
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2007

Mobile Multimedia Streaming Library Mobile Multimedia Streaming Library

Bao Ho
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ho, Bao, "Mobile Multimedia Streaming Library" (2007). Master's Projects. 34.
DOI: https://doi.org/10.31979/etd.aaw9-v9zu
https://scholarworks.sjsu.edu/etd_projects/34

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/34?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Mobile Multimedia

Streaming Library

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the

Requirements for the Degree

Masters of Science

By

Bao Ho

December 2007

 1

Approved by the Department of Computer Science

 __

 Dr. Suneuy Kim

 __

 Dr. Melody Moh

 __

 Dr. Robert Chun

 Approved by the University

 __

 2

ABSTRACT

In recent years, multimedia has become a commonly used tool for presenting contents to

the users. The employment of multimedia is no longer limited to only the entertainment

industry, but spans in other areas as well. In academics, lectures are recorded to audio

and video for storage and distribution to students. Free online multimedia hosting

services are popularly cherished, such as “youtube.com” and “yahoo video”, and with the

increasing affordability of digital camera, hundreds, or maybe thousands, of home-made

videos and music audio are created daily and published online. Low-cost digital

recorders such as webcams also help promote the use of video for surveillance, both for

commercial and personal use. Suddenly, there comes the need for digital multimedia

delivery, which happens naturally with the advancement in Internet bandwidth and the

popularity of multimedia sharing. Multimedia delivery comes in two methods:

downloading and streaming. Streaming requires more complex structure, but rewards

with better user experience. Although streaming is the method of choice today,

downloading is still useful in ad-hoc situation where streaming is not feasible.

This project aims to provide streaming-like capability to mobile devices. Since mobile

gadgets are limited in resources compared to personal computers (PC), streaming

sometimes is the only way to deliver media contents to user. This work targets devices in

the so-called “ad-hoc situation”, and also seeks to save the cost associated with

multimedia streaming, which traditionally uses the operator wireless network, by using a

LAN-connected proxy and the Bluetooth medium. It is also to serve the educational

purpose in learning about multimedia streaming on cellular phones.

This project experiments with several approaches to implement streaming on mobile

phones. It discusses each approach in details. Finally, a library and a sample application

are implemented to demonstrate the solution.

 3

TABLE OF CONTENTS
1 INTRODUCTION .. 6
2 DIGITAL MULTIMEDIA BASICS... 8

2.1 ENCODING/DECODING.. 8
2.2 COMPRESSION... 9
2.3 MEDIA CONTAINER ... 10
2.4 MEDIA HINTING.. 11

3 MULTIMEDIA RETRIEVAL METHODS ... 12
3.1 DOWNLOAD... 12
3.2 STREAMING ... 12

4 REAL-TIME MEDIA STREAMING... 14
4.1 PROTOCOL DESCRIPTION .. 14

4.1.1 SESSION DESCRIPTION PROTOCOL (SDP) 14
4.1.2 REAL-TIME STREAMING PROTOCOL (RTSP) 15
4.1.3 REAL-TIME TRANSPORT PROTOCOL (RTP) 20
4.1.4 REAL-TIME CONTROL PROTOCOL (RTCP) .. 20

4.2 COMMON PROTOCOL IMPLEMENTATIONS... 21
4.2.1 RTSP-OVER-TCP / RTP-OVER-UDP [5] .. 21
4.2.2 INTERLEAVING-OVER-TCP [5, 7] .. 22
4.2.3 TUNNELING-OVER-HTTP.. 24

5 MOBILE STREAMING... 25
5.1 GENERIC CONNECTION FRAMEWORK (GCF).. 27
5.2 J2ME MULTIMEDIA API (MMAPI) [11].. 27

5.2.1 PROTOCOL HANDLING ... 28
5.2.2 MEDIA PLAYBACK... 28

6 STREAMING LIBRARY... 30
6.1 MOTIVATIONS... 31
6.2 REQUIREMENTS.. 31
6.3 ARCHITECTURE DESIGN .. 31

6.3.1 DIRECT DELIVERY USING WIRELESS TCP/IP NETWORK 32
6.3.2 DELIVERY OVER A BLUETOOTH PROXY 33

6.4 PROJECT DESIGN.. 34
6.4.1 TCP/UDP APPROACH [10] .. 34
6.4.2 TCP-INTERLEAVING APPROACH [5] .. 38
6.4.3 MULTI- SUBCLIP APPROACH... 41

6.4.3.1 NAMING CONVENTION... 43
6.4.3.2 CUSTOM SDP.. 43
6.4.3.3 CUSTOM RTSP ... 45
6.4.3.4 CUSTOM RTP CHANNEL ... 46
6.4.3.5 CLIENT MEDIA MANAGER... 47

6.5 PROJECT IMPLEMENTATION... 49
6.5.1 SHARED MODULE(S).. 49

6.5.1.1 SDP MODULE ... 49
6.5.1.2 RTSP MODULE... 49
6.5.1.3 UTILITIES MODULE.. 50

6.5.2 STREAMING SERVER... 50

 4

6.5.3 CLIENT STREAMING LIBRARY FRAMEWORK 53
6.5.3.1 TCP/IP CLIENT LIBRARY... 56
6.5.3.2 BLUETOOTH LIBRARY USING L2CAP.. 57

6.5.4 BLUETOOTH PROXY USING L2CAP [13].. 59
6.5.4.1 PACKETIZATION AND TRANSMISSION....................................... 62
6.5.4.2 DATA CACHING .. 65

6.6 STREAMING CLIENT SAMPLE APPLICATION.. 66
7 CONCLUSION... 69
8 POTENTIAL FUTURE WORK... 71
9 REFERENCES ... 71

Appendix A: Detailed class diagram for TCP/UPD approach.. 73
Appendix B: Detailed class diagram for TCP-interleaving approach 74
Appendix C: RTP packet captured from the three tests.. 75

 5

TABLE OF FIGURES
Figure 1. Un-hinted media file... 11
Figure 2. Hinted media file .. 11
Figure 3. SDP captured using Ethereal .. 15
Figure 4. RTSP OPTIONS request and response .. 16
Figure 5. RTSP DESCRIBE request and response.. 17
Figure 6. RTSP SETUP request and response ... 17
Figure 7. RTSP PLAY request and response... 18
Figure 8. RTSP PAUSE request and response... 18
Figure 9. RTSP TEARDOWN request and response .. 18
Figure 10. RTSP interaction diagram [10]... 19
Figure 11. Standard streaming using TCP and UDP ... 22
Figure 12. Streaming using TCP-Interleaving ... 23
Figure 13. RTSP SETUP request and response using TCP-Interleaving 23
Figure 14. Interleaved RTP and RTCP packet formats ... 24
Figure 15. Streaming via HTTP-Tunneling [9] ... 25
Figure 16. Mobile streaming architecture.. 26
Figure 17. J2ME MMAPI player state machine .. 29
Figure 18. J2ME MMAPI simplified component diagram.. 30
Figure 19. Custom streaming library module .. 32
Figure 20. Custom streaming library in a WiFi environment.. 33
Figure 21. Streaming library and Bluetooth proxy .. 34
Figure 22. Class diagram for the TCP/UDP approach... 35
Figure 23. Operation mappings.. 36
Figure 24. Class diagram for the TCP-Interleaving approach ... 38
Figure 25. Sample interleaved SETUP request/response .. 39
Figure 26. Splitting video file using mp4box (GPAC).. 42
Figure 27. Sample SDP-4566 packet ... 43
Figure 28. Custom SDP format.. 44
Figure 29. Sample custom SDP packet.. 45
Figure 30. RTSP-c PLAY request ... 46
Figure 31. Custom RTSP streaming session.. 48
Figure 32. Custom streaming server class diagram ... 50
Figure 33. SessionHandler body.. 52
Figure 34. Streaming server in operation... 53
Figure 35. Client library class diagram.. 56
Figure 36. L2CAP message format.. 58
Figure 37. Streaming over Bluetooth activity diagram.. 62
Figure 38. RTSP request message format.. 64
Figure 39. RTSP response message format ... 64
Figure 40. Continuation message format ... 64
Figure 41. RTP message format... 64
Figure 42. Bluetooth streaming proxy in action .. 65
Figure 43. Media cache descriptor format ... 66
Figure 44. Streaming client in emulator .. 68

 6

1 INTRODUCTION

For a long time, tapes, compact discs, and digital storage such as hard-drive or memory

cards, have been the main forms of multimedia contents distribution. The increasing ease

of access to the Internet in the last decade, the general population has widely adopted the

Internet as the distribution channel for digital contents, especially multimedia. At the

early stage, media download was the only method of data delivery. Point-to-Point

software like Napster enabled users to share contents by uploading and downloading the

contents from other users’ machines. This method serves well for users who were willing

to start the download process and view the media at a later time. However, as the quality

of digital multimedia improves, the size of the media grows substantially. The Internet,

even with the latest advancements in network speed, cannot keep up. A user, wanting to

see what is in a video, would have to wait for the entire video to be downloaded before he

or she could view it. This long delay is inefficient and degrades user experience.

Downloading cannot be a solution for applications with stringent requirements for real-

time multimedia delivery.

It soon became clear that a new method needed to be derived to satisfy near real-

time multimedia delivery requirement. Faster network is not a complete solution, as

advancement in network speed is not as fast as advancement in media data. Media

contents have to be divided into independent segments, with each capable of being

presented to the user. In other words, the media has to be formatted in small presentable

units; and since each unit is small enough, it can be transferred to the user’s machine

quickly for view. This method in effect produces a continuous stream of viewable video

segments, and thus the technical term “streaming” was coined [1].

In the last few years, personal computers are no longer the only form of multimedia

player used in streaming. As people spend more time on the road, compact digital

gadgets such as mobile phone have become popular. The demand for multimedia

playback on these small devices also grows. Users want to have the ability to listen to

music or watch movies on their mobile phones while waiting at the train station, on bus,

etc., and to be able to monitor their house from the remote web camera. The real-time

 7

requirement, the slow cellular network, and the limited resources on mobile devices again

confirm the applicability and usefulness of multimedia streaming [2, 3].

 This project seeks to deliver multimedia to the mobile device, targeting

multimedia-ready devices lacking streaming support. The required configuration is that

some multimedia is ready on a remote server, and that the mobile device is capable of

interpreting this media data format. Two different approaches have been taken and

implemented before the final solution is derived. The first approach uses two network

connections, one TCP and one UDP, to handle the communication with the Darwin

streaming server. However, the cellular operator only allows TCP traffic while blocking

UDP, for security reason, and thus media data cannot reach the device. The second

method implements the TCP-interleaving method which uses only one TCP connection.

In this case, the mobile device, although able to receive media data, fails to present it

because the device is incapable of playing partially streamed media.

It becomes apparent that the mobile device can only play complete media data.

Hence, a solution is derived by splitting the original media into multiple sub-clips, which

are then downloaded in advance to provide a continuous playback effect. TCP/IP is used

for the download. However, TCP/IP is costly on cellular network, and thus Bluetooth is

also provided for sub-clip delivery. This multi-subclip solution requires a custom media

server, a custom streaming protocol, a Bluetooth proxy, and a client library capable of

handling the streaming and Bluetooth protocols. With this approach, all the sub-clips

comprising the original media data can be fetched and played successfully.

The paper first gives an overview of multimedia and multimedia encoding in

Section 2. It then goes briefly over the two methods of multimedia delivery,

downloading and streaming, with the pros and cons, in Section 3. Section 4 describes the

standard real-time media streaming in more details, as well as the common protocol

implementations. Section 5 discusses multimedia streaming on mobile devices. The

design of the mobile streaming library – the goal of this project – is covered in Section 6.

We conclude the project in Section 7, and provide some potential future work in Section

8. The material used as references in this project is listed in Section 9.

 8

2 DIGITAL MULTIMEDIA BASICS

Multimedia production begins with the recording process, in which the moving picture

and possibly sound are captured using a camera. If an analog camera is used, as in the

early days, the resulting analog media data has to be digitized. The raw digital data is

then processed - encoded to a specific format, compressed, and stored in a container file –

for the media player to interpret and present on the intended display.

Multimedia contents contain one or more channels of information, also called

tracks, consisting of text, graphics, animation, video, and audio. Each track delivers a

different type of information, i.e. video and audio deliver the media contents, while text

provides subtitle/translation and graphics delivers interactivity to enhance user

perception.

A digital audio or video track is a continuous sequence of still sound or pictures.

Each of these still units is a frame, a snapshot of the media a single point in time. The

frames are captured and displayed at constant rate, called frame per second (fps). When

played one after another, the frames seem to be moving. When played at high speed,

faster than the human eyes can differentiate, we perceive a moving audio or video.

Considering a video frame of 720 pixels wide by 480 pixels high, each uses a color

depth of 24 bits (3 bytes), will need 720x480x3 or 1 megabyte (MB) of storage. If the

frames are captured at 25 fps, it takes 25 MB per second, or 1.5 gigabyte (GB) per

minute, or 90 GB per hour of movie. The higher quality or bigger dimension, the longer

it takes to digitize and convert the video to a suitable format for display. It is impractical

to support video of big sizes and high quality, either for storage or distribution. Thus,

multimedia production and usage is an expensive and time-consuming process.

2.1 ENCODING/DECODING

When moving pictures or audio signals are captured and digitized, they are usually in the

raw format, and need to be converted to a format suitable to a particular medium type, i.e.

MPEG2 format for video on DVD, MP3 format for audio, etc. This process is called

encoding. The media format specifies how the media data is structured, how it should be

delivered to the display device, and how it should be interpreted. Since moving pictures

 9

and sound are represented as frames, the format describes the number of frames per

second, the structure of the frames, the relation between consecutives frames, how each

frame is represented, how frames from different tracks, such as audio and video in a

movie, are to by synchronized in time, etc. In contrast to encoding, which is the media

producer, and may be done directly by a digital recorder or separately on the complete

media contents using transcoding software or hardware, decoding is used on the

consumer side. The media player must be capable of understanding the format of the

encoded media to decode and present it on a television or computer monitor. The

decoder reads in the data streaming and divides the data into frames. In some format,

frames are not independent, and must be recreated from previous and/or following

frames, as in MPEG4. Then, the frames can be displayed on the display device.

2.2 COMPRESSION

In contrast with television, which has the fully dedicated cable infrastructure for data

transfer, multimedia over the Internet is a disappointment. Due to bandwidth restriction

of the telephone system, the most popular method of network multimedia delivery, it is

just not possible to deliver and display full-motion video with stereo sound. Low-quality,

or low-bandwidth, media is not appealing to the viewers, and thus media data shared over

the Internet are usually limited to short and small dimension videos.

The answer to the media giant delivered over the small-pipe network is

compression. Media compression refers to the process of transforming the data to use

fewer bits. Before multimedia can be efficiently compressed, media contents must be

filtered to keep only the necessary information and throw away redundant data –

information that does not contribute to the user perception of the media. Psycho-

acoustical research teaches us that there are certain sound frequencies and color spectra

that the human ears and eyes cannot detect or tell whether they are included or not. Thus,

this useless information can be safely thrown away without affecting the perceived data.

Also, the human eyes cannot distinguish small differences in color, and thus groups of

very similar colors can be averaged out or generalized in bigger groups. Other redundant

information such as the black background enclosing the viewable area can also be filtered

to further cut down media size.

 10

Media compression techniques are categorized as either lossless or lossy. With

lossless techniques, some considerable level of data compression can be achieved while

guaranteeing full reconstruction of the original data. Lossless compression algorithms,

while preserving the media data, seek to represent the same data using as few bits as

possible. This process employs tricks such as writing consecutive and similar data using

shorter syntax, i.e. “BLUEx50” to represent fifty consecutive words “BLUE”, using

shorter code to represent the most frequently occurring binary data (as used in Huffman

coding), writing only the difference between consecutive frames, or using a color map

and storing only the index to the color in the map instead of the longer full color code.

Lossy compression yields very high compression rate at the cost of degrading

media quality. This process throws away data, redundant or not, at each level of

compression. This includes using lower bit-rate, lower sampling rate and/or frame rate,

reducing video dimension or audio volume, and shorter media duration, etc. Using lossy

compression methods, the media data can be compressed significantly, i.e., by shrinking

to half of its original width and height, the size is reduced by a factor of four. Lossy

compression is an irreversible process; and the higher the compression rate is used, the

lower the media quality becomes.

2.3 MEDIA CONTAINER

Media data are encoded, compressed, and contained in a computer file called a container.

A container is used to interleave, or mix, different data types in a specified format,

allowing the data to be retrieved in such a way that is most suitable to the data consumer.

Video data usually contain video, audio, and optionally chapter and subtitle tracks. These

components are synchronized in time, and must be retrieved, decoded, and displayed at

the same time. Containers allow multiple tracks to be interleaved in one or multiple files,

and retrieved for playback in synchronized manner, as if each frame represents data for

all the components. Container files also carry meta-data (tags) besides media data. This

meta-data describes the different components in the container, as well as information

required for stream synchronization. There are many container formats: WAV, AIFF,

AVI, ASF, MOV, OGM, MP4, 3GP, etc. Among these, 3GP is designed for mobile

devices, and thus is used in this project.

 11

2.4 MEDIA HINTING

Before a file can be streamed – being retrieved and viewed at the same time – it must be

hinted. Hinting adds information about the various tracks in a media file that tells a

streaming server how to read and serve the data to a streaming client. Some encoding

software, such as QuickTime, also hints the converted media file. Hinting can also be

done on the complete converted file using software such as the open source GPAC tool

suite.

Below is a video file that has not been hinted. Mp4info tells us that there are two

tracks in the video: a video track encoded in MPEG-4 Simple format, and an audio track

encoded in MPEG-4 AAC format.

Figure 1. Un-hinted media file

The following is the content description of the same video file, but is hinted. There

are two additional tracks describing the two main tracks. These latter tracks are used as

clues to the streaming software to stream the contents to the client.

Figure 2. Hinted media file

 12

3 MULTIMEDIA RETRIEVAL METHODS

Besides the many ways of delivering a movie to a user via physical media: on a VHS

tape, a CD or DVD, etc., there are only two ways of delivering digital audio/video over

the Internet: download or streaming [17].

3.1 DOWNLOAD

Downloading requires the user to wait for the download process to complete before he or

she can start viewing. Throughout the download delay, the partial data is unusable. The

download process is also more susceptible to failure, as many things can go wrong, such

as a broken connection, errors on the server side or client side, user losing patience and

canceling the download, etc.

Once a media is completely downloaded, it is literally guaranteed to be without

glitches. It can be stored on local storage and played back as many times as the user

desires. The media plays smoothly without any delay besides the limitations of the

hardware. However, response time plays a major role to user experience. With millions

of video clips on the Internet, most of the time a user will be skimming through the first

few seconds of the video before deciding to view the entire clip. Downloading does not

facilitate that experience. The user may waste time and bandwidth downloading

something he or she may not like, or most likely will skip that video. It is said that the

easiest way to discourage the audience or kill a movie is a big fat download delay.

3.2 STREAMING

Streaming allows the user to view the media while it is still downloading. After starting

the streaming process, the user waits for some initial data to be delivered. As soon as

enough data is on the client side, it is played, while more data is still being downloaded.

This process continues incrementally until the end. In its simplest form, streaming works

like a pipe: buffered data is played on one end, while new data comes in on the other end

to fill up the pipe.

There are many benefits to streaming, such as shorter wait time, preview feature,

more tolerant of failure, less memory requirement, and real-time playback. Although

there still is a delay at the beginning, it is insignificant compared to media download.

 13

The user gets to see, or preview, what is in the movie before he or she is committed to

getting the entire file. If some data is corrupted in the middle of the streaming session,

the streaming software can throw away that unusable data, and waits until good frames

arrive. Although the user will see a gap, it is still far better than having to restart the

entire movie, as with downloading.

Memory footprint is the amount of memory required for an application to operate,

i.e., the memory required to open QuickTime and play a movie. It is most likely not a

problem with a personal computer, but is an important factor that decides the success of

multimedia on small devices, such as mobile phone. These gadgets have little memory,

with a few megabytes at the low end. It is not acceptable, if not impossible, to download

the entire video onto these devices for playback. High data transfer cost on cellular

networks greatly helps user learn to appreciate the preview feature.

For real-time applications such as video surveillance, there is no concept of media

start or stop time. The video starts when the user wants to initiate the monitoring process,

and continues indefinitely until the user stops it. In this case, media download is

inapplicable, and streaming is the only option.

Multimedia streaming, although offering many benefits, carries quite a few

drawbacks. For example, when network is slow, data cannot be delivered as fast as it is

consumed, the user will experience more “buffering” delays in between. Since user

experience must be honored as much as possible, the video data rate has to well match

the playback rate. Regardless of how much more network speed may be improved, there

is always a lot more data than the network can carry, and network capacity will always be

the bottleneck for data transfer. This limits streaming to low bit-rate, low frame-rate, and

small dimension multimedia contents. Thus, streaming is most useful to people who

want to quickly view the media in exchange for quality, while downloading is for the

patient.

 14

4 REAL-TIME MEDIA STREAMING

4.1 PROTOCOL DESCRIPTION

Real-time media streaming is a specification consisting of these standard protocols:

Session Description Protocol (SDP), Real-time Streaming Protocol (RTSP), Real-time

Transport Protocol (RTP), and Real-time Control Protocol (RTCP).

4.1.1 SESSION DESCRIPTION PROTOCOL (SDP)

Session Description Protocol (RFC 4566) [4] describes the multimedia contents, and is

used to deliver meta-information about the media to the client. The client uses this

information to negotiate and establish a streaming session with the streaming server.

This meta-data includes the following:

• Connection: network type, address type, and address.

• Bandwidth

• Session: session version and id.

• Media properties: media protocol, media type (audio/video), tracks, track ids,

track durations, track mapping, dimension and frame size (for video), encoding

formats, etc.

Figure 3 shows a video’s meta-data in SDP format.

 15

Figure 3. SDP captured using Ethereal

Most important among these properties are the session id, track id, and track type

for each track (also called stream). Session id is used in all later requests. Track type is

used by media handlers on the client, and track id is used to request a specific

track/stream. SDP is used by RTSP at the start of the streaming session.

4.1.2 REAL-TIME STREAMING PROTOCOL (RTSP)

Real-time Streaming Protocol, an IETF standard proposed in RFC 2326 [5], is designed

to allow a client to remotely control the streaming session, using VCR-like commands

“Play”, “Record”, “Pause”, “Resume”, and “Stop”. RTSP standardizes the interaction

and message exchange between the client and server, and specifies the session life-cycle.

The client sends RTSP requests to the server to learn about server capability (OPTIONS)

 16

and media description (DESCRIBE), to establish the session (SETUP), to control the

session (PLAY, RECORD, PAUSE) and to terminate the session (TEARDOWN). RTSP

request format is similar to that of HTTP. However, unlike HTTP, RTSP is a stateful

protocol. RTSP commands and response follow HTTP syntax: each line is terminated

with a pair of Carriage-Return/Line-Feed (CRLF), and the last line is a blank, also ending

in a CRLF. Both the server and client need to maintain the session state, and transition

from one state to the next, or previous, as requested by the RTSP command and response.

A streaming session starts out with the client sending an OPTIONS inquiry about

supported operations to the server. The server then responds with the supported

operations on that media.

Figure 4. RTSP OPTIONS request and response

Next, the client requests the server for a description of the media, and server sends

back the meta-data in SDP format.

 17

Figure 5. RTSP DESCRIBE request and response

The client establishes the streaming session by sending the SETUP command. The

following snapshot shows that the server replies with the transport type (RTP-over-UDP)

and the server port the client must connect to for each track (6970 and 6971).

Figure 6. RTSP SETUP request and response

 18

After this, the client can send PLAY to start receiving streamed data. The server

starts sending the media data contained in RTP packets following the response.

Figure 7. RTSP PLAY request and response

PAUSE is sent to temporarily stop the streaming.

Figure 8. RTSP PAUSE request and response

Finally, to request that the session be terminated, the client sends the TEARDOWN

request, as follows:

Figure 9. RTSP TEARDOWN request and response

 19

After a session is closed down, any further request sent will be answered with a

“Bad request” response.

The following diagram summarizes the RTSP requests and responses involved in a

streaming session.

Figure 10. RTSP interaction diagram [10]

 20

4.1.3 REAL-TIME TRANSPORT PROTOCOL (RTP)

Real-time Transport Protocol [6] is an application protocol used for transporting real-time

data. It is specified in RFC 3550, and defines end-to-end network transport functions for

transmitting data over unicast or multicast network services. RTP does not dictate the

underlying network and transport layers, nor does it guarantee quality of service (QoS).

In real-time application, on-time data delivery is more usually important than

guaranteed delivery. For example, in a telephone call, we would prefer hearing the other

party’s voice with as little delay as possible, and would rather repeat the sentence than

breakups in the conversation. Since data delivery is not guaranteed, UDP can offer

higher speed and does not suffer delay incurred by retransmission. UDP is a better

candidate for real-time requirement, and thus is used in RTP implementations to carry

RTP data in its payload.

4.1.4 REAL-TIME CONTROL PROTOCOL (RTCP)

Real-time Control Protocol [6] (also defined in RFC 3550) is used to complement RTP.

It compensates for the lack of QoS in RTP, by providing out-of-band transmission

statistics, control and feedbacks. In a conference telephone call, or in a multimedia

session with multiple audiences, RTCP specifies the rate at which the participants, either

sender or receiver, can send reports about the RTP packet transmission and reception.

Since there is no guarantee that RTP packets will get to the receiver, RTCP Sender

Report is used to inform receivers about the transmitted RTP packet count, the sent octet

count, the current RTP sequence number, jitter, delay, packet loss, and timestamp used

for synchronization. Likewise, RTCP Receiver Report tells the sender about the RTP

packet statistics on the receiving side.

RTCP also carries Source-Description (SDES) packet containing information about

the participant, such as name, email, phone number, location, etc. RTCP BYE packet is

sent when a participant leaves a multi-user session. There is also an Application-defined

packet type, intended for experimental use in new applications or features.

RTCP packets are encapsulated in UDP packets, and since RTCP packets are

usually small, they can be combined to occupy the entire UDP payload. There are certain

 21

rules for controlling RTCP channel bandwidth allocation. Please consult RFC 3550 for

more information about RTCP specification.

4.2 COMMON PROTOCOL IMPLEMENTATIONS

The real-time streaming standard identifies three channels: RTSP, RTP, and RTCP,

without mandating how they are implemented. However, the standard specifies the

characteristics of the data channels, and provides recommendations for the IP network.

RTSP commands and responses require accuracy and guarantee of service. This is best

served by TCP/IP since TCP provides retransmission to guarantee that the data will be

received and in the correct order. RTCP data is less important and thus can be

transmitted over UDP. RTP packets, due to more focus on being on time and less on

guarantee of delivery, is also best served by UDP.

Currently, there are three non-proprietary methods of implementing real-time

streaming on the IP network. These methods are used for different network

configurations: open access to both TCP and UDP, access only to TCP, and only indirect

HTTP access via proxy.

4.2.1 RTSP-OVER-TCP / RTP-OVER-UDP [5]

The real-time streaming standard identifies three channels: RTSP, RTP, and RTCP,

without mandating how they are implemented. Naturally, and if possible, utilizing UDP

for RTP is the better choice. Thus, for networks allowing both TCP and UDP, which is

the usual configuration for PC, the RTSP-over-TCP and RTP-over-UDP are used. RTSP

requests and responses are not transmitted frequently, not time-critical, require high

accuracy and guarantee of service, and thus are transmitted via TCP. Also, in this

network configuration, UDP traffic is not fire-walled. Streaming client can send and

receive RTP and RTCP packets via UDP. This provides better throughput for real-time

data.

This is the ideal method for streaming, where different types of data are

communicated based on different requirements to better utilize the network capacity. A

firewall can still be employed with special policy to allow UDP traffic without

compromising the network security.

 22

The following diagram shows three distinct connections, established to serve three

different channels.

Figure 11. Standard streaming using TCP and UDP

4.2.2 INTERLEAVING-OVER-TCP [5, 7]

Some networks are more restrictive and only allow outbound-established TCP

connections. This is most often seen in mobile networks employing the General Packet

Radio Services (GPRS) system to transmit IP packets. In this situation, UDP cannot be

used, and if used, packets will be blocked at the carrier’s IP gateway. The RTSP/RTP

streaming standard also specifies an alternative method of interleaving. There is only one

full-duplex TCP connection, initiated outbound from the client to the external server, and

thus can go through the firewall.

Different types of data are communicated over the same TCP connection.

However, RTP and RTCP packets must be distinguishable and therefore are delimited by

an ASCII dollar sign ($), to indicate the start of the packets. It is followed by a one-byte

channel identifier (similar to the port number), a two-byte length, and finally the RTP or

RTCP packet.

 23

Figure 12. Streaming using TCP-Interleaving

The RTSP commands and responses are similar to the TCP/UDP case. The

differences lie in the SETUP command and how the RTP/RTCP data are transferred.

Figure 13. RTSP SETUP request and response using TCP-Interleaving

Here, notice the parameter interleaved=2-3 in the SETUP request, informing the

server to use TCP-interleaving, allocating channel number 2 for RTP and 3 for RTCP.

The server agrees and confirms the request of using interleaving.

 24

Next, RTP and RTCP packets are transferred following this format.

Figure 14. Interleaved RTP and RTCP packet formats

TCP-interleaving by design cannot be as efficient as the TCP/UDP approach

because of one single connection versus two dedicated connections. By delivering RTP

packets in a connection-oriented fashion, real-time requirements cannot be satisfied.

There is also the extra cost to handle the complexity of the interleaving and de-

interleaving the data. Thus, unless the network configuration forces us to, TCP/UDP

should be used in favor of TCP-interleaving.

4.2.3 TUNNELING-OVER-HTTP

Another variation of TCP-interleaving, called tunneling-over-HTTP [8, 9], is used in the

most restrictive networks, where only indirect web-browsing (HTTP using TCP port 80)

via HTTP proxy servers is allowed. Since the HTTP proxies run over TCP and only

service HTTP clients from the same network, RTSP, RTP and RTCP packets are

transmitted over the same TCP connection on port 80, but disguise as HTTP packets.

The client originates all the requests, including getting the RTP data. This procedure

requires that all requests and replies are not cached by HTTP proxy servers, requests can

be identified as pairs to form a full-duplex connection, and that related requests are

ensured to connect to the same RTSP server in spite of load-balancing systems using

multiple HTTP servers.

 25

Figure 15. Streaming via HTTP-Tunneling [9]

In the above diagram, all RTSP, RTP, and RTCP traffic is done via HTTP GET or

POST request/response to convey indefinite amount of data in the reply and message

body respectively. In the case of using POST, the RTSP request must be base64-encoded

to prevent HTTP proxy server from interpreting the RTSP request in the POST body as a

malformed HTTP request.

It should be noted that tunneling-over-HTTP has the worst efficiency and

performance. It also suffers the most complexity. However, Quicktime Streaming

Server claims it can support this method successfully. See “Tunneling RTSP and RTP

Over HTTP” for more details.

5 MOBILE STREAMING

Media streaming on mobile device is similar to streaming on a PC. The only differences

are in the network media between the carrier and mobile handset, and the media contents.

In fact, both PC client and mobile streaming client can use the same server with no

change in configuration.

A PC client uses the IP network to access the media content, while a mobile client

uses both the mobile wireless GPRS network and the IP network.

 26

Figure 16. Mobile streaming architecture

As depicted in the picture above, the cellular carrier gateway runs on the IP

network, similar to the PC client. The gateway bridges the two network technologies

together: the GPRS wireless and IP networks. The gateway converts IP packets to GPRS

packet format and then forwards them to the cellular tower, which again forwards to the

cellular device.

In terms of media content difference, mobile devices have significantly smaller

screen size, compared to PC. Also, the cellular network runs at much slower speed than

the IP network. These are two of the several main reasons why streaming of only small

dimension, low quality multimedia contents is supported.

To enable multimedia playback hosted at a remote machine, two basic capabilities

are needed: 1) network connectivity to establish a connection with the remote server for

media delivery, and 2) the ability to play the delivered media. The J2ME Generic

Connection Framework (GCF) is the approach to network connectivity, and satisfies the

 27

first requirement. The second requirement is made possible by Multimedia API

(MMAPI) that provides multimedia playback. We will discuss GCF and MMAPI in the

following sections.

5.1 GENERIC CONNECTION FRAMEWORK (GCF)

J2ME does not provide the full network protocol stack seen on Windows or UNIX

systems. Such a full-blown implementation is too resource-intensive for these small-

footprint devices. Instead, a simple and lightweight system called Generic Connection

Framework (GCF) is used to create the network connection at runtime. When a

connection is required, GCF dynamically looks up a class implementing the protocol

name specified in the request URL. For example, the following code creates and opens a

TCP socket connection to the URL host.domain.com:port

(SocketConnection)Connector.open(“socket://host.domain.com:port”);

and the following code is used to create a UDP connection

(DatagramConnection)Connector.open(“datagram://host.domain.com:port”);

GCF is the only way to implement network application in J2ME, and will be used

to implement media delivery in the streaming library.

5.2 J2ME MULTIMEDIA API (MMAPI) [11]

Multimedia on mobile device running Java is handled by the J2ME Multimedia API

(MMAPI) of the JSR 135 specification. It provides a simple and flexible framework for

playback and recording of audio and video on resource-constrained devices.

Multimedia processing involves the following steps:

• Protocol handling: retrieves media content from a source such as local storage,

database, or streaming server and feeds the content to the media-handing

system.

• Media content handling: parses, decodes and renders the media content to

output subsystem such as the audio speaker and display screen.

MMAPI defines the high-level interfaces to abstract media retrieval and rendering.

Device manufacturers will provide the implementation that best fits their products.

MMAPI is intended for powerful devices with advanced multimedia capabilities such as

 28

personal digital assistant (PDA) and the very high-end mobile phones. For the mass-

market mobile devices, the Mobile Information Device Profile (MIDP) 2.0 (JSR 118)

[19], which is part of the J2ME framework, provides a compatible subset of multimedia

functionality. MIDP 2.0 Media API serves as the building block for MMAPI, and is

directly compatible. The most important feature that differentiates MIDP Media API

from MMAPI is the lack of support for custom DataSource, which is excluded in MIDP

2.0.

5.2.1 PROTOCOL HANDLING

Protocol handling involves streaming session establishment, session management, media

request and response, and media delivery. First, a connection must be opened to the

remote streaming server. Next, the session is established between the client and the

server to prepare for media delivery. This involves information exchanges between the

two entities to agree on session parameters. Session states must be maintained on both

server and client, and requests and responses are exchanged to let the server know which

piece of media the client is interested in. The media contents can then be transported to

the client for playback. Client terminates the network connection when the streaming

session finishes.

All of the steps above require the client to communicate with the server over the

internet. Hence, GCF is used for protocol handling.

5.2.2 MEDIA PLAYBACK

In MMAPI, the interfaces DataSource and Player are defined for protocol handling and

content handling. A DataSource represents the source of the media content. It

implements the specific protocol and encapsulates the details of how the media is

retrieved using that protocol. Different DataSource implementations are provided to

support various sources, such as the file protocol, the http protocol, and rtsp protocol.

DataSource has the following main operations:

• connect() – connects to the remote streaming server.

• disconnect() – terminates the session with the streaming server.

• getStreams() – return all the tracks or streams.

 29

• start() – initiates server to start sending data.

• stop() – stops the media data transfer.

The Player interface controls the rendering of time-based audio and video contents.

It defines methods to manage the player’s lifecycle, to create media controls used to

manipulate the presentation (audio volume control, video display control, etc.), and to

“provide the means to synchronize with other Players” [11].

Player has five states in its lifecycle: UNINITIALIZED (player created),

REALIZED (media information acquired), PREFETCHED (scarce and exclusive system

resources, i.e. audio device, acquired), STARTED (playing), and CLOSED (player

destroyed and resources released). Some of the Player’s main operations are: realize(),

prefetch(), deallocate(), start(), stop(), and close(). The following diagram describes the

Player’s state machine.

Figure 17. J2ME MMAPI player state machine

The transition operations may in turn invoke operations on the DataSource object to

send requests to set up the streaming session, query for media information, start the data

transfer, pause the stream(s), and close or tear down the session.

Player instances are created by the factory class Manager. This class provides

three methods to create players:

1. Using an InputStream obtained by reading a file, memory, or network

connection.

2. Using a URL location to a remote location.

 30

3. Using a DataSource, as mentioned above.

The following diagram shows how these interfaces work together to enable

multimedia playback.

Figure 18. J2ME MMAPI simplified component diagram

6 STREAMING LIBRARY

MIDP 2.0 Media API does not support real-time media streaming, and thus can only be

used for media download or media on the local storage. Although the MMAPI

specification is designed for real-time streaming and supports custom DataSource, many

mobile phones that claim to be MMAPI-compliant do not have real-time streaming

capability or extensibility of DataSource.

In this project, a streaming library is developed to provide the streaming capability

to these semi-MMAPI-compliant devices. It enables multimedia playback from a remote

media source, using an approach different from Media Download, mentioned in Section

 31

3.1. It also makes use of the free Bluetooth medium to get rid of the data cost associated

with the traditional way of doing networking on mobile devices.

6.1 MOTIVATIONS

There have been many semi-MMAPI-compliant mobile phones on the market. As new

devices are manufactured to meet the high demand for multimedia, one would think that

most, if not all, of recently made phones would be equipped with real-time streaming.

However, reality proves the opposite: many low-end to medium devices are still being

produced semi-MMAPI-compliant, due to 1) lack of hardware, 2) manufacturing cost

reduction, 3) time-to-market constraint, and 4) technical resources constraint. Thus, it is

motivational to bring the multimedia streaming capability to this subset of mobile

devices.

6.2 REQUIREMENTS

The library is targeted at devices that do not have streaming support in Java, and thus will

need to:

• Provide a module implemented in Java that J2ME applications can use to

facilitate multimedia streaming-like capability.

• Provide a Bluetooth proxy implementation to avoid using cellular network.

6.3 ARCHITECTURE DESIGN

The targeted mobile devices already can play local media files encoded in a number of

formats, such as MPEG-4, MIDI, etc. The assumption is that they will not need the

media decoders, and all the library has to deliver is the protocol handling feature to

retrieve the media contents that the device already has the decoders for.

For contents, the media is encoded in MPEG-4 and uses 3GP container format. The

streaming library is provided as a module, and the J2ME application sits on top of this

module. The following diagram shows the intended use of the library.

 32

Figure 19. Custom streaming library module

The cellular tower and the carrier gateway are left out for clarity. The module

handles all the networking and interaction with the remote server, and supplies the media

data to the media player via the J2ME application. Although the diagram shows the

library sits below the media player layer, it is actually a part of the J2ME application.

6.3.1 DIRECT DELIVERY USING WIRELESS TCP/IP NETWORK

TCP and UDP are among the protocols supported by GCF. TCP and UPD connections

can be established using socket and datagram in the protocol name as in Section 5.2.1.

Using TCP and UDP connection provides a direct mapping from TCP to RTSP channel,

and UDP connection(s) to RTP and RTCP, as in the real-time streaming specification.

IP packets are carried over the cellular GPRS data network and forwarded to the

streaming server. For new devices with WiFi capability, the phone can join the home

wireless network and use the IP network directly. The following diagram shows a mobile

device using the WiFi network topology to access the streaming server.

 33

Figure 20. Custom streaming library in a WiFi environment

6.3.2 DELIVERY OVER A BLUETOOTH PROXY

Bluetooth is a short-range and low-speed radio technology used in many mobile gadgets.

Bluetooth capability has recently become popular on PC using an add-on USB chip

called a dongle. The rationale for using Bluetooth in the streaming library is that a

Bluetooth-enabled PC can be used as a proxy, and the local are network (LAN) can be

borrowed to deliver media contents from an IP network to a mobile device, for free.

Bluetooth is a generic technology which can be used to build other application protocols.

To facilitate this usage, a Bluetooth proxy needs to be implemented, which runs on a

LAN-connected PC, to interact with the streaming server on the client’s behalf.

Bluetooth support in J2ME is in JSR 82 specification. The following diagram shows the

suggested stacks involved in the streaming-over-Bluetooth approach between a mobile

device and a LAN-connected PC.

 34

Figure 21. Streaming library and Bluetooth proxy

Even though the LAN side is omitted, it is just a normal LAN connection. The PC

can either be connected to a wired LAN, or a wireless (802.11) local network.

6.4 PROJECT DESIGN

Three approaches have been considered and are discussed in details below. The most

appropriate method is chosen as the solution. The first two methods use the open-source

Darwin streaming server, while the last one uses a custom server.

6.4.1 TCP/UDP APPROACH [10]

This method uses a custom DataSource to implement the streaming protocol. The custom

DataSource, RTPDataSource, implements the specific delivery protocol, in this case, by

using both TCP and UDP. The following diagram shows a simplified view of the classes

involved.

 35

Figure 22. Class diagram for the TCP/UDP approach

In this approach, a TCP connection is used for the RTSP channel, and for each

track, a pair of UDP connections is used for RTP and RTCP channels.

The class RTPDataSource implements the interface DataSource, and contains an

instance of ProtocolHandler, which handles all the RTSP requests and responses. With

knowledge of the media from the DESCRIBE response, ProtocolHandler creates a

collection of SourceStreamHandler instances to represent the tracks, with each

encapsulating an RTPReader and RTCPReader that receive RTP packet and RTCP

packet from RTP and RTCP channels, respectively.

A SourceStreamHandler object contains a TCPSourceStream instance that

implements the interface SourceStream. A SourceStreamHandler can be of either audio

or video type, and creates the appropriate controls for that track. It also carries track-

specific information, such as track id, RTP and RTCP port numbers.

TCPSourceStream uses a CircularByteBuffer object to store the accumulated RTP

packet data that will be consumed by the Player. The circular buffer has APIs for reading

data from and writing data to it.

 36

An RTPReader class is implemented to handle incoming RTP packets. These

packets are received, reconstructed, and then dispatched to the owning

SourceStreamHandler object. RTPReader is implemented in a Thread to work in a

concurrent, non-blocking fashion.

Similarly, an RTCPReader object is used to handle the RTCP channel. It reads and

reconstructs RTCP packets, and also forwards them to the associated stream handler.

An RTP packet is represented by an instance of the class RTPPacket. This class

can decode a binary buffer to reconstruct the RTP packet with properties like payload

type, sequence number, timestamp, and the actual data, etc. A handful of other classes

are used to represent only the prominent RTCP packet types: Bye, Receiver Report, and

Sender Report. Naturally, they are named ByePacket, RRPacket, and SRPacket.

RTPDataSource’s operations are directly mapped to the operations on

ProtocolHandler, such as connect(), disconnect(), start(), and stop().

Figure 23. Operation mappings

The table above maps operations from the Player interface to operations on the

custom DataSource, and then to operations on ProtocolHandler. ProtocolHandler takes

care of the actual networking between client and server, and also keeps track of the

session state, such as Described, Setup, Playing, or Stopped. “xxx” means there is no

matching operation. These mappings are formed by observing and debugging the media

framework.

 37

When realize() is called on the Player object , it invokes connect() on the custom

DataSource. According to the MMAPI specification, realize() examines the media data;

and according to the media streaming standard, the DESCRIBE request is used to retrieve

media information. Thus, these operations are associated together.

“prefetch() acquires the scarce and exclusive resources and processes as much data

as necessary to reduce the start latency” [11]. However, there is not any way to acquire

device’s hardware resources, such as speaker and display, and also there is any matching

operation on the DataSource interface, it is not associated with any operation (no-op).

The operation start() on Player calls start() on DataSource to resume the data

transfer. At this point, we need to send the SETUP request if we have not done so, then

send the PLAY request to begin or resume the data transfer.

The operation stop() on Player calls stop() on DataSource, which “will pause the

playback at the current media time” [11]. Therefore, ProtocolHandler sends PAUSE to

the server. And finally, close() – used to close the Player and release all resources – is

mapped to disconnect() on DataSource, which causes the TEARDOWN request to be

sent by ProtocolHandler.

This approach adheres well to the real-time multimedia streaming specification.

However, it does not work at the last mile of the cellular network. The problem this

implementation faces is the cellular carrier, being very conscious of the security risks

involved in opening UDP ports, has blocked all incoming UDP traffic at their IP gateway.

UDP packets destined for the phone are not forwarded to the device. The phone can send

RTSP commands to the Darwin server, and receive RTSP responses successfully. By

sniffing the traffic on the server with Ethereal, we can see that RTP and RTCP packets

are sent out by Darwin server, but none of them reaches the mobile device. This is

confirmed by testing in the emulator running on a PC. The UDP connections can be

established between the client running on the emulator and Darwin server. The client

library can also receive UDP packets originating from the server machine. Appendix A

shows the detailed class diagram of the TCP/UDP approach.

 38

6.4.2 TCP-INTERLEAVING APPROACH [5]

Since UDP packets are not forwarded by the carrier’s gateway, we switch to using TCP-

interleaving. As discussed in Section 4.2.2, TCP-interleaving uses one TCP connection

to multiplex RTSP request/response and RTP/RTCP packets. The challenge then lies in

the de-multiplexing of data and reconstructing the packets for the various channels.

Figure 24. Class diagram for the TCP-Interleaving approach

The class diagram for this approach resembles that of the TCP/UDP. We have the

familiar RTPDataSource entity implementing the DataSource interface, and also the

TCPSourceStream class implementing the SourceStream interface. Again,

TCPSourceSgtream contains a CircularByteBuffer object, used to buffer media data.

Similarly, we have the ProtocolHandler class bridging the custom DataSource and

TCPSourceStream, through the abstract class SourceStreamHandler. Each

SourceStreamHandler instance manages a track in the media.

There is no longer an RTCPReader entity. The class RTPReader now reads and

recreates both RTP and RTCP packets, since they are sent on the same connection. The

 39

TCP connection is also shared with ProtocolHandler, which needs to send and receive

RTSP request and responses.

SETUP rtsp://mstream.dyndns.org:554/crazydancing.3gp/trackID=65536 RTSP/1.0

CSeq: 2

TRANSPORT: RTP/AVP/TCP;interleaved=0-1

RTSP/1.0 200 OK

Server: DSS/5.5.4 (Build/489.13; Platform/Win32; Release/Darwin;)

Cseq: 2

Last-Modified: Fri, 12 Jan 2007 06:32:32 GMT

Cache-Control: must-revalidate

Session: 91061896640550

Date: Wed, 28 Feb 2007 04:11:40 GMT

Expires: Wed, 28 Feb 2007 04:11:40 GMT

Transport: RTP/AVP/TCP;interleaved=0-1

SETUP rtsp://mstream.dyndns.org:554/crazydancing.3gp/trackID=65536 RTSP/1.0

CSeq: 2

TRANSPORT: RTP/AVP/TCP;interleaved=0-1

RTSP/1.0 200 OK

Server: DSS/5.5.4 (Build/489.13; Platform/Win32; Release/Darwin;)

Cseq: 2

Last-Modified: Fri, 12 Jan 2007 06:32:32 GMT

Cache-Control: must-revalidate

Session: 91061896640550

Date: Wed, 28 Feb 2007 04:11:40 GMT

Expires: Wed, 28 Feb 2007 04:11:40 GMT

Transport: RTP/AVP/TCP;interleaved=0-1

Figure 25. Sample interleaved SETUP request/response

The example above shows the SETUP request and response to establish an

interleaving session. The special parameter “interleaved=0-1” is used to request that

RTP and RTCP data be interleaved on the same connection, identified by channel

number: 0 for RTP and 1 for RTCP. This same parameter is sent back in the response to

acknowledge the request.

The same convention of using even channel numbers for RTP and the next higher

odd numbers for RTCP is followed. A track thus owns two channel numbers, an even for

RTP channel and an odd for RTCP channel. RTPReader does not know anything about

the different tracks. It can only tell if the interleaved data is an RTP packet or an RTCP

packet, by looking at the channel number parity: even channel number – RTP packet; odd

channel number – RTCP packet. It parses the binary data, reconstructs the packet, and

sends it to RTPDataSource, along with the channel number. RTPDataSource then

forwards this packet and the associated channel number to ProtocolHandler for packet

handling.

ProtocolHandler needs to keep track of which SourceStreamHandler owning which

channels. It maintains this information in two hash tables, mapping from channel number

 40

to SourceStreamHandler object. Using the reported channel, ProtocolHandler looks up

the correct SourceStreamHandler object and passes the packet to it.

SourceStreamHandler receives the packet, and if it is an RTP packet, sends it to

TCPSourceStream for buffering. The media data encapsulated in the RTP packet is

removed and inserted into the circular data buffer.

The operation mappings between Player, DataSource, and ProtocolHandler are the

same as in the TCP/UDP approach. Appendix B shows the complete TCP-interleaving

class diagram.

Since this approach does not use UDP connection, it succeeds in getting the RTP

and RTCP packets delivered to our streaming library. Like before, we run Darwin server

on the server PC, and use Ethereal to sniff the network packets. Three tests are

conducted for comparison, using:

1. Native streaming on Sony Ericsson W850i: Since we cannot tap into the native

streaming code, we have to sniff for network traffic on the server machine. The

UDP packets (column #1) are captured on the server using Ethereal, and recorded

in the first test case. We inspect each UDP packet for the length of the

encapsulated RTP packet (column #2), and the length of the media data contained

in that RTP packet payload (column #3).

2. TCP-Interleaved on emulator: Using the client streaming library in the J2ME

application on the emulator, we can print out each RTP packet that RTPReader

constructs from the interleaved data. Since UDP is not used, we record only the

RTP packet length (column #4) and media data length (column #5) in the payload.

3. TCP-Interleaved on W850i: This time, the same test as in (2) is conducted, but

on the real device. Running the same application on the Sony Ericsson W850i,

we log each incoming RTP packets in the phone’s local storage, and upload the

log file to the server at the end of the session for viewing. Again, the RTP packet

length and payload length are recorded in the log, shown in columns #6 and #7,

respectively.

 41

The total number of RTP packets sent and received matches in three tests, 96

packets. For RTP packets, the octets sum up to be 68,647 bytes in all three cases; and so

do the sums of the payload octets, at 67,496 bytes. Although we have not inspected and

compared each packet’s content, we are confident that the client streaming library using

TCP-interleaving is working properly. Appendix C shows the complete recordings of the

three tests described above.

Media data encapsulated in RTP packets can now be collected and properly inserted

into the source streams. However, we get into a different issue: the phone is only semi-

MMAPI-compliant. The Player object, although being given a custom DataSource

object, just treats it like it does with a local input stream. When local input stream is

used, the entire media file is loaded into memory and the memory buffer is passed to the

player. A custom DataSource being treated like an input stream is no difference from

whole media download. A true MMAPI-compliant implementation fetches data from the

DataSource, little by little, and presents it when just enough data has been buffered.

Three high-end phones, a Nokia and two Sony Ericsson devices, have been tested with

TCP-interleaving. Not only that none of the tested phones provides true MMAPI

implementation with custom DataSource support, but also none of the mobile phones on

the market is reported to be fully MMAPI-compliant.

6.4.3 MULTI- SUBCLIP APPROACH

In this approach, the intended media file is broken into smaller sub-clips - each is

complete by itself and can be played independently. The original media file can be split

based on duration or sub-clip file size using Mp4box from the GPAC tool suite. The

shorter the sub-clips are (either in duration or size), the less time it takes to download the

individual clips. However, this method is similar to playing a multi-disc movie: we have

to remove the current disc and insert in the next one. This process takes time, and there is

a gap in between the sub-clips. Thus, short clips reduce download delay at the cost of

increasing gaps between clip playbacks.

Mp4box from the GPAC tool suite is used to split the following media file into ten-

second clips. There really is no rule on how long each clip should be, either in time

duration or size. Experiments are conducted with the splitting process to find the most

 42

optimal configuration - one which does not produce: 1) a long download delay per clip

and 2) the slideshow-effect because of fast switching among very short clips. To satisfy

these two criteria, the clips should be as long as possible (in terms of file size) without

sacrificing clip download time. Having shorter clips also means there are more clips per

video, which in effect creates a bigger description file.

In this experiment, the demo video is split into 10-second subclips of varying sizes.

The choice of using a fixed clip-duration rather than fixed clip-size is made to ensure that

the flashing effect is only seen at regular intervals. This choice helps demonstrate the

clip switching effect, and may also enhance user experience. Also, since videos targeting

mobile devices are most likely encoded using fixed bit-rate, splitting based on duration

produces little variation in clip size, as in the following example, where clip sizes range

from 72.3 KB to 79.2 KB.

Figure 26. Splitting video file using mp4box (GPAC)

The client library will need some knowledge about the media and the associated

clips. We design a custom media description language, mirroring SDP. Darwin

streaming server can no longer be used. Instead, a server is developed to handle request

for a media file and deliver the sub-clips in response. A custom RTSP language is

 43

created to enable the communication between the client and the custom server. Our

custom RTP is used to deliver media data. It does not really have a format, and will be

addressed as the RTP channel instead.

6.4.3.1 NAMING CONVENTION

To distinguish between our custom formats and the various standards defined in the

RFCs, we will append the letter “c” to the custom format, i.e., SDP-c, and append the

RFC number to the standard format, i.e., SDP-4566.

6.4.3.2 CUSTOM SDP

RTSP uses the SDP standard defined in RFC 4566 to convey the media information, such

as type and format, media transport and session description metadata to the client. The

following snapshot shows the SDP-4566 media description for a video file named

CrazyDancing.3gp.

Figure 27. Sample SDP-4566 packet

 44

The SDP-4566 syntax above tells the session name in “s=\crazydancing.3gp”,

connection information in “c=IN IP4 0.0.0.0”, the two media streams: one video in

“m=video 0 RTP/AVP 96” and one audio in “m=audio 0 RTP/AVP 97” along with their

track ids. The audio and video lines also describe the encoding, such as AMR sampled at

8 KHz, and H263 video format of size 176x144.

Our streaming client is interested only in the media information, but not the

protocol and session description. It has to know the media format, and since the original

media file is split into smaller clips, it also needs to know the number of clips constituting

the requested media, and for each clip, its duration and size. The clips must be requested

and played in the correct order so that they form a continuous media session. These

requirements result in the following custom SDP-c format:

Figure 28. Custom SDP format

The attribute “m=” gives the name of the original media that this SDP describes.

The attribute “t=” tells the media format. The “p=” lines list all the sub-parts of the

media. Each p-line contains the (clip) part id, followed by the part name, the starting

time in milliseconds, the part duration in milliseconds, and finally the length of that part

in bytes. The figure below shows the media description for a video named

KnightRider.3gp in the SDP-c format.

 45

Figure 29. Sample custom SDP packet

The video KnightRider.3gp has a type of “video/3gpp” and consists of six parts,

starting with KnightRider_001.3gp as the first clip, followed by KnightRider_002.3gp,

etc. and ending with KnightRider_006.3gp. For each part, the duration in milliseconds

and length in bytes are also included, i.e., 9,472 ms with a length of 72,589 bytes for the

first sub-video, which starts at time 0.

The SDP–c-formatted information is encapsulated in the DESCRIBE response, to

tell the client what it needs to request, and in which order. This custom SDP format

offers high flexibility like the original SDP specification, allowing more attributes to be

added. If extensibility is required, the client library, and possibly the server, will need to

be changed to understand the new information that it may be interested in.

6.4.3.3 CUSTOM RTSP

A new set of RTSP syntaxes are also developed to fit the customized protocol. Mirroring

the conventional RTSP specification, the new protocol has the following requests:

• DESCRIBE: to obtain the media meta-data in the custom SDP format.

• SETUP: to obtain a unique session id that is used to associate a client with a

session and network connections.

• PLAY: to request a specific sub-clip.

• TEARDOWN: to terminate the session with the server.

As each clip is completely playable by itself and resides in the client’s memory,

there is no need for a PAUSE command. The client can just issue a local Pause request

when needed.

 46

All RTSP-c commands follow the RTSP-2326 command syntax by including a

“Cseq:” header, used to pair the request and reply. Lines in request and response also

end with a pair of CarriageReturn/LineFeed (CRLF), and the request and response is

terminated with two pairs of CRLF.

The DESCRIBE request contains the command “DESCRIBE” followed by the

media request URL and the RTSP version. Media request URL is in the familiar format

rtsp://host.domain:[port]/media-file, where port is optional.

The client issues the SETUP request to obtain a session id used in successive

requests. The session id is used by the server to associate the different channels, in case

of using TCP/IP, and to locate and identify the different clients. The SETUP request also

starts with REQUEST as the command, followed by the rtsp URL and ended with rtsp-

version.

The PLAY request and reply require more headers to convey information about the

requested media clip. Below is the format for the PLAY request:

Figure 30. RTSP-c PLAY request

The TERMINATE request serves the same purpose as in RTSP-2326. Upon

receiving this command, the server replies with an OK, terminates all connection

channels with client, and cleans up resources used to service that client session.

Figure 31 shows a complete streaming session, using the custom SDP and RTSP,

which plays only the first clip of the media. It shows where SDP-c is used along with all

the commands described in this section.

6.4.3.4 CUSTOM RTP CHANNEL

The multimedia streaming standard uses RTP packets to carry media data, possibly in a

separate channel. Our custom streaming design does not break media data into packets,

 47

but rather delivers unit of whole clips. RTP-c channel specifies only the API, and the

implementation is dependent on the underlying network protocol in use.

For network supporting multiple connections, such as IP, a separate connection can

be established for the RTP channel. However, for network topology that allows only a

single connection between two devices, such as Bluetooth, the same Bluetooth

connection is used to carry both RTSP and RTP traffics. In this case, RTP is

implemented as a virtual channel, rather than a dedicated and physical channel.

The RTP-c API is designed to be very simple. The calling library uses it to send a

session id so the remote server can pair it with the corresponding RTSP channel, if

separate connections are used. The caller also uses the RTP-c channel to read back a

stream of media data after a successful PLAY response.

6.4.3.5 CLIENT MEDIA MANAGER

At the high-level, there are three tasks associated with the multi-clip approach:

• Maintaining media information: such as the various clips, clip order, clip start-

time, duration and length. This is required to maintain a continuous stream of

clips to form the original media.

• RTSP protocol handling: to send and process RTSP request and response, as well

as to retrieve clip data.

• Managing clip playback: each clip is played independently, but in a series to

form a longer piece of multimedia.

All the above tasks are dealt with using a media manager. The media manager is

the entry point to this method of streaming, from the application’s point of view.

Applications do not know anything about SDP-c, RTSP-c, and RTP-c. All they know

about is the media manager and the media manager does the all the work associated with

the tasks described above.

 48

DESCRIBE rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 1

RTSP/1.0 200 OK

CSeq: 1

Content-length: 237

m=KRON.3gp

t=video/3gpp

p=1 KRON_001.3gp 0 10000 76284

p=2 KRON_002.3gp 10000 10000 79240

p=3 KRON_003.3gp 20000 10000 75326

p=4 KRON_004.3gp 30000 10000 75030

p=5 KRON_005.3gp 40000 10000 77828

p=6 KRON_006.3gp 50000 9750 72352

SETUP rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 2

RTSP/1.0 200 OK

CSeq: 2

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

PLAY rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 3

File: KRON_001.3gp

FileSize: 76284

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

RTSP/1.0 200 OK

CSeq: 3

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

TEARDOWN rtsp://mstream.dyndns.org/KRON.3gp RTSP/1.0

CSeq: 6

Session: a762310f-9ecc-4d94-9c6f-ecf6ef22be5c

RTSP/1.0 200 OK

CSeq: 6

Figure 31. Custom RTSP streaming session

 49

6.5 PROJECT IMPLEMENTATION

6.5.1 SHARED MODULE(S)

The streaming client library and streaming serve are implemented in Java. The server

uses Java 2 Standard Edition (J2SE), while the client library uses J2ME. Since J2ME is a

subset of J2SE, some components shared by both the client and the server are

implemented as shared modules. Three shared modules are identified: SDP, RTSP, and a

utilities module.

6.5.1.1 SDP MODULE

This module consists of only one class: DML, standing for Descriptor Markup Language.

It contains the structure for the SDP-c format, with properties to keep track of media

name and type (“m=” and “t=” lines) and entries to keep track of individual clips (“p=”

lines). It can parse and interpret the textual form of SDP-c contained in the DESCRIBE

response, as well as build a textual representation of the SDP-c format to send in the

same response.

6.5.1.2 RTSP MODULE

This module consists of the following classes:

• RTSPException: a generic exception class used in RTSP request/response

parsing.

• RTSPTypes: serves as the base class for RTSPRequest and RTSPResponse. It

declares RTSP header definitions, such as “DESCRIBE”, “SETUP”, “PLAY”,

“CSeq:”, “Session:”, “File:”, “FileSize:”, and RTSP version, etc. It also has

API to add and retrieve the header values.

• RTSPStatusCode: maintains a list of error codes and error message mapping that

are consistent with the RTSP-2326 standards.

• RTSPRequest: derives from RTSPTypes and represents an RTSP request. It

encapsulates the commands specific to a request, such as “DESCRIBE”.

• RTSPResponse: also derives from RTSPTypes and encapsulates an RTSP

response.

• RTSPReader: an interface that defines APIs for reading lines of string from an

RTSP channel. It is used by RTSPRequest and RTSPResponse. Network

 50

protocol-specific implementation, such as TCP or Bluetooth, will derive from this

interface.

• RTSPWriter: defines APIs for writing a string to an RTSP channel, and is used

by RTSPRequest and RTSPResponse. Similar to RTSPReader, network protocol-

specific derived classes, such as TCP and Bluetooth, will provide the

implementation.

• RTSPSocketReader: socket-implementation for RTSPReader, used by both

server and client socket library.

• RTSPSocketWriter: socket-implementation for RTSPWriter, used by both server

and client socket library.

6.5.1.3 UTILITIES MODULE

This module defines classes used for debugging, logging, and string manipulations.

6.5.2 STREAMING SERVER

The server, implemented in the class StreamingServer, uses TCP/IP connections for

communication and media delivery. The server contains two threaded services, to

concurrently support multiple client sessions. The following figure shows the class

diagram of the streaming server.

Figure 32. Custom streaming server class diagram

 51

The RTSP service, implemented in the class RTSPService, binds to TCP/IP port

5454 and listens for new client requests. When a new session request arrives,

RTSPService creates a new SessionHandler object to handle all of client’s RTSP

requests. SessionHandler is implemented as a thread so it can run on its own. When the

client sends a DESCRIBE request, SessionHandler checks its media collection to see if

the requested media exists. If the requested media is present, the handler uses a

DMLParser object to read the media’s DML file. DMLParser understands the format and

constructs the DML object, then returns it to SessionHandler. SessionHandler replies

with an RTSP OK, along with the SDP-c formatted DML. When SETUP is received,

SessionHandler generates a unique session id and sends it in the response. At the same

time, it registers itself with the streaming server as a pending session, using a session key.

The session will become complete when the RTP channel connection is established

successfully.

The class RTPService provides the implementation for the RTP service, which

listens on TCP port 5455. As a TCP connection is opened, it accepts and adds it to the

read connection list of a Selector object (Java implementation of the Unix select()

method). The client is expected to send the session id next, and the service reports the

new connection and the session id to the streaming server. The streaming server then

compares the session id with those in the pending session list, and if a match is found, the

session is fully established and is removed from the list.

The two established TCP connections are now owned by SessionHandler, which is

responsible for the streaming session from now on. RTSP requests and responses are

sent over the RTSP connection, and media data is sent over the second connection.

Figure 33 shows the main body pseudo-code of SessionHandler.

 52

Figure 33. SessionHandler body

There are other classes in the server module providing the implementations for

RTSP and RTP connections. These classes are RTSPSocketConn and RTPSocketConn,

respectively, which provide the APIs for receiving an RTSP request and sending the

response, and to stream the requested media’s contents. The module also has logging

support used for monitoring and debugging purposes.

Figure 34 shows the server receiving and responding to a DESCRIBE and a SETUP

requests. This session is established using the Bluetooth client implementation. The

client of this session is the streaming proxy, which will relay this information back to the

actual client - the mobile device.

 53

Figure 34. Streaming server in operation

6.5.3 CLIENT STREAMING LIBRARY FRAMEWORK

The client library is designed for extensibility with different network technologies. The

framework is broken down into packages and interfaces so that a new implementation

specific to a network protocol can be easily added.

The client streaming framework incorporates and extends the shared library module

discussed above. It consists of six main packages, outlined below:

1. com.mstream.client: contains UI component implementations for the sample

streaming application. These include the main application, the two video screen

types (VideoCanvas and VideoForm), and SessionChooser and

SessionChooserListener. The video screen types are used for video display. The

SessionChooser class is for selection one of two supported session

 54

implementations: Socket or Bluetooth. The following classes belong to this

package:

• VideoScreen: base class for VideoCanvas and VideoForm.

• VideoCanvas: canvas-based video display implementation.

• VideoForm: form-based video display implementation.

• SessionChooserListener: provides a listener interface to notify when a session

is selected for use.

• SessionChooser: provides the UI component for session browsing and

selection.

• StreamingClient: the sample video streaming application.

2. com.mstream.client.io: this package contains the connection interfaces used for

RTSP and RTP channels, a base class for the streaming session

(StreamingSession), and the session factory. The session factory is used to create

Bluetooth streaming sessions. The classes in this package are:

• RTPConnection: provides an interface for an RTP channel with APIs to send

a session id and retrieve the requested media stream.

• RTSPConnection: abstracts the different RTSP channel implementations.

• StreamingSession: a base class representing a streaming session, which

contains an RTSP- and an RTP connection objects.

• SessionFactory: produces Bluetooth streaming session objects.

3. com.mstream.client.io.bluetooth: is the Bluetooth implementation of the

streaming client. It contains Bluetooth-specific classes that extend the classes

and/or implement the interfaces in the two packages above. It contains the

following classes:

• BluetoothServiceInfo: an interface defining L2CAP message types and the

UUID of the Bluetooth proxy service.

• ProxyServiceDiscovery: a utilities class used to discover the Bluetooth proxy

services in proximity.

• ServiceDiscoveryListener: utilities classes used for proxy service discovery.

• L2CapSession: provides the Bluetooth-implementation for the

StreamingSession class.

 55

• RTSP_RTP_L2CapConn: the implementation for both the RTP and RTSP

connection interfaces. It handles RTSP request/response and media retrieval.

4. com.mstream.client.io.socket: provides the streaming client implementation

using socket, consisting of the following classes:

• RTSPSocketConnection: implements the RTSP connection using socket.

• RTPSocketConnection: implements the RTP connection interface using

socket.

• SocketSession: provides the StreamingSession implementation using

RTSPSocketConnection and RTPSocketConnection.

5. com.mstream.client.util: contains utilities classes.

• BufferOverflowException: an exception class used by the CircularByteBuffer

and CircularCharBuffer.

• CircularByteBuffer: implements a circular buffer of bytes.

• CircularCharBuffer: implements a circular buffer of characters.

• UUID: provides unique identifiers.

• Task: an interface representing a unit of work.

• TaskDispatcher: implements a thread to execute and perform the tasks.

6. com.mstream.client.media: the core framework for the multimedia streaming

library. It defines the classes related to media handling and playback, and

consists of:

• DeviceConfig: keeps device-specific information, such as how many open

players the device can support.

• SessionManager: produces sequence numbers (CSeq) for RTSP requests.

• MediaInfo: maintains information about various tracks in a media.

• MediaPartPlayer: handles the playback of a single sub-clip.

• MediaPlayerListener: listener interface for various media playback event.

• MediaPlayer: combines all the classes and interfaces above to support media

streaming and playback.

7. com.mstream.test: provides logging framework and other tests used during

development.

 56

• Logger: the logging utilities class.

• RMSLogger: a J2ME application for viewing logs and sending them to a

remote server.

• NetworkTest and ProxyServiceDiscoveryTest: network test application and

Bluetooth proxy service discovery test.

The following is the class diagram linking the important classes together.

Figure 35. Client library class diagram

Notice the class RTSP_RTP_L2CapConn, which implements both the

RTSPConnection and RTPConnection interface. L2CAP permits one active connection

between two Bluetooth devices; and so this implementation must multiplex both channels

on one physical connection to handle both RTSP and RTP traffic.

6.5.3.1 TCP/IP CLIENT LIBRARY

TCP/IP client library is provided in the package com.mstream.client.socket. We use TCP

sockets to implement the two channels, RTSP and RTP, separately. The RTSP

 57

implementation is in the class RTSPSocketConnection, and the implementation for RTP

channel is in the class RTPSocketConnection.

The RTSP channel opens a socket connection and connects to port 5454 on the

remote streaming server. RTSPSocketConnection makes use of RTSPSocketReader and

RTSPSocketWriter, provided in the shared module, to send an RTSP request and read

back an RTSP response.

The RTP channel connects its TCP sockets to port 5455 on the server. The session

id is sent over this socket to the server, and media is read back from this connection.

SocketSession provides the implementation for StreamingSession. It encapsulates

both RTSPSocketConnection and RTPSocketConnection, and forms a uniform interface

to service the higher layer, the MediaPlayer, to retrieve media data.

6.5.3.2 BLUETOOTH LIBRARY USING L2CAP

Logical Link Control and Adaptation Protocol (L2CAP) is used for the Bluetooth

implementation. L2CAP is a packet-based protocol [12, 14, 15], and with a header length

of 2 bytes, each packet can be 64 KB in length. However, mobile devices in practice

support much smaller packet size of 672 bytes.

Since only one channel can be active between two devices, both the RTSP and RTP

channels have to share an L2CAP connection. This means the data packets have to be

marked to be either an RTSP or RTP packet. The following message types are defined to

identify packets and the data in the payload:

• RTSP_REQ_MSG: an L2CAP packet containing an, or part of an, RTSP request.

• RTSP_RESP_MSG: an L2CAP packet containing an, or part of an, RTP

response.

• RTP_MSG_MARKER: an RTP packet containing media data.

• SESSION_ID_MARKER: a packet containing the session id from client to server

when establishing the RTP channel.

• CONTINUATION: containing data following the first packet if the data exceeds

one packet.

 58

The L2CAP messages are formatted as below:

Figure 36. L2CAP message format

This message format allows an L2CAP packet to carry a maximum of 667 bytes of

data.

Service discovery is abstracted in the class ProxyServiceDiscovery. When

requested, this class does an asynchronous discovery and listens for new devices and

services. ProxyServiceDiscovery maintains a cached list of found services. When a

service is found, it is added to this service cache, and the list can be returned upon request

without blocking.

At start-s up, the client instantiates a SessionFactory object. The SessionFactory

object then makes a request to ProxyServiceDiscovery to discover the Bluetooth devices

in its surroundings that offer the streaming service, using the service id

“5c3d0cd51ec84b0197120b9e1f813d40”. Each service comes with a Bluetooth URL in

the following format:

btl2cap://<BDA>:PSM;[param=value;] where

BDA: Bluetooth device address of the device offering the service.

PSM: Protocol Service Multiplexor – used to determine the higher level application

protocol.

For each of the found services, SessionFactory creates an L2CapSession object

using the associated URL. L2CapSession provides the StreamingSession implementation

using Bluetooth technology and represents the remote Bluetooth service.

The core of this implementation resides in the class RTSP_RTP_L2CapConn,

which implements both RTSP and RTP operations. This class encapsulates an

L2CapConnection instance (defined in JSR 82) and uses two internal classes:

RTSPBluetoothReader and RTSPBluetoothWriter, to read and reconstruct an

 59

RTSPResponse object, and to write an RTSPRequest string. All of these three classes act

on a single connection, and thus need to control access to the connection using a shared

lock.

RTSP_RTP_L2CapConn uses a CircularByteBuffer and a CircularCharBuffer to

save data that are read in by mistake. The circular character buffer is used to save read-

ahead RTSP data, and the circular byte buffer saves read-ahead RTP media data, if any.

However, since data are carefully packetized to fit packet boundary, these two buffers are

rarely needed.

The client asks SessionFactory for the found sessions, and can select one of the

L2CAP sessions to connect to. As session is established, RTSP_RTP_L2CapConn opens

the L2CAP connection and creates the reader/writer objects to act on the connection.

Packetization is required for sending RTSP request. Before an RTSP request is sent

out, RTSPBluetoothWriter checks to see if the string exceeds the packet size. If it does

not, an RTSP_REQ_MSG header is added to form a message. If the string is longer than

the packet size allows, it is broken into multiple messages.

When an RTSP response is expected, RTSPBluetoothReader reads one or more

L2CAP messages until a pair of CR/LF is seen. For each message, it peels off the header

and searches the data for CR/LF. If there is more data after the CR/LF, it appends the

extra data to the read-ahead CircularCharBuffer. Media data is retrieved in a similar

manner, RTSP_RTP_L2CapConn reads and checks for RTP_MSG_MARKER message

type. It then peels off the header and appends the media data to the media stream, to be

return to the media player.

6.5.4 BLUETOOTH PROXY USING L2CAP [13]

Media streaming over Bluetooth requires the client-side library, discussed in Section

6.5.3.2, and the Bluetooth streaming proxy. The proxy bridges the communication

between the remote streaming server and the streaming client. The Bluetooth streaming

proxy is implemented in C++ using Widcomm Bluetooth SDK [16] and a generic brand

USB Bluetooth dongle. The Widcomm Bluetooth driver also needs to be installed for the

 60

dongle to work with the SDK. The Widcomm SDK comes with documentation, header

files, and DLL to be incorporated into the project.

The proxy implementation provides a window-based interface for starting and

stopping the service. Messages are written to the main windows for debugging. A

hierarchy of RTSPRequest, RTSPResponse, RTSPReader, RTSPWriter, and

RTPChannel are required. They are similar to those in the Java shared module, and will

not be discussed.

Two Bluetooth proxy implementations are provided using L2CAP and RFCOMM.

RFCOMM emulates the serial connection, and is built on top of the packet-based

L2CAP. The Bluetooth proxy application is designed as a framework to support future

Bluetooth proxy implementations. Using this framework, RFCOMM implementation

was easily created. Although the Bluetooth proxy implements both L2CAP and

RFCOMM proxy services, the Bluetooth client library implements only the L2CAP

service. Thus, RFCOMM implementation is currently not used in this project, and is

provided only to demonstrate the extensibility of the Bluetooth proxy framework.

A ProxyManager class is created to represent a service. L2CapProxyMgr and

RfCommProxyMgr derive from ProxyManager and provide the specific implementations.

ProxyManager contains a DataSource object, which serves as the media caching

manager.

A FileSystemDataSource is provided to cache media data in file system. It uses a

combination of the media URL and media part name to map to a media file in local

storage. It maintains this mapping using an STL map.

A base class called BluetoothProxy defines the APIs for streaming proxy and

declares methods for handling RTSP requests. Derived proxy classes supply the

implementation for reading the Bluetooth messages, and hand the request to

BluetoothProxy for handling. BluetoothProxy works with RTSPRequest and

RTSPResponse objects only, and does not know about L2CAP or RFCOMM message.

BluetoothProxy handles communication with the streaming server on the client’s behalf.

It uses the socket implementations of RTSPReader and RTSPWriter to send requests to

and receive responses from the streaming server.

 61

An L2CAP server can support up to seven clients. Thus L2CapProxyMgr creates

seven L2CapProxy objects on initialization. Each L2CapProxy serves on client and

handles message packetization and de-packetization. Once all the messages consisting of

a request are received, an RTSPRequest object is created and handed to the parent class

BluetoothProxy. L2CAP messages are instances of BtMsg.

The Bluetooth proxy communicates with the Bluetooth client on one side, and with

the streaming server on the other side on the client’s behalf. Proxies keep only the media

data, and do not cache SDP data.

When a client connects to the proxy and sends the DESCRIBE request,

L2CapProxy immediately creates the socket connections and connect them to the remote

server. It then reads the response with SDP data and forwards it back to the client via the

Bluetooth connection. Client next sends the SETUP request, which passes through the

proxy to the server. The server sets up the session and returns the SETUP response with

the session id. L2CapProxy again forwards the response and session id back to the client.

The client can now send a PLAY request. The proxy constructs a key from the media

URL and media part file name and looks up its cache, the DataSource object, to see if the

requested media file exists. If it finds one, it sends the media data back to the client

without consulting the streaming server. If the request media clip is not found, the proxy

forwards the PLAY request to the server, receives and forwards back the PLAY response.

The server starts sending media data on the RTP connection. The proxy reads media data

and forwards to the client, and at the same time saves the data in its cache, via the

DataSource object.

Figure 37 shows the sequence diagram illustrating the client-proxy-server

interaction.

 62

Figure 37. Streaming over Bluetooth activity diagram

6.5.4.1 PACKETIZATION AND TRANSMISSION

Packetization and de-packetization are performed on the proxy as well as on the

Bluetooth client. Although L2CAP specification supports up to 64KB packet size, the

Bluetooth hardware in reality would not support that much, and would break the packet

into multiple smaller packets at the base-band level and reassemble them on the other

side. Although longer packets are more efficient, but they also are more susceptible to

transmission errors and thus, the default packet size of 672-byte is chosen to avoid

complexity.

 63

After the L2CAP connection is established between the client and the proxy, both

the proxy and the client determine the default Maximum Transmission Unit (MTU) the

connection supports. The default MTU is saved for use later in packet construction.

Before an RTSP request or response is sent, it is serialized into a string. The length

of the string is then compared to the MTU, taking into account the message header length

(MsgHdrLen). If it is shorter than or equal to (MTU – MsgHdrLen), the message type

RTSP_REQ_MSG or RTSP_RESP_MSG is inserted in byte zero, followed by a two-byte

message length, and finally the string appended at the end. The message is then sent of in

a single L2CAP packet. If the string is longer than (MTU – MsgHdrLen), the message is

broken into packets of length (MTU – MsgHdrLen), with RTSP_REQ_MSG or

RTSP_RESP_MSG as the message type for the first packet, and CONTINUATION for

the following packets.

Similarly, when a packet is received, the message type in its header is inspected. If

the message length field following the type is less than or equal to (MTU – MsgHdrLen),

the packet contains the complete message, and an RTSP request or response is

constructed. If the message type is CONTINUATION, the data in the packet is

accumulated until enough has been read, and the accumulated data is used to construct

the request/response.

RTP packets containing media data works slightly differently. Since the client

already knows the length of the requested clip, it keeps reading in packets of type

RTP_MSG_MARKER until enough has been received.

SDP-c data works in the same way. Since the DESCRIBE RTSP response contains

the header field “Content-length”, which indicates the length of the data following the

pair of CR/LF, the SDP-c data can be transferred without using the length field. SDP-c

data most likely will be contained in CONTINUATION messages.

CONTINUATION packets always follow a packet that already contains the length

for the entire message, and thus do not need to carry a length field. RTP packets,

although do not depend on any other packet, do not need a length field either. This is

because the length of RTP data is already known in advance by the requester.

 64

The following figures show the format for RTSP request, response, continuation,

and RTP packet formats. Notice that, RTSP_REQ_MSG and RTSP_RESP_MSG

packets will either contain the whole message, or contain the first part of a multi-packet

message.

Figure 38. RTSP request message format

Figure 39. RTSP response message format

CONTINUATION message always follows either an RTSP_REQ_MSG or

RTSP_RESP_MSG message and is used only in multi-packet messages.

Figure 40. Continuation message format

RTP_MSG_MARKER packets are always sent independently.

Figure 41. RTP message format

Widcomm SDK [16] provides a framework of C++ classes for handling Bluetooth

connection. The L2CapProxy extends the L2CapConn to handle incoming connection

request, sending and receiving L2CAP packets. It also has a method called

OnCongestionStatus(BOOL is_congested), which is called when the connection is

congested or decongested. Experimentation was performed with this method in hope of

controlling the packet transmission interval, since the client was experiencing packet loss.

However, this method does not work as intended. It only informs the proxy that the

connection is congested once, and never notifies again. When congestion is detected for

the first time, the proxy stops sending packets, and waits for a notification of channel

 65

decongestion. This event is never received from the framework and the proxy waits

forever.

To overcome the SDK traffic control issue, we need to introduce a sleep in between

consecutive packet transmissions. There is no rule for the length of this sleep, and we

have to go through many trials to find a value that is just long enough to avoid packet

loss. The client side also has to wait between packets using the same sleep interval.

The following is a snapshot of the proxy serving a client. From the log, we can see

all the RTSP requests and responses, as well as L2CAP packets carrying RTP data to the

client. It also indicates that the proxy is using its cache instead of requesting for data

from the streaming server.

Figure 42. Bluetooth streaming proxy in action

6.5.4.2 DATA CACHING

Caching is done on a media-sub-clip basis by the class FileSystemDataSource. A

mapping table is maintained on the proxy to map (<media-url>|<clip-file-name>) �

(<clip-file-location). The media URL and clip file name are joined together using the

character “|” and acts as the key to index to the full path of the media clip. The

DataSource interface facilitates ease of extension to implement media data caching, i.e.,

an implementation using a database can be easily implemented.

 66

The following picture shows the mapping table format used by

FileSystemDataSource.

Figure 43. Media cache descriptor format

The full media-URL is used so a new request media URL can readily be used,

together with the media part name, to construct the key. This key will be mapped to the

full path where the cached media data can be retrieved. Here the cached media files are

relative to a data source root directory.

Although Bluetooth transfer is a lot slower than the Internet, caching can greatly

improve user experience by avoiding delay, and can especially reduce the load on the

streaming server. The user of a Bluetooth proxy is particularly important where a local

area network is closed to the public for security reason (so it is not possible for mobile

devices to join the network), or for devices that do not have WIFI support. In either case,

the network security can be maintained and users can still enjoy the benefit of viewing

multimedia without having to pay for data usage.

6.6 STREAMING CLIENT SAMPLE APPLICATION

The client video application is implemented using J2ME. It resides in the packet

com.mstream.client, consisting of six java files:

• VideoScreen: an interface to be extended by VideoCanvas and VideoForm. This

represents the display area where the video will be rendered in.

• VideoCanvas: the canvas-based implementation of VideoScreen. Canvas is “a

base class for writing applications that need to handle low-level events and to

issue graphics calls for drawing to the display” [19], according to the MIDP

documentation. To learn more about Canvas, please consult the J2ME MIDP

documentation, which can be downloaded from Sun website.

 67

• VideoForm: the form-based implementation of VideoScreen. Form is the high-

level display in MIDP.

• SessionChooser: implements a list to display the available session. The list of

sessions contains, at the very least, a socket implementation, and Bluetooth

services detected in the surroundings. User can choose one of the available

session objects for the streaming session.

• SessionChooserListener: a simple callback interface used by the main

application, StreamingClient, to detect which session is selected. StreamingClient

implements this interface, and registers itself with the SessionChooser object, to

be notified when a session is chosen.

• StreamingClient: the client application class. It extends from the MIDP class

javax.microedition.midlet.MIDlet, and encapsulates the MediaPlayer object, the

VideoScreen display object, and handles user interactions. The user can choose a

menu item to trigger an action, such as to initialize the streaming session (INIT),

describe the media (DESCRIBE), set up the session (SETUP), play (PLAY) and

end the session (TEARDOWN).

The following image shows the streaming client playing a sample video. The demo

is run on the emulator, using the socket implementation.

 68

Figure 44. Streaming client in emulator

With the original video is split into smaller clips, multiple media players have to be

created, with each handling a sub-clip. Since media player preparation is a time-

consuming and resource-intensive process, there is a delay between one play and the

next. Currently, this is greatly influenced by the device capability. On the emulator, this

gap is considerably small, although a screen-switching is noticeable. On the Sony

Ericsson S500i, the switching effect is somewhat smoother than the emulator. The Nokia

 69

N80 delivers the worst result. The delay on this device is so significant that a white

screen is experienced in between the clips.

7 CONCLUSION

Multimedia production and streaming is a tough process that is highly dependent on the

hardware capability and complex software implementation, even on the powerful PC

platform. To develop multimedia application on mobile devices, the developers

constantly have to deal with device capability and limitation. For mobile devices running

on the Symbian platform, streaming has been implemented successfully at the software

level without relying on native support. This is because Symbian uses C++ and allows

the developers to work closer to the hardware layer. For devices running Java platform,

the Java virtual machine only exposes a very high-level framework and completely

shields the hardware platform from the developers. Developers have no choice but to

stick to a limited set of predefined features.

This project provides a good opportunity to learn the RTSP and RTP specifications,

especially the RTP and RTCP packet formats. In attempting to do streaming over

TCP/UDP and TCP-Interleaving, a number of RTP and RTCP packet structures have

been examined, studied, and implemented. Unfortunately, the current mobile devices do

not support playback of partial data, nor do they allow developers to feed media data

directly to the hardware, as on the Symbian platform. Using the final approach, multi-

subclip, the following goals have been achieved:

• Devising a method for viewing a video by breaking it up into smaller clips,

delivering them and displaying them in sequential order, to simulate the streaming

effect. This method also requires several custom protocols to be developed: the

SDP-c format for describing the media, the RTSP-c protocol for controlling the

streaming session, and a custom RTP-channel for media delivery.

• Implementing a custom streaming server that support the request and delivery of

video clips, mimicking the RTSP/RTP streaming specification. The server is a

multi-threaded service that can serve multiple clients concurrently.

 70

• Implementing a client streaming library that queries the streaming server for

media meta-data, initiates the delivery of sub-clips on demand and in advance to

minimize delay, and handles media presentation. The library is modularized to

support framework extension. Two implementations are provided in the library:

using sockets and using Bluetooth technology over a proxy.

• Implementing a Bluetooth proxy service on a LAN-connected PC, that can:

o Interact with a client via Bluetooth L2CAP.

o Handle a streaming client session initiation and streaming requests.

o Set up socket connections to the remote streaming server and relay

requests/responses between server and client.

o Serve requested media data to client from its cache. If the request media

is not in the cache, it sends the request to the server, relays the response,

receives the media data, forwards media data to client, and saves media

data in its cache for future requests.

• Designing and implementing the streaming client library and proxy as

frameworks to support future extensions in an easy manner. The proxy

framework has been successfully extended using Bluetooth RFCOMM.

This work poses great challenges working with small footprint devices, such as:

• Careful memory management, even in the presence of the Java garbage

collector (GC). There is no guarantee about the operation of the GC, and thus

much effort has been put into memory utilization as well as Java object reuse.

• Limitations of the device, such as its multimedia capability, low Bluetooth

transfer rate and high packet loss rate. Care must be taken in timing and in the

delay between packet transmissions.

• No debugging capability. Logging tools have to be developed independently

and the logs have to be sent to a PC for inspection.

Despite the clip-switching effect, the video plays fairly well on the Sony Ericsson

phone, making the project a good opportunity for studying and experiencing with

multimedia on mobile devices, as well as in framework design and development.

 71

8 POTENTIAL FUTURE WORK

If future mobile devices improve in multiplayer support and reduce the delay between

players, some research can be put into making the clip transition smoother. The Sony

Ericsson devices support progressive download [18], which allows incomplete data to be

written to a file on the device and the file is fed to the player. The content handling

protocol can continue to write to the file while it is being read by the player.

9 REFERENCES

[1] Video Streaming: Concepts, Algorithms, and Systems. John G. Apostolopoulos,
Wai-tian Tan, Susie J. Wee. Mobile and Media Systems Laboratory. HP
Laboratories Palo Alto. September 18th, 2002.

[2] A Video Gateway to Support Video Streaming to Mobile Clients. Jens Meggers,
Thomas Strang, Anthony Sang-Bum Park.

[3] Streaming in Mobile Networks. MediaLab. August 2004.

[4] SDP: Session Description Protocol. Handley, Jacobson, Perkins. July 2006.

[5] Real Time Streaming Protocol (RTSP). Schulzrinne, Rao, Lanphier. IETF Internet-
Draft. February 2nd, 1998.

[6] RTP: A Transport Protocol for Real-Time Applications. Schulzrinne, Casner,
Frederick, Jacobson. IETF Internet-Draft. July 2003.

[7] Using RTSP with Firewalls, Proxies, and Other Intermediary Network Devices.
RealNetworks. 1998.

[8] Tunneling RTSP/RTP/RTCP in HTTP. Jones, Gentric. IETF Internet-Draft.

[9] QuickTime Streaming Server Modules Programming Guide: Tunneling RTSP and
RTP Over HTTP. Apple. 2007.

[10] Experiments in Streaming Content in JavaME. Vikram Goyal.
http://today.java.net/lpt/a/314. August 22nd, 2006.

[11] Mobile Media API Version 1.0. Java 2 Platform, Micro Edition. Sun Microsystems.
June, 2002.

[12] MIDP: Bluetooth API Developer’s Guide. Forum Nokia. October 31st, 2006.

[13] Bluetooth programming for Linux. Marcel Holtmann, Andreas Vedral. Wirelesss
Technologies Congress. 2003 Germany.

[14] Games over Bluetooth: Recommendations to Game Developers. Forum Nokia.
November 13th, 2003.

 72

[15] An Introduction to Programming the Java APIs for Bluetooth Wireless Technology
(JSR 82) on Symbian OS. Martin de Jode. April 5th, 2004.

[16] BTW SDK Programmer’s Guide. BCM1000-BTW. Broadcom. November 17th,
2006.

[17] Streaming vs. Downloading Video: Understanding the Differences.
http://www.streamingmedia.com/article.asp?id=8456&page=1.
streamingmedia.com. July 22nd, 2003.

[18] New features in the Mobile Media API (JSR 135): progressive download and audio
capture.
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_ne
w_features_mobilemedia_api_jsr135.jsp. November 2005.

[19] Mobile Information Device Profile (MIDP 2.0). Sun Microsystems.

 73

Appendix A: Detailed class diagram for TCP/UPD approach

 74

Appendix B: Detailed class diagram for TCP-interleaving approach

 75

Appendix C: RTP packet captured from the three tests.

Column #1 #2 #3 #4 #5 #6 #7

Test
case Native RTSP on W850i

TCP-Interleaved
on Emulator

TCP-Interleaved
on W850i

Row
UDP
Length

RTP
Length Payload

RTP
Length Payload

RTP
Length Payload

1 306 298 286 298 286 298 286

2 40 32 20 32 20 32 20

3 40 32 20 32 20 32 20

4 40 32 20 32 20 32 20

5 1458 1450 1438 1450 1438 1450 1438

6 469 461 449 461 449 461 449

7 426 418 406 418 406 418 406

8 389 381 369 381 369 381 369

9 391 383 371 383 371 383 371

10 377 369 357 369 357 369 357

11 715 707 695 707 695 707 695

12 709 701 689 701 689 701 689

13 725 717 705 717 705 717 705

14 701 693 681 693 681 693 681

15 613 605 593 605 593 605 593

16 398 390 378 390 378 390 378

17 723 715 703 715 703 715 703

18 717 709 697 709 697 709 697

19 517 509 497 509 497 509 497

20 427 419 407 419 407 419 407

21 307 299 287 299 287 299 287

22 453 445 433 445 433 445 433

23 475 467 455 467 455 467 455

24 453 445 433 445 433 445 433

25 428 420 408 420 408 420 408

26 416 408 396 408 396 408 396

27 322 314 302 314 302 314 302

28 710 702 690 702 690 702 690

29 695 687 675 687 675 687 675

30 1458 1450 1438 1450 1438 1450 1438

31 1458 1450 1438 1450 1438 1450 1438

32 1264 1256 1244 1256 1244 1256 1244

33 346 338 326 338 326 338 326

34 475 467 455 467 455 467 455

35 517 509 497 509 497 509 497

36 341 333 321 333 321 333 321

37 549 541 529 541 529 541 529

38 583 575 563 575 563 575 563

39 596 588 576 588 576 588 576

40 678 670 658 670 658 670 658

 76

41 696 688 676 688 676 688 676

42 595 587 575 587 575 587 575

43 609 601 589 601 589 601 589

44 719 711 699 711 699 711 699

45 737 729 717 729 717 729 717

46 724 716 704 716 704 716 704

47 731 723 711 723 711 723 711

48 733 725 713 725 713 725 713

49 737 729 717 729 717 729 717

50 735 727 715 727 715 727 715

51 741 733 721 733 721 733 721

52 710 702 690 702 690 702 690

53 705 697 685 697 685 697 685

54 701 693 681 693 681 693 681

55 756 748 736 748 736 748 736

56 1458 1450 1438 1450 1438 1450 1438

57 1458 1450 1438 1450 1438 1450 1438

58 1069 1061 1049 1061 1049 1061 1049

59 654 646 634 646 634 646 634

60 666 658 646 658 646 658 646

61 637 629 617 629 617 629 617

62 697 689 677 689 677 689 677

63 719 711 699 711 699 711 699

64 680 672 660 672 660 672 660

65 754 746 734 746 734 746 734

66 793 785 773 785 773 785 773

67 756 748 736 748 736 748 736

68 832 824 812 824 812 824 812

69 965 957 945 957 945 957 945

70 844 836 824 836 824 836 824

71 978 970 958 970 958 970 958

72 1058 1050 1038 1050 1038 1050 1038

73 997 989 977 989 977 989 977

74 1245 1237 1225 1237 1225 1237 1225

75 1308 1300 1288 1300 1288 1300 1288

76 1114 1106 1094 1106 1094 1106 1094

77 1360 1352 1340 1352 1340 1352 1340

78 1390 1382 1370 1382 1370 1382 1370

79 1180 1172 1160 1172 1160 1172 1160

80 1145 1137 1125 1137 1125 1137 1125

81 924 916 904 916 904 916 904

82 1458 1450 1438 1450 1438 1450 1438

83 1458 1450 1438 1450 1438 1450 1438

84 274 266 254 266 254 266 254

85 829 821 809 821 809 821 809

86 757 749 737 749 737 749 737

87 715 707 695 707 695 707 695

88 759 751 739 751 739 751 739

 77

89 677 669 657 669 657 669 657

90 617 609 597 609 597 609 597

91 586 578 566 578 566 578 566

92 534 526 514 526 514 526 514

93 493 485 473 485 473 485 473

94 449 441 429 441 429 441 429

95 415 407 395 407 395 407 395

96 379 371 359 371 359 371 359

Total 69415 68647 67495 68647 67495 68647 67495

	Mobile Multimedia Streaming Library
	Recommended Citation

	Microsoft Word - cs298report.doc

