaPlayer, to retrieve media data. 

6.5.3.2 BLUETOOTH LIBRARY USING L2CAP 

Logical Link Control and Adaptation Protocol (L2CAP) is used for the Bluetooth 

implementation.  L2CAP is a packet-based protocol [12, 14, 15], and with a header length 

of 2 bytes, each packet can be 64 KB in length.  However, mobile devices in practice 

support much smaller packet size of 672 bytes. 

Since only one channel can be active between two devices, both the RTSP and RTP 

channels have to share an L2CAP connection.  This means the data packets have to be 

marked to be either an RTSP or RTP packet.  The following message types are defined to 

identify packets and the data in the payload: 

• RTSP_REQ_MSG:  an L2CAP packet containing an, or part of an, RTSP request. 

• RTSP_RESP_MSG:  an L2CAP packet containing an, or part of an, RTP 

response. 

• RTP_MSG_MARKER:  an RTP packet containing media data. 

• SESSION_ID_MARKER:  a packet containing the session id from client to server 

when establishing the RTP channel. 

• CONTINUATION:  containing data following the first packet if the data exceeds 

one packet. 
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The L2CAP messages are formatted as below: 

 

Figure 36.  L2CAP message format 

This message format allows an L2CAP packet to carry a maximum of 667 bytes of 

data. 

Service discovery is abstracted in the class ProxyServiceDiscovery.  When 

requested, this class does an asynchronous discovery and listens for new devices and 

services.  ProxyServiceDiscovery maintains a cached list of found services.  When a 

service is found, it is added to this service cache, and the list can be returned upon request 

without blocking. 

At start-s up, the client instantiates a SessionFactory object.  The SessionFactory 

object then makes a request to ProxyServiceDiscovery to discover the Bluetooth devices 

in its surroundings that offer the streaming service, using the service id 

“5c3d0cd51ec84b0197120b9e1f813d40”.  Each service comes with a Bluetooth URL in 

the following format: 

btl2cap://<BDA>:PSM;[param=value;]  where 

BDA: Bluetooth device address of the device offering the service. 

PSM: Protocol Service Multiplexor – used to determine the higher level application 

protocol. 

For each of the found services, SessionFactory creates an L2CapSession object 

using the associated URL.  L2CapSession provides the StreamingSession implementation 

using Bluetooth technology and represents the remote Bluetooth service. 

The core of this implementation resides in the class RTSP_RTP_L2CapConn, 

which implements both RTSP and RTP operations.  This class encapsulates an 

L2CapConnection instance (defined in JSR 82) and uses two internal classes: 

RTSPBluetoothReader and RTSPBluetoothWriter, to read and reconstruct an 
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RTSPResponse object, and to write an RTSPRequest string.  All of these three classes act 

on a single connection, and thus need to control access to the connection using a shared 

lock. 

RTSP_RTP_L2CapConn uses a CircularByteBuffer and a CircularCharBuffer to 

save data that are read in by mistake.  The circular character buffer is used to save read-

ahead RTSP data, and the circular byte buffer saves read-ahead RTP media data, if any.  

However, since data are carefully packetized to fit packet boundary, these two buffers are 

rarely needed. 

The client asks SessionFactory for the found sessions, and can select one of the 

L2CAP sessions to connect to.  As session is established, RTSP_RTP_L2CapConn opens 

the L2CAP connection and creates the reader/writer objects to act on the connection. 

Packetization is required for sending RTSP request.  Before an RTSP request is sent 

out, RTSPBluetoothWriter checks to see if the string exceeds the packet size.  If it does 

not, an RTSP_REQ_MSG header is added to form a message.  If the string is longer than 

the packet size allows, it is broken into multiple messages. 

When an RTSP response is expected, RTSPBluetoothReader reads one or more 

L2CAP messages until a pair of CR/LF is seen.  For each message, it peels off the header 

and searches the data for CR/LF.  If there is more data after the CR/LF, it appends the 

extra data to the read-ahead CircularCharBuffer.  Media data is retrieved in a similar 

manner, RTSP_RTP_L2CapConn reads and checks for RTP_MSG_MARKER message 

type.  It then peels off the header and appends the media data to the media stream, to be 

return to the media player. 

6.5.4 BLUETOOTH PROXY USING L2CAP [13] 

Media streaming over Bluetooth requires the client-side library, discussed in Section 

6.5.3.2, and the Bluetooth streaming proxy.  The proxy bridges the communication 

between the remote streaming server and the streaming client.  The Bluetooth streaming 

proxy is implemented in C++ using Widcomm Bluetooth SDK [16] and a generic brand 

USB Bluetooth dongle.  The Widcomm Bluetooth driver also needs to be installed for the 
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dongle to work with the SDK.  The Widcomm SDK comes with documentation, header 

files, and DLL to be incorporated into the project. 

The proxy implementation provides a window-based interface for starting and 

stopping the service.  Messages are written to the main windows for debugging.  A 

hierarchy of RTSPRequest, RTSPResponse, RTSPReader, RTSPWriter, and 

RTPChannel are required.  They are similar to those in the Java shared module, and will 

not be discussed. 

Two Bluetooth proxy implementations are provided using L2CAP and RFCOMM.  

RFCOMM emulates the serial connection, and is built on top of the packet-based 

L2CAP.  The Bluetooth proxy application is designed as a framework to support future 

Bluetooth proxy implementations.  Using this framework, RFCOMM implementation 

was easily created.  Although the Bluetooth proxy implements both L2CAP and 

RFCOMM proxy services, the Bluetooth client library implements only the L2CAP 

service.  Thus, RFCOMM implementation is currently not used in this project, and is 

provided only to demonstrate the extensibility of the Bluetooth proxy framework. 

A ProxyManager class is created to represent a service.  L2CapProxyMgr and 

RfCommProxyMgr derive from ProxyManager and provide the specific implementations.  

ProxyManager contains a DataSource object, which serves as the media caching 

manager. 

A FileSystemDataSource is provided to cache media data in file system.  It uses a 

combination of the media URL and media part name to map to a media file in local 

storage.  It maintains this mapping using an STL map. 

A base class called BluetoothProxy defines the APIs for streaming proxy and 

declares methods for handling RTSP requests.  Derived proxy classes supply the 

implementation for reading the Bluetooth messages, and hand the request to 

BluetoothProxy for handling.  BluetoothProxy works with RTSPRequest and 

RTSPResponse objects only, and does not know about L2CAP or RFCOMM message.  

BluetoothProxy handles communication with the streaming server on the client’s behalf.  

It uses the socket implementations of RTSPReader and RTSPWriter to send requests to 

and receive responses from the streaming server. 
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An L2CAP server can support up to seven clients.  Thus L2CapProxyMgr creates 

seven L2CapProxy objects on initialization.  Each L2CapProxy serves on client and 

handles message packetization and de-packetization.  Once all the messages consisting of 

a request are received, an RTSPRequest object is created and handed to the parent class 

BluetoothProxy.  L2CAP messages are instances of BtMsg. 

The Bluetooth proxy communicates with the Bluetooth client on one side, and with 

the streaming server on the other side on the client’s behalf.  Proxies keep only the media 

data, and do not cache SDP data. 

When a client connects to the proxy and sends the DESCRIBE request, 

L2CapProxy immediately creates the socket connections and connect them to the remote 

server.  It then reads the response with SDP data and forwards it back to the client via the 

Bluetooth connection.  Client next sends the SETUP request, which passes through the 

proxy to the server.  The server sets up the session and returns the SETUP response with 

the session id.  L2CapProxy again forwards the response and session id back to the client. 

The client can now send a PLAY request.   The proxy constructs a key from the media 

URL and media part file name and looks up its cache, the DataSource object, to see if the 

requested media file exists.  If it finds one, it sends the media data back to the client 

without consulting the streaming server.  If the request media clip is not found, the proxy 

forwards the PLAY request to the server, receives and forwards back the PLAY response.  

The server starts sending media data on the RTP connection.  The proxy reads media data 

and forwards to the client, and at the same time saves the data in its cache, via the 

DataSource object. 

Figure 37 shows the sequence diagram illustrating the client-proxy-server 

interaction. 
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Figure 37.  Streaming over Bluetooth activity diagram 

6.5.4.1 PACKETIZATION AND TRANSMISSION 

Packetization and de-packetization are performed on the proxy as well as on the 

Bluetooth client.  Although L2CAP specification supports up to 64KB packet size, the 

Bluetooth hardware in reality would not support that much, and would break the packet 

into multiple smaller packets at the base-band level and reassemble them on the other 

side.  Although longer packets are more efficient, but they also are more susceptible to 

transmission errors and thus, the default packet size of 672-byte is chosen to avoid 

complexity. 
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After the L2CAP connection is established between the client and the proxy, both 

the proxy and the client determine the default Maximum Transmission Unit (MTU) the 

connection supports.  The default MTU is saved for use later in packet construction. 

Before an RTSP request or response is sent, it is serialized into a string.  The length 

of the string is then compared to the MTU, taking into account the message header length 

(MsgHdrLen).  If it is shorter than or equal to (MTU – MsgHdrLen), the message type 

RTSP_REQ_MSG or RTSP_RESP_MSG is inserted in byte zero, followed by a two-byte 

message length, and finally the string appended at the end.  The message is then sent of in 

a single L2CAP packet.  If the string is longer than (MTU – MsgHdrLen), the message is 

broken into packets of length (MTU – MsgHdrLen), with RTSP_REQ_MSG or 

RTSP_RESP_MSG as the message type for the first packet, and CONTINUATION for 

the following packets. 

Similarly, when a packet is received, the message type in its header is inspected.  If 

the message length field following the type is less than or equal to (MTU – MsgHdrLen), 

the packet contains the complete message, and an RTSP request or response is 

constructed.  If the message type is CONTINUATION, the data in the packet is 

accumulated until enough has been read, and the accumulated data is used to construct 

the request/response. 

RTP packets containing media data works slightly differently.  Since the client 

already knows the length of the requested clip, it keeps reading in packets of type 

RTP_MSG_MARKER until enough has been received. 

SDP-c data works in the same way.  Since the DESCRIBE RTSP response contains 

the header field “Content-length”, which indicates the length of the data following the 

pair of CR/LF, the SDP-c data can be transferred without using the length field.  SDP-c 

data most likely will be contained in CONTINUATION messages. 

CONTINUATION packets always follow a packet that already contains the length 

for the entire message, and thus do not need to carry a length field.  RTP packets, 

although do not depend on any other packet, do not need a length field either.  This is 

because the length of RTP data is already known in advance by the requester. 
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The following figures show the format for RTSP request, response, continuation, 

and RTP packet formats.  Notice that, RTSP_REQ_MSG and RTSP_RESP_MSG 

packets will either contain the whole message, or contain the first part of a multi-packet 

message.   

 

Figure 38.  RTSP request message format 

 

Figure 39.  RTSP response message format 

CONTINUATION message always follows either an RTSP_REQ_MSG or 

RTSP_RESP_MSG message and is used only in multi-packet messages. 

 

Figure 40.  Continuation message format 

RTP_MSG_MARKER packets are always sent independently. 

 

Figure 41.  RTP message format 

Widcomm SDK [16] provides a framework of C++ classes for handling Bluetooth 

connection.  The L2CapProxy extends the L2CapConn to handle incoming connection 

request, sending and receiving L2CAP packets.  It also has a method called 

OnCongestionStatus(BOOL is_congested), which is called when the connection is 

congested or decongested.  Experimentation was performed with this method in hope of 

controlling the packet transmission interval, since the client was experiencing packet loss.  

However, this method does not work as intended.  It only informs the proxy that the 

connection is congested once, and never notifies again.  When congestion is detected for 

the first time, the proxy stops sending packets, and waits for a notification of channel 
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decongestion.  This event is never received from the framework and the proxy waits 

forever. 

To overcome the SDK traffic control issue, we need to introduce a sleep in between 

consecutive packet transmissions.  There is no rule for the length of this sleep, and we 

have to go through many trials to find a value that is just long enough to avoid packet 

loss.  The client side also has to wait between packets using the same sleep interval. 

The following is a snapshot of the proxy serving a client.  From the log, we can see 

all the RTSP requests and responses, as well as L2CAP packets carrying RTP data to the 

client.  It also indicates that the proxy is using its cache instead of requesting for data 

from the streaming server. 

 

Figure 42.  Bluetooth streaming proxy in action 

6.5.4.2 DATA CACHING 

Caching is done on a media-sub-clip basis by the class FileSystemDataSource.  A 

mapping table is maintained on the proxy to map (<media-url>|<clip-file-name>) � 

(<clip-file-location).  The media URL and clip file name are joined together using the 

character “|” and acts as the key to index to the full path of the media clip.  The 

DataSource interface facilitates ease of extension to implement media data caching, i.e., 

an implementation using a database can be easily implemented. 
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The following picture shows the mapping table format used by 

FileSystemDataSource. 

 

Figure 43.  Media cache descriptor format 

The full media-URL is used so a new request media URL can readily be used, 

together with the media part name, to construct the key.  This key will be mapped to the 

full path where the cached media data can be retrieved.  Here the cached media files are 

relative to a data source root directory. 

Although Bluetooth transfer is a lot slower than the Internet, caching can greatly 

improve user experience by avoiding delay, and can especially reduce the load on the 

streaming server.  The user of a Bluetooth proxy is particularly important where a local 

area network is closed to the public for security reason (so it is not possible for mobile 

devices to join the network), or for devices that do not have WIFI support.  In either case, 

the network security can be maintained and users can still enjoy the benefit of viewing 

multimedia without having to pay for data usage. 

6.6 STREAMING CLIENT SAMPLE APPLICATION 

The client video application is implemented using J2ME.  It resides in the packet 

com.mstream.client, consisting of six java files: 

• VideoScreen:  an interface to be extended by VideoCanvas and VideoForm.  This 

represents the display area where the video will be rendered in. 

• VideoCanvas:  the canvas-based implementation of VideoScreen.  Canvas is “a 

base class for writing applications that need to handle low-level events and to 

issue graphics calls for drawing to the display” [19], according to the MIDP 

documentation.  To learn more about Canvas, please consult the J2ME MIDP 

documentation, which can be downloaded from Sun website. 
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• VideoForm:  the form-based implementation of VideoScreen.  Form is the high-

level display in MIDP. 

• SessionChooser:  implements a list to display the available session.  The list of 

sessions contains, at the very least, a socket implementation, and Bluetooth 

services detected in the surroundings.  User can choose one of the available 

session objects for the streaming session. 

• SessionChooserListener:  a simple callback interface used by the main 

application, StreamingClient, to detect which session is selected.  StreamingClient 

implements this interface, and registers itself with the SessionChooser object, to 

be notified when a session is chosen. 

• StreamingClient:  the client application class.  It extends from the MIDP class 

javax.microedition.midlet.MIDlet, and encapsulates the MediaPlayer object, the 

VideoScreen display object, and handles user interactions.  The user can choose a 

menu item to trigger an action, such as to initialize the streaming session (INIT), 

describe the media (DESCRIBE), set up the session (SETUP), play (PLAY) and 

end the session (TEARDOWN). 

The following image shows the streaming client playing a sample video.  The demo 

is run on the emulator, using the socket implementation. 
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Figure 44.  Streaming client in emulator 

With the original video is split into smaller clips, multiple media players have to be 

created, with each handling a sub-clip.  Since media player preparation is a time-

consuming and resource-intensive process, there is a delay between one play and the 

next.  Currently, this is greatly influenced by the device capability.  On the emulator, this 

gap is considerably small, although a screen-switching is noticeable.  On the Sony 

Ericsson S500i, the switching effect is somewhat smoother than the emulator.  The Nokia 
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N80 delivers the worst result.  The delay on this device is so significant that a white 

screen is experienced in between the clips. 

7 CONCLUSION 

Multimedia production and streaming is a tough process that is highly dependent on the 

hardware capability and complex software implementation, even on the powerful PC 

platform.  To develop multimedia application on mobile devices, the developers 

constantly have to deal with device capability and limitation.  For mobile devices running 

on the Symbian platform, streaming has been implemented successfully at the software 

level without relying on native support.  This is because Symbian uses C++ and allows 

the developers to work closer to the hardware layer.  For devices running Java platform, 

the Java virtual machine only exposes a very high-level framework and completely 

shields the hardware platform from the developers.  Developers have no choice but to 

stick to a limited set of predefined features. 

This project provides a good opportunity to learn the RTSP and RTP specifications, 

especially the RTP and RTCP packet formats.  In attempting to do streaming over 

TCP/UDP and TCP-Interleaving, a number of RTP and RTCP packet structures have 

been examined, studied, and implemented.  Unfortunately, the current mobile devices do 

not support playback of partial data, nor do they allow developers to feed media data 

directly to the hardware, as on the Symbian platform.  Using the final approach, multi-

subclip, the following goals have been achieved: 

• Devising a method for viewing a video by breaking it up into smaller clips, 

delivering them and displaying them in sequential order, to simulate the streaming 

effect.  This method also requires several custom protocols to be developed: the 

SDP-c format for describing the media, the RTSP-c protocol for controlling the 

streaming session, and a custom RTP-channel for media delivery. 

• Implementing a custom streaming server that support the request and delivery of 

video clips, mimicking the RTSP/RTP streaming specification.  The server is a 

multi-threaded service that can serve multiple clients concurrently. 
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• Implementing a client streaming library that queries the streaming server for 

media meta-data, initiates the delivery of sub-clips on demand and in advance to 

minimize delay, and handles media presentation.  The library is modularized to 

support framework extension.  Two implementations are provided in the library: 

using sockets and using Bluetooth technology over a proxy. 

• Implementing a Bluetooth proxy service on a LAN-connected PC, that can: 

o Interact with a client via Bluetooth L2CAP. 

o Handle a streaming client session initiation and streaming requests. 

o Set up socket connections to the remote streaming server and relay 

requests/responses between server and client. 

o Serve requested media data to client from its cache.  If the request media 

is not in the cache, it sends the request to the server, relays the response, 

receives the media data, forwards media data to client, and saves media 

data in its cache for future requests. 

• Designing and implementing the streaming client library and proxy as 

frameworks to support future extensions in an easy manner.  The proxy 

framework has been successfully extended using Bluetooth RFCOMM. 

This work poses great challenges working with small footprint devices, such as: 

• Careful memory management, even in the presence of the Java garbage 

collector (GC).  There is no guarantee about the operation of the GC, and thus 

much effort has been put into memory utilization as well as Java object reuse. 

• Limitations of the device, such as its multimedia capability, low Bluetooth 

transfer rate and high packet loss rate.  Care must be taken in timing and in the 

delay between packet transmissions. 

• No debugging capability.  Logging tools have to be developed independently 

and the logs have to be sent to a PC for inspection. 

Despite the clip-switching effect, the video plays fairly well on the Sony Ericsson 

phone, making the project a good opportunity for studying and experiencing with 

multimedia on mobile devices, as well as in framework design and development. 
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8 POTENTIAL FUTURE WORK 

If future mobile devices improve in multiplayer support and reduce the delay between 

players, some research can be put into making the clip transition smoother.  The Sony 

Ericsson devices support progressive download [18], which allows incomplete data to be 

written to a file on the device and the file is fed to the player.  The content handling 

protocol can continue to write to the file while it is being read by the player.   
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Appendix A: Detailed class diagram for TCP/UPD approach 
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Appendix B: Detailed class diagram for TCP-interleaving approach 
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Appendix C: RTP packet captured from the three tests. 

 

Column #1 #2 #3 #4 #5 #6 #7 

Test 
case Native RTSP on W850i   

TCP-Interleaved 
on Emulator    

TCP-Interleaved 
on W850i 

Row 
UDP 
Length 

RTP 
Length Payload   

RTP 
Length Payload   

RTP 
Length Payload 

1 306 298 286   298 286   298 286 

2 40 32 20   32 20   32 20 

3 40 32 20   32 20   32 20 

4 40 32 20   32 20   32 20 

5 1458 1450 1438   1450 1438   1450 1438 

6 469 461 449   461 449   461 449 

7 426 418 406   418 406   418 406 

8 389 381 369   381 369   381 369 

9 391 383 371   383 371   383 371 

10 377 369 357   369 357   369 357 

11 715 707 695   707 695   707 695 

12 709 701 689   701 689   701 689 

13 725 717 705   717 705   717 705 

14 701 693 681   693 681   693 681 

15 613 605 593   605 593   605 593 

16 398 390 378   390 378   390 378 

17 723 715 703   715 703   715 703 

18 717 709 697   709 697   709 697 

19 517 509 497   509 497   509 497 

20 427 419 407   419 407   419 407 

21 307 299 287   299 287   299 287 

22 453 445 433   445 433   445 433 

23 475 467 455   467 455   467 455 

24 453 445 433   445 433   445 433 

25 428 420 408   420 408   420 408 

26 416 408 396   408 396   408 396 

27 322 314 302   314 302   314 302 

28 710 702 690   702 690   702 690 

29 695 687 675   687 675   687 675 

30 1458 1450 1438   1450 1438   1450 1438 

31 1458 1450 1438   1450 1438   1450 1438 

32 1264 1256 1244   1256 1244   1256 1244 

33 346 338 326   338 326   338 326 

34 475 467 455   467 455   467 455 

35 517 509 497   509 497   509 497 

36 341 333 321   333 321   333 321 

37 549 541 529   541 529   541 529 

38 583 575 563   575 563   575 563 

39 596 588 576   588 576   588 576 

40 678 670 658   670 658   670 658 
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41 696 688 676   688 676   688 676 

42 595 587 575   587 575   587 575 

43 609 601 589   601 589   601 589 

44 719 711 699   711 699   711 699 

45 737 729 717   729 717   729 717 

46 724 716 704   716 704   716 704 

47 731 723 711   723 711   723 711 

48 733 725 713   725 713   725 713 

49 737 729 717   729 717   729 717 

50 735 727 715   727 715   727 715 

51 741 733 721   733 721   733 721 

52 710 702 690   702 690   702 690 

53 705 697 685   697 685   697 685 

54 701 693 681   693 681   693 681 

55 756 748 736   748 736   748 736 

56 1458 1450 1438   1450 1438   1450 1438 

57 1458 1450 1438   1450 1438   1450 1438 

58 1069 1061 1049   1061 1049   1061 1049 

59 654 646 634   646 634   646 634 

60 666 658 646   658 646   658 646 

61 637 629 617   629 617   629 617 

62 697 689 677   689 677   689 677 

63 719 711 699   711 699   711 699 

64 680 672 660   672 660   672 660 

65 754 746 734   746 734   746 734 

66 793 785 773   785 773   785 773 

67 756 748 736   748 736   748 736 

68 832 824 812   824 812   824 812 

69 965 957 945   957 945   957 945 

70 844 836 824   836 824   836 824 

71 978 970 958   970 958   970 958 

72 1058 1050 1038   1050 1038   1050 1038 

73 997 989 977   989 977   989 977 

74 1245 1237 1225   1237 1225   1237 1225 

75 1308 1300 1288   1300 1288   1300 1288 

76 1114 1106 1094   1106 1094   1106 1094 

77 1360 1352 1340   1352 1340   1352 1340 

78 1390 1382 1370   1382 1370   1382 1370 

79 1180 1172 1160   1172 1160   1172 1160 

80 1145 1137 1125   1137 1125   1137 1125 

81 924 916 904   916 904   916 904 

82 1458 1450 1438   1450 1438   1450 1438 

83 1458 1450 1438   1450 1438   1450 1438 

84 274 266 254   266 254   266 254 

85 829 821 809   821 809   821 809 

86 757 749 737   749 737   749 737 

87 715 707 695   707 695   707 695 

88 759 751 739   751 739   751 739 
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89 677 669 657   669 657   669 657 

90 617 609 597   609 597   609 597 

91 586 578 566   578 566   578 566 

92 534 526 514   526 514   526 514 

93 493 485 473   485 473   485 473 

94 449 441 429   441 429   441 429 

95 415 407 395   407 395   407 395 

96 379 371 359   371 359   371 359 

            

Total 69415 68647 67495   68647 67495   68647 67495 
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