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Abstract 
   A Keyword within a text/web document represents some human thought. The 

interaction of keywords leads to narrowing of scope of human thought by forming a more 

precise semantic entity called concepts. Analyzing a set of document not only requires 

analysis of the keywords within those documents but also their interactions within a 

document. In this new approach a set of documents can be analyzed where by the 

interactions of its keywords is also considered in finding the important concepts. These 

concepts can be used to cluster them into smaller subsets such that documents in each 

cluster will be semantically similar.            
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1 Introduction 
 

1.1 Background 

As part of my Masters Writing Project (CS297/CS298) at San Jose State 

University, I have decided to work in the field of text analysis. The topic of my 

work is “Concept Analysis in web documents” and my guide is Professor T. Y. Lin 

Department of Computer Science, SJSU. 

1.2 Scope of the Project 

The scope of this project involves: - 

• Understanding the correlation between a set of documents with large item-

set properties. 

• Abstraction of keywords in a set of documents to a collection of simplexes, 

also known as simplicial complex. 

• Reducing the problem of keyword analysis in a set of documents to a 

problem of simplicial complex analysis and then further reducing the 

problem of simplicial complex (a structure in n-dimensional Euclidean 

space) to a linear problem of graph. 

• Implement concept analysis algorithm for the graph theory approach. 

• Implement concept analysis by geometrical method also and do its 

comparison with the graph approach. 

• Discuss the out put generated with a standard set of data taken from UCI 

KDD website. 

1.3 This Document 

The CS298 report is a technical deliverable the purpose of which is: 

• To describe the project work done for CS297/CS298. 

• To specify the design, implementation and algorithms used for 

implementing concept analysis. 

• To explain how this technique is different than other text analysis techniques 

and what is the effect on the output as a result of this difference. 
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2 Concept Analysis 
 

2.1 Background – To help search engines give more relevant results 

 

Before improving the results given by a search engine it is important to know what 

are the plausible ways a search engine may work. The actual working and 

implementation of prominent search engines is proprietary and not open for public, yet 

the basics of what may go inside of a search engine is well known [1]. 

 Let us suppose we have to pick out all the articles from a stack of articles or 

written literature that are related to ground zero. The probable way to do that would be to 

scan through each article word by word looking for the exact phrase “ground zero”. One 

approach could be to just skim through the headlines of articles that are related to 

terrorism or war, and then reading them to find a connection. 

 In another instance suppose I have been handed a stack of chemical journals and 

asked to find journals that have to do with explosive Compounds, if I am not an expert in 

the field of chemistry then I will have to go through each article line by line looking for 

the phrase “explosive compounds” in a sea of jargon and chemical equations. 

 The two searches would yield quite different results. In the first example the 

search may end early with few misses of articles with the phrase “ground zero” if it will 

appear in an unlikely article say about presidential nominee Rudy Juliani. On the other 

hand the search will find related articles that may talk about Global Terrorism or Arab 

terrorists which could be very well related to the phrase “ground zero” even if it didn’t 

contain that phrase. In the second example of chemistry journals the search will find each 

instance of the exact match with phrase “explosive compounds” but I may miss articles 

about compounds like Tri-Nitro-Toluene (TNT), Tri-Nitro-glycerol, picric acid etc. 

which are also very explosive compounds unless I have significant knowledge about 

Chemical compounds. 

In the above example both the searches represent two totally different ways of 

searching a document set. The first one can be called a conceptual search where the 

heading or the title of the document may be related to the contents of the article in some 

understood way, whereas the second approach is purely mechanical based on the 

exhaustive search of the phrase in a much larger document set. 

We see that both the approaches mentioned above have some serious limitations 

and the question is “What else can be done to mitigate the above mentioned issues?” Let 

us look at Taxonomy as a technique that may be applied to help searches. Something like 

a librarian does by assigning keywords to works or articles can be done on a large set of 

document. Rather than indexing the full text of each article the collection is assigned 

keywords in some sort of a fixed hierarchical structure and doing a comprehensive 

classification of sorts. This will definitely be helpful in improving the efficiency of the 

search engine because the user can use concepts rather than just individual keywords or 

phrases in their search, but this technique too has some serious limitations. Let us 

consider two sets of documents such that one set has articles about first half of Europe 

describing food habits of people based on geography and another set of articles about the 

second half of Europe describing food habits of people based on race. How can these be 
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merged? Either, I would have to choose any taxonomy from the two or come up with a 

totally new one. In both the scenarios I will be re-indexing a lot of data. One great 

solution for this problem of merging different taxonomies is to not merge them at all. 

Instead, have each document assigned multiple keywords or categories resulting in 

multiple ontology. Now this approach is also not without its share of problems. First of 

all having multiple taxonomies will raise system resource issues. Secondly, it is almost 

impossible to have an expert archivist review and classify every document in a collection 

moreover there is a very good chance that the taxonomy and keyword vocabulary may 

continue to grow. 

In the above paragraphs, regarding possible ways a search can be carried out, we 

can see that all the techniques mention so far doesn’t do a good job. Some techniques 

only do text matching whereas others will do conceptual match provided someone (most 

likely a human) has already done some classification of documents based on concepts. 

We know that classification or tagging of the documents to some important keywords is 

not a trivial exercise given the enormity of data. We also know that computers are very 

efficient in doing repetitive tasks but the problem is they don’t have brain or power to 

perceive things. How can this power of computers, which lies in doing repetitive work, 

be complimented with some form of intelligence or perception based approach. There is a 

totally separate branch of computer science that deals with the aspects of computers as 

human brains under Artificial Intelligence. I will not discuss artificial intelligence 

because it is beyond the scope of my work. However, there is a way in which computers 

can be made to pretend that it can perceive concepts. The technique is commonly known 

as Latent Semantic Indexing (LSI) [1]. The LSI approach is known to work decently well 

with textual data and the results are quite ok. I will just point out the basic idea behind 

LSI, how it pretends to perceive a concept. In LSI, instead of taking the each document 

one by one and building indexes on its keywords, the whole document collection is taken 

as a pool to find what keywords appear together in substantially large number of 

documents within the given document set. This approach is based on the assumption that 

if certain keywords are present together in many documents then it means some 

perception or some commonality of subject. It has been found that this assumption 

decently aligns with human interpretation of a document classification for most types of 

textual data. For example if the keywords Saddam, Hussein, gulf, war, and bomb appear 

in many documents in a document collection then there is a very good chance that above 

mentioned keywords help classify a subset of the whole document set. A human can here 

perceive that the subset of documents classified by the above mentioned keywords have 

something to do with Middle-East crisis. On the contrary the computer cannot perceive 

what these keywords, when present within all the documents of a subset, would mean. 

Therefore, we see that computer failed at understanding the meaning or perception of 

these common keywords within a subset of documents but it surely was able to find these 

keywords. In LSI this power of computer to find a certain keyword combinations that are 

present in each document of a document subset is coupled with the assumption that such 

keyword combinations or keyword patterns have some semantic. Indexes are built on 

such keyword patterns which are used to answer search queries. This is not a foolproof 

way to build indexes for conceptual search but it works well for certain types of 

document collections. There are lots of other assumptions and various methodologies for 

LSI implementation, for which the information is available on the Internet. A further 
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discussion of LSI is beyond the scope of my work. One interesting observation about this 

LSI technique is that it helps to consider the whole document set together for analysis 

rather than considering one document at a time.  

2.2 Ideas Behind Finding Concepts 

In my work the notion of word concept corresponds to a set of keyword combinations or 

phrases that can classify the given set of document into some meaningful group. I will be 

using the basic tenet of LSI which considers taking the whole document set together 

instead of going over each document individually. I will not be using the LSI algorithm in 

its entirety; instead I will combine some ideas of LSI with the properties of a 

mathematical entity called a simplex along with the algorithms of graph theory. Since 

concepts have the characteristics of being able to be perceived by humans so it will be a 

good idea to output results (concepts) in human understandable form. To make this 

possible it is important to remove all kinds of formatting present in the documents of the 

collection under study. Web documents normally have html/xml tags along with some 

additional header information. In my approach all the documents will be stripped of their 

metadata, including html/xml tags and other information like title or keywords. After the 

above cleansing operation the resultant output will be a collection of bare bone text data 

files. This approach can be easily fitted into the larger scheme of things apparently the 

search engine. In the real world it can be assumed that the crawler will get the web 

documents from the internet on to the disk in the form of a document set. This document 

set will also have all the metadata which can be stripped off by performing the cleansing 

operation as mentioned above to give a collection of text data documents. The 

implementation and use of the crawler is beyond the scope of my project, and I will be 

using text and web data available at the UCI Kdd website. At UCI Kdd both forms of 

data are available (text data files and html formatted textual data) and I will run my 

experiments with both types of data to compliment my claim that concept analysis can 

improve the quality of results returned by a search engine. 

 As described under section 2.1 above for a collection of documents, that has text 

data, keyword combinations or phrases that span across multiple documents will be found 

out. These keyword combinations will then be analyzed together to see if they are 

associated with each other or not. The ones that will be associated can be grouped 

together and each such unique group will be a concept. To find the associations between 

the keyword combinations, obtained as above, a correlation is developed with a 

mathematical entity called simplex [2] and then using the property of large item sets 

(from data mining) for finding associations [6].  

 

 The commonality between my approach for finding keyword combinations and 

LSI approach is that in both the approaches we consider keyword combinations or 

patterns that spans across multiple documents. The major difference between my 

approach and that of LSI lies in the fact that LSI is based on Single Value Decomposition 

(SVD) [1][5] or 0-simplex whereas my approach is not based on Single Value 

Decomposition as we will consider simplexes of higher order too (0-simplex, 1-

simplex,….). To understand the difference more clearly lets consider an example: 

consider a case such that in a document collection the keywords “Wall” and “Street” 

together span across substantially large number of documents. According to the LSI 
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approach the set of documents that will contain both these keywords may be treated to be 

in same semantic space, the semantic space determination subject to other calculations of 

local and global weight. In LSI approach a list of documents is maintained for each 

keyword and hence for a keyword combination (like “Wall” and “Street”) or phrase an 

intersection of sorts is taken which is abstracted as its Latent Semantic Space. In my 

approach of simplexes the ordering of keywords is very important, also inherent in my 

hypothesis; hence “Wall Street” will not be given the same treatment as “Street Wall”. In 

my CS297 report (an account of my literature research and findings) and CS298 proposal 

(hypothesis and description of my project writing) I have mentioned that “A document 

can be seen as a collection of keywords where each keyword represents some human 

thought [2]. The interaction of these keywords leads to some concept formation, in other 

words capture the semantics of that document”. Since we are talking about interaction of 

keywords within a document their ordering should be taken into account. We have seen 

in the above example how keywords ‘Wall” and “Street” have totally different semantics 

or meaning by changing their orders. The phrase “Wall Street” represents a financial 

notion like New York stock exchange whereas the phrase “Street Wall” represents 

something totally different. Therefore in my approach the keyword combinations “Wall 

Street” and “Street Wall” will fall in different semantic spaces.
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3 How Concept Analysis Works 
 

3.1 Mathematical Foundation Simplicial Complex 

 

The definition (verbatim) of Simplicial Complex as given by wikipedia  

(http://en.wikipedia.org/wiki/Simplicial_complex) is “In mathematics, a simplicial 

complex is a topological space of a particular kind, constructed by "gluing together" 

points, line segments, triangles, and their n-dimensional counterparts”. For example a 

simplex {A,B,C,D} is a Set such that it contains all its subsets i.e. {A,B,C}, {A,C,D}, 

{B,C,D}, {A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {A}, {B}, {C}, {φ}. 

 Each document can be seen as a collection of keywords. When considering the 

whole document collection, keyword combinations that span multiple documents can be 

obtained based on high Term Frequency Inverse Document Frequency (TFIDF) [2]. 

These keyword combinations will be frequent item sets of length q. In the above 

mentioned example {A,B,C,D} is an item set of length q = 4. All such keyword 

combinations of the document collection will form an abstract simplicial complex [2]. 

In a simplicial complex the length of all the item sets will not be the same i.e. {q = 1,2,3, 

…} the item set length can be any positive integer. One variation that I have applied in 

my approach is that I am preserving the ordering of keywords in my analysis whereas in a 

simplex the order is unimportant because a simplex is a set. So my variation can be seen 

as a modified simplex where all the other properties of simplex still holds true.  

3.2 Property of Simplexes in a Simplicial Complex 

A simplicial complex is topologically equivalent to a triangulation (Linear simplicial 

complex) of a polyhedron in Euclidean space [2] and this polyhedron is topologically 

equivalent to the notion of human thoughts that are formed by the keyword combination 

in the documents. This notion of human thought can be seen as the Latent Semantic space 

(LSS) of the collection. So we can see how an n-dimensional structure of simplexes in 

Euclidean space is equivalent to the semantic space of the documents. We can also see 

that this approach of finding the LSS of documents is different than the LSI technique 

discussed in section 2.2 above. Some of the important properties of simplexes as taken 

from wikipedia along with the idea of LSS topology are: 

1. Any face of a simplex from is also in the simplex. 

2. The intersection of any two simplices is a face of both simplices. 

3. A simplex represents a primitive concept. 

4. A maximal dimensional simplex will represent a maximal primitive concept. 

5. A connected component will represent a complete concept. 

 

3.3 Simplicial Geometry of Keywords 

One great use of this approach can be seen in dealing with document sets of different 

languages. In this paper I am using keyword combinations that are filtered from the 

document collection because this process is simple and automatable. We know that 
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simplicial complex is an n-dimensional polyhedron in Euclidean space [1]. The research 

paper [1] also says that the interaction of keywords within a document can be captured in 

a simplicial complex. These interactions are reflected in the geometry of a simplicial 

complex. Using this approach a simplicial complex can be generated for the document set 

of different languages. There is a very good chance that the polyhedron made by different  

language document sets will exhibit homeomorphism because the shape of the 

geometrical structure defines the semantics and hence there won’t be a need for human 

translation. This can help identify semantically similar documents of different languages 

without the use of human translators (implementation not provided here).
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4 Implementing the Concept Analysis Algorithms 
 

4.1 Concept Analyzer 

As part of a search engine, concept Analysis can be seen as a process that works on the 

data downloaded by the crawler from internet. Data that is downloaded from the internet 

usually has structural as well as metadata with it too. The concept analyzer’s scope of 

work do not require understanding of the metadata and structural information hence the 

data downloaded from the internet also needs to be massaged before concept analysis can 

be done on it. Massaging of the downloaded data is done by a separate helper program. 

The massaged data will be in textual form and stored in lots of text files. For sake of 

simplicity the concept analyzer is implemented in a way that the root folder of the 

massaged data (the text files) needs to be specified. The program will then read all the 

data files in the root folder and all its subfolders recursively. This program is tested on 

various data sets comprising of document collection from 20,000 to 50,000 documents. 

4.2 Design of Project  

There are three major steps that constitute the whole functionality of concept analyzer 

1. Tokenizing the data. 

2. Creating the simplexes. 

3. Finding the concepts. 

4.2.1 Tokenizing the Data 

The starting point for tokenizing is cleaned data after massaging so that all the structural 

and metadata information is absent form the data files (text files). Every word in a 

document is read and its position within that document is recorded along with the 

document name. This is done for all the documents in the document collection. In one 

variation some words will be discarded like articles, preposition, conjunctions, pronouns, 

and verbs. The tokenizing program is written in java and run on the command prompt as 

shown below. 

Command window>java Maketoken  output_pathname  input_folder 

In the above command Maketoken is the class file that is run to tokenize the data. The 

program takes two command line arguments. The first argument, output_pathname, is the 

fully qualified name of the files that will contain the tokens after program (Maketoken) 

has finished execution. Each line will contain the document name, keyword (token), and 

the position (offset) within a document. The second argument, input_folder, is the root 

folder that contains all the documents of the document collection under study. 
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4.2.2 Creating the simplexes 

This is the most time taking exercise in the whole process. Simplex creation is done using 

SQL-92. The whole process of simplex creation is as follows. The tokens that gets 

created, as defined in section 4.2.1, are read into a SQL table such that each row in the 

table contains the document name, token, and position. This will be a huge table with few 

million records for data size of 20,000 files or above. Simplex generation through SQL 

92 is an iterative process that needs to be done in successive steps, which also puts severe 

restrictions on processing the whole table data in one pass. So data needs to be pruned as 

early as possible [7], since this table is the first one so pruning will start from here itself. 

The approach used for pruning data from this table is TFIDF (Term frequency Inverse 

document frequency). There are several flavors of TFIDF algorithm or formula. I will use 

the one mentioned at the online Wikipedia. According to the wikipedia “The tf-idf weight 

(term frequency-inverse document frequency) is a calculated value which is used in 

information retrieval and text mining. This value is a statistical measure that is used to 

evaluate how important a word is to a document with respect to the whole document 

collection. According to this notion the calculated value or weight is directly 

proportional to the number of times a word appears in the document and somewhat 

inversely proportional to the number of documents, which offsets the calculated value. 

Search engines use different variations of tf-idf weighting schemes to rank documents 

based on a given user query. 

Frequency of a term in a given document simply means the number of times that term 

appears within that document. But taking this frequency will lead to a bias towards 

longer documents (longer document can lead to higher count regardless of the term’s 

overall importance in that document), so this frequency is normalized to give a correct 

measure of the importance of the term ti for that particular document”. 
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 tfi   =   ni    ⁄  Σk nk 

 

In the above formula ni represents the number of times a concerned word appears in a 

document and the denominator Σk nk  represent the total number of all terms in that 

document. 

 

“The inverse document frequency (idf) is statistical quantity that gives the general 

importance of the term. It is obtained by dividing the total number of documents by the 

number of documents containing the term, and then taking its logarithm” 

 

 

 idfi   =  Log (  |D|  ⁄   |{d : ti ε d}| ) 

 

Here |D| represents total number of documents in the collection, and |d : ti ε d}| 

is the number of documents where the term ti appears. 

Therefore we have the final formula by multiplying the above two equations as below. 

 

 TFIDF  =  tfi * idfi 

 

The above formula will be used to calculate weight of all the terms (tokens) in the table 

and then only terms that have a TFIDF value higher than a certain value will be 

considered. This step will prune the table significantly and the right value of TFIDF will 

be considered after trying several values and looking at the final result. It is not possible 

to get a universally correct value that would work in all the circumstances, as it will 

depend on the document sizes as well as the total number of documents in the collection. 

 Once pruning is done based on TFIDF values the table (SQL table) will contain 

all the important tokens such that each row will have the document name, token, and its 

position. Now I will apply the apriori principle [6] of data mining on the table data so that 

in the end we can get simplexes from the tokens. The apriori approach is done by pairing 

all the tokens that are equal to or less than ‘d’ distance apart. Again there is no 

universally correct value of ‘d’ so I have chosen d = 5 for my experiment for which the 

results are very reasonable. The result of applying the apriori approach on the pruned 

SQL table will generate a SQL table that will have document name, token1, token2, pos1, 

pos2, and diff (pos2 – pos1) in each row. One of the problems with this approach is that it 

will again cause the table to swell, but fortunately for us we can prune this table too based 

on our notion of concept, mentioned in section 2.2, that says about commonly occurring 

keyword patterns in multiple documents of a document set [1]. The pruning again here 

would require some sort of quantitative criterion for which again there is no universal 

rule. I am assuming that keyword patterns occurring in 20 or more documents for my 

document collection are important so rest of them can be ignored.  
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 At this stage what we have is a pruned table of keyword pairs. This table can be 

used to find higher pairing of keywords i.e. using the n-pair tokens to get (n+1)-pair 

tokens. For example, a 2-pair tokens table will be used to give a 3-pair tokens by making 

SQL self joins on the tokens, document name, and their positions. This step can be 

successively performed to get higher token pairing. At each step of generating (n+1)-pair 

tokens by n-pair tokens table, the (n+1)-pair tokens table can be pruned by using the 

notion of section 2.2 of commonly occurring patterns in multiple documents of a 

document set. Successive pruning will significantly reduce the query execution time for 

higher order pairing. I will continue this process till getting 5-pair tokens. While 

generating all the token pairs, I will not only keep the final result pair tokens but also the 

intermediate token pairs. For example if my final resulting pair is 5-pair tokens table then 

I will also keep 4-pair, 3-pair, and 2-pair tokens table respectively. These tables will then 

be used to give 4-simplex, 3-simplex, 2-simplex, and 1-simplex respectively. The 

simplexes will be stored in separate text files, depending on the simplex size (n-simplex), 

where each line will contain the document names and the respective keyword pairs or 

group. There will be 4 separate files for all the four different simplex size, as mentioned 

above, respectively. These simplexes will be further used by the project to find concepts 

by running the graph theory approach and geometrical approach respectively. 

 

4.3 Project Flow Charts. 

There are three major parts of the project 

1. Tokenizing 

2. Simplex Creation 

3. Finding Concepts 
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4.3.1 Tokenizing Flow Diagram 
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4.3.2 Simplex Creation Flowchart 
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4.4 Graph Theory Approach 

 

As mentioned under section 3.3, the interaction of keywords within a document can be 

captured in a simplicial complex. Since simplicial complex is a polyhedron in Euclidian 

space [2], it is too complex for human analysis. A simplicial complex can be reduced to a 

graph where each keyword set of a simplex will be a vertex and their relation, also called 

a face-off, will be shown by an edge between the vertices (keyword set). Here in my 

approach the relation, which is represented by an edge in the graph, will be ascertained 

between two keyword set if one is a subset of the other. For example, consider a 

simplicial complex that contains the keyword sets {ABCDE}, {UVWXY}, {ABE}, 

{BCE}, {DCB}, and {B}. In a graph representation all the six keyword sets will be 

represented by a vertex. According to our definition of relation between these vertices 

following edges will exit. 

1. {ABCDE} ------------------{ABE}  

2. {ABCDE} ------------------ {BCE} 

The explanation for the two edges shown above is as follows: 

The first edge is  between {ABCDE} to {ABE} because we can see that {ABE} is a 

subset of {ABCDE} plus the relative ordering of A, B, and E is same in both keyword 

set. We will not consider {B} here because we cannot find its relative order. Remember 

we are interested in the interaction of keywords within a document and hence their 

ordering is important. Also note that {DCB} is also a subset of {ABCDE} but the relative 

ordering of D,C, and B are different in both the keyword set so they will not form an 

edge. 

One of the advantages of graph theory approach lies in the fact that it can be used even if 

the keyword set within a simplicial complex do not form a closed simplex. A closed 

simplex will contain all its subsets. In this approach the simplexes (that were generated 

from the input data according to the process mentioned in section 4.2.2) will be used to 

construct a graph. Graph construction requires reading all the keyword sets as vertices 

and then finding edges between them. Once all the edges have been found the algorithm 

to find connected component of a graph [6] can be run. In this project we are more 

interested in finding connected component that encompasses the maximal dimension 

simplexes. It is my anticipation that connected components containing maximal 

dimension simplexes will be more precise and crisp in clustering the document set.  

 

In the above example of keyword sets and edges we will have the following connected 

components. 

1. {ABCDE}, {ABE}, {BCE}. 

2. {UVWXY}. 

3. {DCB}. 

4. {B}. 

We are only interested in the maximal dimensional simplexes so we will discard {DCB} 

and {B}. Therefore, our result will contain connected components represented by 

{ABCDE} {ABE} {BCE} and {UVWXY} respectively. The documents represented by 

these connected components should be semantically similar as per the hypothesis of this 

project. The connected components can be made more precise and crisp with respect to 
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semantic clustering by discarding the lower dimensional simplexes while constructing the 

graph. Suppose the maximum dimensional simplex is of 5-keyword (4 – simplex) then 

we may decide to discard simplexes that are smaller than 3-keyword (2 – simplex). This 

can improve clustering in a sense that there will now be fewer documents represented by 

that connected component but at the same time the semantic similarity of these 

documents will be high.  
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4.5 Geometrical Approach 

 

This method can be used to find the concepts only if the keyword sets generated from the 

document, as mentioned in section 4.2.2, forms a closed simplex. This method is based 

on properties of set theory namely intersection and union except that it also takes into 

account ordering which is insignificant in set theory.  

 

The exact algorithm of this approach can be understood by looking at the following 

example. Let us consider the keyword sets {ABCDE}, {UVWXY}, {ALMNB}, 

{CRSTU}, {MNQIJ}, {U}, {A} gets generated after performing steps mentioned in 

section 4.2.2. The algorithm starts by reading the first keyword set say {ABCDE} and 

stores it as an intermediate concept. In the next pass the program reads the next keyword 

set which is {UVWXY} and tries to find relationship with the existing concepts. The 

relationship is determined by searching for a common subset between the current 

keyword set and the existing concepts. Since the there are no common subsets between 

the existing intermediate concepts ({ABCDE}) and the present one ({UVWXY}) 

{UVWXY} will be stored as another intermediate concept. In the next pass the program 

will read {ALMNB}, which will be compared with all the existing concepts. We see that 

{ABCDE} and {ALMNB} both have a common subset which is {AB} because they both 

have {AB} with their relative ordering preserved (A comes before B). Therefore 

{ALMNB} will stick with {ABCDE}. After the third pass the intermediate concepts 

available will be ({ABCDE} U {ALMNB}) and {UVWXY}. We will continue this 

approach till all the keyword sets are consumed where by all the intermediate concepts 

during the program run will become the concepts after program has finished running. To 

sum it up the concepts that will form in the above example at the end of the program 

execution are: {ABCDE} U {ALMNB} U {MNQIJ}, {UVWXY}, {CRSTU}. We will 

discard the single keyword terms {U} and {A}. One interesting scenario that may happen 

in this approach is that if a keyword set has subset match relationship with more than one 

intermediate concept then the matching intermediate concepts will merge to form a 

union. The same approach as mentioned above in section 4.4 about maximum keyword 

size to minimum keyword size (discarding simplexes below a certain size, only 

considering subset match between max and min simplex size) can be applied here too for 

crisper and precise clustering of documents on the basis of their semantics. 
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5 Test Results 
The data used for this test run, Abstracts_part1.zip, was taken from the site 

http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html. The zip file is a collection of 

approximately 51,000 files. 

5.1 Effect of Simplex Size 

 

a) Results from running the program considering 5−keyword set (4−simplex) and 

4−keyword set (3−simplex). 
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As shown in the above screen shots of the test run following are the results. 

 

Total number of 5-keyword sets = 137. 

Total number of 4-keyword sets = 1346 – 137 = 1209 

 

The total number of connected components (concepts) = 60 

 

 

b) Results from running the program considering 5−keyword set (4−simplex), 

4−keyword set (3−simplex), and 3−keyword set (2−simplex). 

 

 
 

 



CS298 Report 

 Page 24 of 40  Created by: Rajesh Singh  24 

 

The screen shots of the test run with 5, 4, and 3 keyword sets is as follows. 

 

Total number of 5-keyword sets = 137. 

Total number of 4-keyword sets = 1346 – 137 = 1209 

Total number of 3-keyword sets = 5920 – 1346 = 4574 

 

The total number of connected components (concepts) = 55 

 

 

c) Results from running the program considering 5−keyword set (4-simplex), 

4−keyword set (3−simplex), 3−keyword set (2−simplex), and 2−keyword set 

(1−simplex). 
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The screen shots of the test run with 5, 4, 3, and 2 keyword sets is as follows. 

 

Total number of 5-keyword sets = 137. 

Total number of 4-keyword sets = 1346 – 137 = 1209 

Total number of 3-keyword sets = 5920 – 1346 = 4574 

Total number of 2-keyword sets = 29673 – 5920 = 23753 

 

The total number of connected components (concepts) = 21 

 

 

S.No Keyword sets Connected components 

1 5 keyword set, 4 keyword set 60 

2 5 keyword set, 4 keyword set, 3 keyword set 55 

3 5 keyword set, 4 keyword set, 3 keyword set, 2 

keyword set 

21 

Table 5.1 

In the summary table (Table 5.1), for the three test run scenarios, we see that as the 

number of keyword set group size (column name Keyword sets) increases the total 

number of connected components also decreases. This implies that as the keyword set 

group becomes bigger the resulting connected component also becomes bigger (i.e. 

represents more documents) there by reducing the total number of unique connected 

components. The bigger each connected component becomes less precisely it represents 

the concepts of all the referenced documents, conversely the smaller a connected 

component becomes more precisely it represents the concepts of the referenced 

documents.
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5.2 Changing Association Rules for Simplex Generation 

We know that most of the languages have some rules which we commonly called as 

grammar. We know by our experience of English language that there are certain words 

that are used within the document so that a sentence adheres to a certain predefined 

structure. For example, according to English grammar laws every sentence must have a 

verb. A document (text document) is a collection of sentences and it is very likely that all 

the verbs used in all the sentences respectively may not contribute enough towards the 

semantics of that document. The same can be said about other grammatical constructs 

such as prepositions, pronouns etc. As per our hypothesis the semantics of a document 

will depend upon the interaction of keywords so we can neglect the words which are 

present because of the language grammar’s requirement. This approach can be applied to 

documents of other languages too and relevant grammatical construct enforcing words 

can be neglected. We will apply this approach on English language text documents and 

neglect very common words as prepositions, pronouns, verbs etc and then analyze the 

end result by running our algorithm. 

 

The words that were neglected for this test run are: a, the, an, his, he, her, him, has, she, 

if, for, of, by, it, its, is, at, to, be, but, and, this, that, they, and them. Neglecting these 

words effect the association rules for simplex generation which can be explained with an 

example as follows. Suppose a document contains a phrase “hazards of earthquake”, 

since we are interested in near by keywords we can consider the relative positions of the 

words “hazards” and “earthquake” to be n and n+1 respectively after neglecting the 

word “of”. If we don’t neglect the word “of” then the relative positions of the two words 

(“hazards” and “earthquake”) will be n and n+2. Therefore the simplex generating 

algorithm, mentioned in section 4.2.2, will generate “hazards earthquake”, as one of its 

two keyword set when the word “of” is neglected, or “hazards of earthquake”, as one of 

its three keyword set when the word “of” is not neglected.  

The test run results on the same data, similar to section 5.1, but under these changed 

simplex generation association rules are as follows. 

 

 

a) Results from running the program considering 5−keyword set (4−simplex) and 

4−keyword set (3−simplex). 
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From the above shown screen shots of the test run we see the following results. 

 

Total number of 5-keyword sets = 597. 

Total number of 4-keyword sets = 4050 – 597 = 3453 

The total number of connected components (concepts) = 153 

 

b) Results from running the program considering 5−keyword set (4−simplex), 

4−keyword set (3−simplex), and 3−keyword set (2−simplex). 
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The screen shots of the test run with 5, 4, and 3 keyword sets shown above is as follows. 

 

Total number of 5-keyword sets = 597. 

Total number of 4-keyword sets = 4050 – 597 = 3453 

Total number of 3-keyword sets = 12974 – 4050 = 8924 

 

The total number of connected components (concepts) = 104 

 

c) Results from running the program considering 5−keyword set (4-simplex), 

4−keyword set (3−simplex), 3−keyword set (2−simplex), and 2−keyword set 

(1−simplex). 

 

 

 
 

 

 
 

 

Similarly, the screen shots of the test run with 5, 4, 3, and 2 keyword sets is as follows. 

 

Total number of 5-keyword sets = 597. 

Total number of 4-keyword sets = 4050 – 597 = 3453 

Total number of 3-keyword sets = 12974 – 4050 = 8924 
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Total number of 2-keyword sets = 54920 – 12974 = 41946 

 

The total number of connected components (concepts) = 18. 

 

S.No Keyword sets Connected components 

1 5 keyword set, 4 keyword set 153 

2 5 keyword set, 4 keyword set, 3 keyword set 104 

3 5 keyword set, 4 keyword set, 3 keyword set, 2 

keyword set 

18 

Table 5.2 

 

 

Similarly in the summary table (Table 5.2), for the three test run scenarios, we see that as 

the number of keyword set group size (column name Keyword sets) increases the total 

number of connected components also decreases. This behavior is consistent with the 

observation in section 5.1 (Table 5.1) which says that as the keyword set group becomes 

bigger the resulting connected component also becomes bigger (i.e. represents more 

documents) there by reducing the total number of unique connected components. The 

bigger each connected component becomes less precisely it represents the concepts of all 

the referenced documents, conversely the smaller a connected component becomes more 

precisely it represents the concepts of the referenced documents. One additional inference 

that can be made by comparing the results in summary tables (Table 5.1 and Table 5.2) is 

that neglecting certain grammatical construct enforcing words leads to identification of 

more connected components or concepts. The correctness of these concepts will be 

ascertained by comparing it with the human notion of concepts.
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5.3 Comparison of Graph Theory and Geometrical Approach 

A comparative study about the runtime behavior of graphical and geometrical approach 

was performed using the same machine and data. The result metrics that were measured 

are execution time, the amount of free memory in the Java Virtual Machine after 

finishing all the major computations, and the total amount of memory in the Java virtual 

machine after finishing all the major computations. The java methods used for free 

memory and total memory measurements are Runtime.freeMemory(), and 

Runtime.totalMemory() respectively. The exact details and description of these methods 

can be found at http://java.sun.com/j2se/1.4.2/docs/api/. 

 

a) Measurements on the graph theory approach. To run type as below: 

Program Folder > java Driverprog (hit Enter) 

 

 
 



CS298 Report 

 Page 31 of 40  Created by: Rajesh Singh  31 

 
 

In the end portion of the second screen shot we can see that values of the three important 

performance metrics are: 

 

Execution time = 3828 milliseconds. 

 

Free memory in JVM = 6413512 Bytes. 

 

Total memory in JVM = 28441088 Bytes. 

 

b) Measurements on the geometrical approach. To run type as below: 

Program Folder > java Driverprog1 (hit Enter) 
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Similarly in the end portion of the second screen shot we can see that values of the three 

important performance metrics are: 

 

Execution time = 4391 milliseconds. 

 

Free memory in JVM = 7661432 Bytes. 

 

Total memory in JVM = 46987776 Bytes. 
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The comparison of the above results (from section (a) and (b) ) reveals that: 

 

1. The execution time for graph theory approach (3828 msecs) is less than 

execution time for geometrical approach (4391 msecs). This means that graph 

theory approach for this implementation runs faster. 

 

2. The free memory for graph theory approach (6413512 Bytes) is less than free 

memory for geometrical approach (7661432 Bytes). According to java API 

documentation free memory is an approximation to the total amount of memory 

currently available for future allocated objects. The free memory readings show 

that geometrical approach uses less memory than the graph memory. 

 

3. The total memory for graph theory approach (28441088 Bytes) is also less than 

total memory for geometrical approach (46987776 Bytes). According to java 

API documentation total memory is the total amount of memory currently 

available for current and future objects. The total memory readings also show 

that with graph approach less total memory is available in the JVM than 

geometrical approach. Hence geometrical approach is more memory efficient 

than graph approach, a point also complimented by free memory reading above.
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5.4 Comparison with Yahoo Desktop Search 

 

To gauge the accuracy of my project I have decided to compare it with a very popular 

text search engine namely Yahoo Desktop Search. Here are some of the observations. 

 

a) The output of this project is saved in a text file (ConnComp.txt) which will 

contain the concepts. Each concept is composed of a collection of phrases plus some 

document names (from the original input document set). Taking a concept randomly from 

the output file and comparing it with yahoo desktop search is shown below. 

 

 

Collection of phrase in that concept:  “special purpose computing equipment 
dedicated, purpose computing equipment dedicated, computing equipment 

dedicated, purpose equipment dedicated, purpose computing dedicated, 

purpose computing equipment, special computing equipment dedicated, 

special equipment dedicated, special computing dedicated, special 

computing equipment, special purpose equipment dedicated, special 

purpose dedicated, special purpose equipment, special purpose computing 

dedicated, special purpose computing, special purpose computing 

equipment, purchase special purpose computing, purchase purpose 

computing, purchase special computing, purchase special purpose”. 

 

Document names: “a9003921.txt, a9005831.txt, a9005696.txt, 
a9005885.txt, a9005905.txt, a9005924.txt, a9003682.txt, a9216171.txt, 

a9003401.txt, a9005931.txt, a9004700.txt, a9005805.txt, a9004981.txt, 

a9005331.txt, a9005783.txt, a9005791.txt, a9004195.txt, a9005939.txt, 

a9005503.txt, a9006043.txt, a9005889.txt, a9260946.txt, a9001488.txt, 

a9005914.txt, a9005698.txt, a9003353.txt, a9004628.txt, a9005689.txt, 

a9005846.txt”. 

 

From the above collection of phrase I am taking the longest phrase “special purpose 

computing equipment dedicated” to perform a query in yahoo desktop search. 

A screen shot of the yahoo desktop is also shown below. 
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The document names for the above search query “special purpose computing 

equipment dedicated” as given by yahoo desktop search are as below. 

 

Yahoo Desktop Search Document Names: “a9020365.txt, a9003921.txt, 
a9005831.txt, a9005696.txt, a9005885.txt, a9005905.txt, a9005924.txt, 

a9003682.txt, a9003401.txt, a9005931.txt, a9004700.txt, a9005805.txt, 

a9004981.txt, a9005331.txt, a9005783.txt, a9005791.txt, a9004195.txt, 

a9005939.txt, a9005503.txt, a9006043.txt, a9005889.txt, a9001488.txt, 

a9005914.txt, a9005698.txt, a9003353.txt, a9004628.txt, a9005689.txt, 

a9005846.txt”. 

 

Comparison of the document names given by my project and yahoo desktop search 

reveals the following information. 

 

1. The total number of documents returned by yahoo desktop search is 28. 

 

The total number of documents returned by my project is 29. 

 

The number of documents returned by both (common) is 27. There was discrepancy in 

the results of both the searches by 3 documents. One document that yahoo desktop search 

returned (a9020365.txt) was not returned by my project, on the other hand two 
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documents (a9216171.txt, and a9260946.txt) that were part of my document result set 

were not returned by yahoo desktop search. A human analysis of the document 

a9020365.txt can easily reveal that this document, which was picked by yahoo desktop 

search and discarded by my project, is not semantically close to other documents in the 

result set. This document was picked by yahoo desktop search simply on the basis of 

matching words specialized, purpose, and dedicated. To account for the documents 

a9216171.txt and a9260946.txt, which were returned by my project and discarded by 

yahoo, my human analysis finds them semantically closer to the other documents in the 

result set. The document a9216171.txt talks about video coding and image processing and 

hence can be easily accepted to be close to the query phrase “special purpose 

computing equipment dedicated”. Similarly, document a9260946.txt talks about 

using some special purpose ground equipment in conjunction with GPS for aircraft 

landing system. We know by our common sense that quick computation is a must for 

highly skilled equipments like aircraft, missile systems etc. Therefore document 

a9260946.txt is also semantically close to the query string. 

 

b) Comparing the results obtained by applying the association rule changes as 

mentioned in section 5.2 (discarding certain unimportant words). This time I decided to 

pick a concept that spans through higher number of files. As mentioned under section 5.4 

part (a) above the concept which is a collection of phrases and document names is as 

follows. 

 

Collection of phrase in that concept: “National Earthquake Hazard Reduction 
Program, Earthquake Hazard Reduction Program, Hazard Reduction Program, 

Earthquake Reduction Program, Earthquake Hazard Program, Earthquake 

Hazard Reduction, National Hazard Reduction Program, National Reduction 

Program, National Hazard Program, National Hazard Reduction, National 

Earthquake Reduction Program, National Earthquake Program, National 

Earthquake Reduction, National Earthquake Hazard Program, National 

Earthquake Hazard, National Earthquake Hazard Reduction, National 

Earthquake Hazards Reduction Program, Earthquake Hazards Reduction 

Program, National Hazards Reduction Program, National Earthquake 

Hazards Program, National Earthquake Hazards Reduction, component 

National Earthquake Hazard, Hazards Reduction Program, Earthquake 

Hazards Program, Earthquake Hazards Reduction, National Hazards 

Program, National Hazards Reduction, National Earthquake Hazards, 

component Earthquake Hazard, component National Hazard, component 

National Earthquake, research component National Earthquake, research 

National Earthquake, research component Earthquake, research component 

National”. 

 

Document names: “a9204835.txt, a9416482.txt, a9417493.txt, 
a9319417.txt, a9004511.txt, a9011452.txt, a9206565.txt, a9117800.txt, 

a9011783.txt, a9416470.txt, a9111877.txt, a9118025.txt, a9405552.txt, 

a9003598.txt, a9105050.txt, a9224945.txt, a9405490.txt, a9218652.txt, 

a9119335.txt, a9112749.txt, a9404762.txt, a9104158.txt, a9105500.txt, 

a9408506.txt, a9116722.txt, a9096302.txt, a9002704.txt, a9014456.txt, 

a9011441.txt, a9416223.txt, a9003575.txt, a9416499.txt, a9409013.txt, 

a9218704.txt, a9018166.txt, a9018487.txt, a9105322.txt, a9117319.txt, 

a9412802.txt, a9415738.txt, a9118090.txt, a9104448.txt, a9416120.txt, 

a9416546.txt, a9304110.txt, a9018848.txt, a9416271.txt, a9213236.txt, 
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a9200768.txt, a9416425.txt, a9205235.txt, a9004381.txt, a9004556.txt, 

a9011325.txt, a9305180.txt, a9406378.txt, a9406781.txt, a9405498.txt, 

a9416196.txt, a9011322.txt, a9022121.txt, a9205369.txt, a9105069.txt, 

a9023166.txt, a9304549.txt, a9117699.txt, a9219922.txt, a9416190.txt, 

a9011456.txt, a9003646.txt, a9011294.txt, a9416342.txt, a9011332.txt, 

a9114967.txt, a9316457.txt, a9017358.txt, a9019003.txt, a9011919.txt, 

a9018690.txt, a9011845.txt, a9017657.txt, a9303796.txt, a9121566.txt, 

a9416339.txt, a9416416.txt, a9315055.txt, a9096281.txt, a9416183.txt, 

a9416144.txt, a9205448.txt, a9105467.txt, a9117768.txt, a9105515.txt, 

a9104199.txt, a9304657.txt, a9118525.txt, a9115056.txt, a9005302.txt, 

a9117464.txt, a9117834.txt, a9219856.txt, a9304587.txt, a9118332.txt, 

a9017661.txt, a9418465.txt, a9416314.txt, a9316528.txt, a9206815.txt, 

a9416228.txt, a9105152.txt, a9418643.txt, a9018356.txt, a9405533.txt, 

a9219676.txt, a9005594.txt, a9019185.txt, a9219529.txt, a9316337.txt, 

a9011121.txt, a9405519.txt, a9205257.txt, a9004428.txt, a9116397.txt, 

a9416340.txt, a9418922.txt, a9316150.txt, a9004350.txt, a9118201.txt, 

a9416758.txt, a9019193.txt, a9005092.txt, a9205669.txt, a9117730.txt, 

a9416213.txt, a9416335.txt, a9009444.txt, a9304232.txt, a9219187.txt, 

a9004207.txt, a9011819.txt, a9017767.txt, a9296125.txt, a9405870.txt, 

a9405767.txt, a9206545.txt, a9117811.txt, a9417700.txt, a9005300.txt, 

a9105970.txt, a9316344.txt, a9118445.txt, a9415728.txt, a9416148.txt, 

a9206473.txt, a9011784.txt, a9205830.txt, a9416219.txt, a9104735.txt, 

a9204748.txt, a9204643.txt, a9304652.txt, a9004220.txt, a9418754.txt, 

a9304949.txt, a9410264.txt, a9105575.txt, a9011449.txt, a9205777.txt, 

a9305172.txt, a9011102.txt, a9416320.txt, a9011458.txt, a9411759.txt, 

a9201406.txt, a9105733.txt, a9220104.txt, a9014787.txt, a9416119.txt, 

a9223453.txt, a9100673.txt, a9316871.txt, a9011319.txt, a9316513.txt, 

a9004375.txt, a9416458.txt, a9011041.txt, a9418942.txt, a9417389.txt, 

a9103493.txt, a9416214.txt, a9208838.txt, a9219361.txt, a9116254.txt, 

a9196115.txt, a9405547.txt, a9003678.txt, a9205591.txt, a9118038.txt, 

a9316581.txt, a9304952.txt, a9418482.txt, a9416181.txt, a9118401.txt, 

a9416277.txt, a9116736.txt, a9118430.txt, a9412260.txt, a9215158.txt, 

a9206092.txt, a9404962.txt, a9022389.txt, a9004177.txt, a9105229.txt, 

a9317461.txt, a9416336.txt, a9017569.txt, a9305081.txt, a9011330.txt, 

a9118086.txt, a9418905.txt, a9117705.txt, a9415721.txt, a9304555.txt, 

a9304560.txt, a9315976.txt, a9207181.txt, a9216637.txt”. 

 

For query string comprising of the longest phrase from the concept’s phrase collection 

“National Earthquake Hazard Reduction Program” yahoo desktop search returned 

a total of 237 documents. This is too big of a number to go over each document in detail 

so I will mention few documents that were picked up by yahoo desktop search engine but 

not by my project. Majority of documents returned by both the searches talk about 

research done by earthquake hazard reduction program whereas document a9001494.txt 

(returned only by yahoo desktop search) pertains to study of walls or buildings made of 

RC and document (returned only by yahoo desktop search) a9001256.txt pertains to 

structural control research for seismic and wind resistant design. The two documents 

a9001494.txt and a9001256.txt are definitely not semantically closer to the majority of 

documents returned by this search query. I am sure a further probe can yield some more 

such discrepancies in the results returned by Yahoo desktop search. By giving the 

examples of a9001494.txt and a9001256.txt documents one thing is certain that Yahoo 

desktop search is not very smart in terms of semantic search. 
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c) One more concept comparison from the same result as section 5.4 part (b) yields 

interesting results as shown below. 

 

Collection of phrase in that concept: “vessels specifically dedicated 
oceanographic research, specifically dedicated oceanographic research, 

dedicated oceanographic research, specifically oceanographic research, 

specifically dedicated research, specifically dedicated oceanographic, 

vessels dedicated oceanographic research, vessels oceanographic 

research, vessels dedicated research, vessels dedicated oceanographic, 

vessels specifically oceanographic research, vessels specifically 

research, vessels specifically oceanographic, vessels specifically 

dedicated research, vessels specifically dedicated, vessels 

specifically dedicated oceanographic”. 

 

Document names: “a9000251.txt, a9300636.txt, a9000246.txt, 
a9314910.txt, a9000393.txt, a9000158.txt, a9302587.txt, a9001169.txt, 

a9300825.txt, a9000312.txt, a9000463.txt, a9300411.txt, a9000048.txt, 

a9303344.txt, a9000343.txt, a9000049.txt, a9301213.txt, a9000130.txt, 

a9000046.txt, a9300503.txt, a9106232.txt, a9302254.txt”. 

 

The query for the longest phrase from the above collection “vessels specifically 

dedicated oceanographic research” in yahoo desktop search yields a total of 22 

documents. The interesting observation here is that the 22 documents returned by yahoo 

desktop search were same as mentioned above (which are returned by my project). So 

both the search techniques yielded similar results for this query.
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6 Conclusion 
 

In order to help search engines give more meaningful results to a user’s query based on 

the semantics rather than just the textual match, I propose a novel approach of concept 

analysis so that documents can be clustered into groups such that the documents in each 

group are semantically similar. The principle idea behind the work is that a document can 

be seen as a collection of keywords where each keyword represents some human thought 

[2]. The interaction of these keywords leads to some concept formation, in other words 

capture the semantics. The semantics of a collection of documents can be structured into 

a simplicial complex [2]. One unique aspect of this work lies in the fact that ordering of 

keywords within a document is preserved which is not the case with most of the search 

engine implementations because they are based on single value decomposition (0-

simplex). According to my hypothesis ordering of words (keywords) becomes very 

important with respect to semantics when discussing keyword interactions. For example 

the keyword pair “wall street” and “street wall” is semantically very different. The 

concept analysis algorithm identifies the concepts (a collection of phrases) plus the 

document names for each of the important concepts within a document collection. These 

concepts can be indexed (indexing not implemented) to answer semantics based search 

queries. 

 

The two techniques used for concept analysis were graph theory approach and 

geometrical approach. In graph theory terms the concepts were represented by connected 

components after reducing simplicial complex to a graph structure. Graph theory 

approach is universally applicable where as geometrical approach can only be used in 

case of closed simplexes [3][6]. The test run results show that graph theory approach runs 

faster but uses more memory than geometrical approach.  

 

A random comparison of the test run results with yahoo desktop search shows more 

precise results. In 3 search result comparison concept analysis yielded better results on 

two occasions than yahoo desktop search whereas on one occasion both yielded the same 

result. While performing the comparison study I found that all yahoo desktop search does 

is look for documents that contain any or all of the keyword from the query phrase, it also 

employs stemming if the match is not exact but doesn’t look for ordering of keywords at 

all as compared to my approach which looks for ordered keyword sets that are near by. 

 

Finally, the most important aspect of this concept analysis is to decide the association 

rules for keywords. After trying with several values I decided to use 5 as the maximum  

distance between two keywords to be considered nearby and the number of documents, 

for any keyword set to be important, greater than 20. After running the simplex 

generation algorithm and applying the graph theory or geometrical approach I found that 

concepts that involved the maximum sized keyword pairs were most precise in clustering 

the documents semantically. Another important point which is worth noting is that 

smaller the range of keyword pairs (i.e. from maximum sized keyword set to the 

minimum sized keyword set) more precise is the semantic space of the cluster formed by 

that connected component, a point explained in section 5.1 and 5.2 above. 
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