
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2007

Concept Analysis in Web Documents Concept Analysis in Web Documents

Rajesh Singh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Singh, Rajesh, "Concept Analysis in Web Documents" (2007). Master's Projects. 38.
DOI: https://doi.org/10.31979/etd.p9t5-c4g9
https://scholarworks.sjsu.edu/etd_projects/38

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/38?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CS298 Report

 Page 1 of 40 Created by: Rajesh Singh 1

CS298 Report

Concept Analysis in Web Documents

Doc. Ref. : cs298report

Version : 1.0

Status : Baseline

Created by : Rajesh Singh

Date : Oct/12/2007

Approved by : Not currently approved

CS298 Report

 Page 2 of 40 Created by: Rajesh Singh 2

Version History

Revision Release Date Updated

by

Remarks/Comments Status

0.1 Oct/12/2007 Rajesh

Singh

First draft Draft

0.3

0.4

0.5

1.0

1.01

1.02

Distribution

Name Organisation/Location Action/Information

Dr Cay Horstmann Dept of Computer Science for Approval

CS298 Report

 Page 3 of 40 Created by: Rajesh Singh 3

Abstract
 A Keyword within a text/web document represents some human thought. The

interaction of keywords leads to narrowing of scope of human thought by forming a more

precise semantic entity called concepts. Analyzing a set of document not only requires

analysis of the keywords within those documents but also their interactions within a

document. In this new approach a set of documents can be analyzed where by the

interactions of its keywords is also considered in finding the important concepts. These

concepts can be used to cluster them into smaller subsets such that documents in each

cluster will be semantically similar.

CS298 Report

 Page 4 of 40 Created by: Rajesh Singh 4

1 Introduction... 5

1.1 Background ... 5

1.2 Scope of the Project... 5

1.3 This Document... 5

2 Concept Analysis ... 6

2.1 Background – To help search engines give more relevant results .. 6

2.2 Ideas Behind Finding Concepts... 8

3 How Concept Analysis Works ... 10

3.1 Mathematical Foundation Simplicial Complex ... 10

3.2 Property of Simplexes in a Simplicial Complex .. 10

3.3 Simplicial Geometry of Keywords ... 10

4 Implementing the Concept Analysis Algorithms.. 12

4.1 Concept Analyzer .. 12

4.2 Design of Project... 12

4.3 Project Flow Charts. ... 15

4.4 Graph Theory Approach.. 19

4.5 Geometrical Approach .. 21

5 Test Results.. 22

5.1 Effect of Simplex Size .. 22

5.2 Changing Association Rules for Simplex Generation.. 26

5.3 Comparison of Graph Theory and Geometrical Approach ... 30

5.4 Comparison with Yahoo Desktop Search .. 34

6 Conclusion ... 39

7 List of Literature References ... 40

CS298 Report

 Page 5 of 40 Created by: Rajesh Singh 5

1 Introduction

1.1 Background

As part of my Masters Writing Project (CS297/CS298) at San Jose State

University, I have decided to work in the field of text analysis. The topic of my

work is “Concept Analysis in web documents” and my guide is Professor T. Y. Lin

Department of Computer Science, SJSU.

1.2 Scope of the Project

The scope of this project involves: -

• Understanding the correlation between a set of documents with large item-

set properties.

• Abstraction of keywords in a set of documents to a collection of simplexes,

also known as simplicial complex.

• Reducing the problem of keyword analysis in a set of documents to a

problem of simplicial complex analysis and then further reducing the

problem of simplicial complex (a structure in n-dimensional Euclidean

space) to a linear problem of graph.

• Implement concept analysis algorithm for the graph theory approach.

• Implement concept analysis by geometrical method also and do its

comparison with the graph approach.

• Discuss the out put generated with a standard set of data taken from UCI

KDD website.

1.3 This Document

The CS298 report is a technical deliverable the purpose of which is:

• To describe the project work done for CS297/CS298.

• To specify the design, implementation and algorithms used for

implementing concept analysis.

• To explain how this technique is different than other text analysis techniques

and what is the effect on the output as a result of this difference.

CS298 Report

 Page 6 of 40 Created by: Rajesh Singh 6

2 Concept Analysis

2.1 Background – To help search engines give more relevant results

Before improving the results given by a search engine it is important to know what

are the plausible ways a search engine may work. The actual working and

implementation of prominent search engines is proprietary and not open for public, yet

the basics of what may go inside of a search engine is well known [1].

 Let us suppose we have to pick out all the articles from a stack of articles or

written literature that are related to ground zero. The probable way to do that would be to

scan through each article word by word looking for the exact phrase “ground zero”. One

approach could be to just skim through the headlines of articles that are related to

terrorism or war, and then reading them to find a connection.

 In another instance suppose I have been handed a stack of chemical journals and

asked to find journals that have to do with explosive Compounds, if I am not an expert in

the field of chemistry then I will have to go through each article line by line looking for

the phrase “explosive compounds” in a sea of jargon and chemical equations.

 The two searches would yield quite different results. In the first example the

search may end early with few misses of articles with the phrase “ground zero” if it will

appear in an unlikely article say about presidential nominee Rudy Juliani. On the other

hand the search will find related articles that may talk about Global Terrorism or Arab

terrorists which could be very well related to the phrase “ground zero” even if it didn’t

contain that phrase. In the second example of chemistry journals the search will find each

instance of the exact match with phrase “explosive compounds” but I may miss articles

about compounds like Tri-Nitro-Toluene (TNT), Tri-Nitro-glycerol, picric acid etc.

which are also very explosive compounds unless I have significant knowledge about

Chemical compounds.

In the above example both the searches represent two totally different ways of

searching a document set. The first one can be called a conceptual search where the

heading or the title of the document may be related to the contents of the article in some

understood way, whereas the second approach is purely mechanical based on the

exhaustive search of the phrase in a much larger document set.

We see that both the approaches mentioned above have some serious limitations

and the question is “What else can be done to mitigate the above mentioned issues?” Let

us look at Taxonomy as a technique that may be applied to help searches. Something like

a librarian does by assigning keywords to works or articles can be done on a large set of

document. Rather than indexing the full text of each article the collection is assigned

keywords in some sort of a fixed hierarchical structure and doing a comprehensive

classification of sorts. This will definitely be helpful in improving the efficiency of the

search engine because the user can use concepts rather than just individual keywords or

phrases in their search, but this technique too has some serious limitations. Let us

consider two sets of documents such that one set has articles about first half of Europe

describing food habits of people based on geography and another set of articles about the

second half of Europe describing food habits of people based on race. How can these be

CS298 Report

 Page 7 of 40 Created by: Rajesh Singh 7

merged? Either, I would have to choose any taxonomy from the two or come up with a

totally new one. In both the scenarios I will be re-indexing a lot of data. One great

solution for this problem of merging different taxonomies is to not merge them at all.

Instead, have each document assigned multiple keywords or categories resulting in

multiple ontology. Now this approach is also not without its share of problems. First of

all having multiple taxonomies will raise system resource issues. Secondly, it is almost

impossible to have an expert archivist review and classify every document in a collection

moreover there is a very good chance that the taxonomy and keyword vocabulary may

continue to grow.

In the above paragraphs, regarding possible ways a search can be carried out, we

can see that all the techniques mention so far doesn’t do a good job. Some techniques

only do text matching whereas others will do conceptual match provided someone (most

likely a human) has already done some classification of documents based on concepts.

We know that classification or tagging of the documents to some important keywords is

not a trivial exercise given the enormity of data. We also know that computers are very

efficient in doing repetitive tasks but the problem is they don’t have brain or power to

perceive things. How can this power of computers, which lies in doing repetitive work,

be complimented with some form of intelligence or perception based approach. There is a

totally separate branch of computer science that deals with the aspects of computers as

human brains under Artificial Intelligence. I will not discuss artificial intelligence

because it is beyond the scope of my work. However, there is a way in which computers

can be made to pretend that it can perceive concepts. The technique is commonly known

as Latent Semantic Indexing (LSI) [1]. The LSI approach is known to work decently well

with textual data and the results are quite ok. I will just point out the basic idea behind

LSI, how it pretends to perceive a concept. In LSI, instead of taking the each document

one by one and building indexes on its keywords, the whole document collection is taken

as a pool to find what keywords appear together in substantially large number of

documents within the given document set. This approach is based on the assumption that

if certain keywords are present together in many documents then it means some

perception or some commonality of subject. It has been found that this assumption

decently aligns with human interpretation of a document classification for most types of

textual data. For example if the keywords Saddam, Hussein, gulf, war, and bomb appear

in many documents in a document collection then there is a very good chance that above

mentioned keywords help classify a subset of the whole document set. A human can here

perceive that the subset of documents classified by the above mentioned keywords have

something to do with Middle-East crisis. On the contrary the computer cannot perceive

what these keywords, when present within all the documents of a subset, would mean.

Therefore, we see that computer failed at understanding the meaning or perception of

these common keywords within a subset of documents but it surely was able to find these

keywords. In LSI this power of computer to find a certain keyword combinations that are

present in each document of a document subset is coupled with the assumption that such

keyword combinations or keyword patterns have some semantic. Indexes are built on

such keyword patterns which are used to answer search queries. This is not a foolproof

way to build indexes for conceptual search but it works well for certain types of

document collections. There are lots of other assumptions and various methodologies for

LSI implementation, for which the information is available on the Internet. A further

CS298 Report

 Page 8 of 40 Created by: Rajesh Singh 8

discussion of LSI is beyond the scope of my work. One interesting observation about this

LSI technique is that it helps to consider the whole document set together for analysis

rather than considering one document at a time.

2.2 Ideas Behind Finding Concepts

In my work the notion of word concept corresponds to a set of keyword combinations or

phrases that can classify the given set of document into some meaningful group. I will be

using the basic tenet of LSI which considers taking the whole document set together

instead of going over each document individually. I will not be using the LSI algorithm in

its entirety; instead I will combine some ideas of LSI with the properties of a

mathematical entity called a simplex along with the algorithms of graph theory. Since

concepts have the characteristics of being able to be perceived by humans so it will be a

good idea to output results (concepts) in human understandable form. To make this

possible it is important to remove all kinds of formatting present in the documents of the

collection under study. Web documents normally have html/xml tags along with some

additional header information. In my approach all the documents will be stripped of their

metadata, including html/xml tags and other information like title or keywords. After the

above cleansing operation the resultant output will be a collection of bare bone text data

files. This approach can be easily fitted into the larger scheme of things apparently the

search engine. In the real world it can be assumed that the crawler will get the web

documents from the internet on to the disk in the form of a document set. This document

set will also have all the metadata which can be stripped off by performing the cleansing

operation as mentioned above to give a collection of text data documents. The

implementation and use of the crawler is beyond the scope of my project, and I will be

using text and web data available at the UCI Kdd website. At UCI Kdd both forms of

data are available (text data files and html formatted textual data) and I will run my

experiments with both types of data to compliment my claim that concept analysis can

improve the quality of results returned by a search engine.

 As described under section 2.1 above for a collection of documents, that has text

data, keyword combinations or phrases that span across multiple documents will be found

out. These keyword combinations will then be analyzed together to see if they are

associated with each other or not. The ones that will be associated can be grouped

together and each such unique group will be a concept. To find the associations between

the keyword combinations, obtained as above, a correlation is developed with a

mathematical entity called simplex [2] and then using the property of large item sets

(from data mining) for finding associations [6].

 The commonality between my approach for finding keyword combinations and

LSI approach is that in both the approaches we consider keyword combinations or

patterns that spans across multiple documents. The major difference between my

approach and that of LSI lies in the fact that LSI is based on Single Value Decomposition

(SVD) [1][5] or 0-simplex whereas my approach is not based on Single Value

Decomposition as we will consider simplexes of higher order too (0-simplex, 1-

simplex,….). To understand the difference more clearly lets consider an example:

consider a case such that in a document collection the keywords “Wall” and “Street”

together span across substantially large number of documents. According to the LSI

CS298 Report

 Page 9 of 40 Created by: Rajesh Singh 9

approach the set of documents that will contain both these keywords may be treated to be

in same semantic space, the semantic space determination subject to other calculations of

local and global weight. In LSI approach a list of documents is maintained for each

keyword and hence for a keyword combination (like “Wall” and “Street”) or phrase an

intersection of sorts is taken which is abstracted as its Latent Semantic Space. In my

approach of simplexes the ordering of keywords is very important, also inherent in my

hypothesis; hence “Wall Street” will not be given the same treatment as “Street Wall”. In

my CS297 report (an account of my literature research and findings) and CS298 proposal

(hypothesis and description of my project writing) I have mentioned that “A document

can be seen as a collection of keywords where each keyword represents some human

thought [2]. The interaction of these keywords leads to some concept formation, in other

words capture the semantics of that document”. Since we are talking about interaction of

keywords within a document their ordering should be taken into account. We have seen

in the above example how keywords ‘Wall” and “Street” have totally different semantics

or meaning by changing their orders. The phrase “Wall Street” represents a financial

notion like New York stock exchange whereas the phrase “Street Wall” represents

something totally different. Therefore in my approach the keyword combinations “Wall

Street” and “Street Wall” will fall in different semantic spaces.

CS298 Report

 Page 10 of 40 Created by: Rajesh Singh 10

3 How Concept Analysis Works

3.1 Mathematical Foundation Simplicial Complex

The definition (verbatim) of Simplicial Complex as given by wikipedia

(http://en.wikipedia.org/wiki/Simplicial_complex) is “In mathematics, a simplicial

complex is a topological space of a particular kind, constructed by "gluing together"

points, line segments, triangles, and their n-dimensional counterparts”. For example a

simplex {A,B,C,D} is a Set such that it contains all its subsets i.e. {A,B,C}, {A,C,D},

{B,C,D}, {A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {A}, {B}, {C}, {φ}.

 Each document can be seen as a collection of keywords. When considering the

whole document collection, keyword combinations that span multiple documents can be

obtained based on high Term Frequency Inverse Document Frequency (TFIDF) [2].

These keyword combinations will be frequent item sets of length q. In the above

mentioned example {A,B,C,D} is an item set of length q = 4. All such keyword

combinations of the document collection will form an abstract simplicial complex [2].

In a simplicial complex the length of all the item sets will not be the same i.e. {q = 1,2,3,

…} the item set length can be any positive integer. One variation that I have applied in

my approach is that I am preserving the ordering of keywords in my analysis whereas in a

simplex the order is unimportant because a simplex is a set. So my variation can be seen

as a modified simplex where all the other properties of simplex still holds true.

3.2 Property of Simplexes in a Simplicial Complex

A simplicial complex is topologically equivalent to a triangulation (Linear simplicial

complex) of a polyhedron in Euclidean space [2] and this polyhedron is topologically

equivalent to the notion of human thoughts that are formed by the keyword combination

in the documents. This notion of human thought can be seen as the Latent Semantic space

(LSS) of the collection. So we can see how an n-dimensional structure of simplexes in

Euclidean space is equivalent to the semantic space of the documents. We can also see

that this approach of finding the LSS of documents is different than the LSI technique

discussed in section 2.2 above. Some of the important properties of simplexes as taken

from wikipedia along with the idea of LSS topology are:

1. Any face of a simplex from is also in the simplex.

2. The intersection of any two simplices is a face of both simplices.

3. A simplex represents a primitive concept.

4. A maximal dimensional simplex will represent a maximal primitive concept.

5. A connected component will represent a complete concept.

3.3 Simplicial Geometry of Keywords

One great use of this approach can be seen in dealing with document sets of different

languages. In this paper I am using keyword combinations that are filtered from the

document collection because this process is simple and automatable. We know that

CS298 Report

 Page 11 of 40 Created by: Rajesh Singh 11

simplicial complex is an n-dimensional polyhedron in Euclidean space [1]. The research

paper [1] also says that the interaction of keywords within a document can be captured in

a simplicial complex. These interactions are reflected in the geometry of a simplicial

complex. Using this approach a simplicial complex can be generated for the document set

of different languages. There is a very good chance that the polyhedron made by different

language document sets will exhibit homeomorphism because the shape of the

geometrical structure defines the semantics and hence there won’t be a need for human

translation. This can help identify semantically similar documents of different languages

without the use of human translators (implementation not provided here).

CS298 Report

 Page 12 of 40 Created by: Rajesh Singh 12

4 Implementing the Concept Analysis Algorithms

4.1 Concept Analyzer

As part of a search engine, concept Analysis can be seen as a process that works on the

data downloaded by the crawler from internet. Data that is downloaded from the internet

usually has structural as well as metadata with it too. The concept analyzer’s scope of

work do not require understanding of the metadata and structural information hence the

data downloaded from the internet also needs to be massaged before concept analysis can

be done on it. Massaging of the downloaded data is done by a separate helper program.

The massaged data will be in textual form and stored in lots of text files. For sake of

simplicity the concept analyzer is implemented in a way that the root folder of the

massaged data (the text files) needs to be specified. The program will then read all the

data files in the root folder and all its subfolders recursively. This program is tested on

various data sets comprising of document collection from 20,000 to 50,000 documents.

4.2 Design of Project

There are three major steps that constitute the whole functionality of concept analyzer

1. Tokenizing the data.

2. Creating the simplexes.

3. Finding the concepts.

4.2.1 Tokenizing the Data

The starting point for tokenizing is cleaned data after massaging so that all the structural

and metadata information is absent form the data files (text files). Every word in a

document is read and its position within that document is recorded along with the

document name. This is done for all the documents in the document collection. In one

variation some words will be discarded like articles, preposition, conjunctions, pronouns,

and verbs. The tokenizing program is written in java and run on the command prompt as

shown below.

Command window>java Maketoken output_pathname input_folder

In the above command Maketoken is the class file that is run to tokenize the data. The

program takes two command line arguments. The first argument, output_pathname, is the

fully qualified name of the files that will contain the tokens after program (Maketoken)

has finished execution. Each line will contain the document name, keyword (token), and

the position (offset) within a document. The second argument, input_folder, is the root

folder that contains all the documents of the document collection under study.

CS298 Report

 Page 13 of 40 Created by: Rajesh Singh 13

4.2.2 Creating the simplexes

This is the most time taking exercise in the whole process. Simplex creation is done using

SQL-92. The whole process of simplex creation is as follows. The tokens that gets

created, as defined in section 4.2.1, are read into a SQL table such that each row in the

table contains the document name, token, and position. This will be a huge table with few

million records for data size of 20,000 files or above. Simplex generation through SQL

92 is an iterative process that needs to be done in successive steps, which also puts severe

restrictions on processing the whole table data in one pass. So data needs to be pruned as

early as possible [7], since this table is the first one so pruning will start from here itself.

The approach used for pruning data from this table is TFIDF (Term frequency Inverse

document frequency). There are several flavors of TFIDF algorithm or formula. I will use

the one mentioned at the online Wikipedia. According to the wikipedia “The tf-idf weight

(term frequency-inverse document frequency) is a calculated value which is used in

information retrieval and text mining. This value is a statistical measure that is used to

evaluate how important a word is to a document with respect to the whole document

collection. According to this notion the calculated value or weight is directly

proportional to the number of times a word appears in the document and somewhat

inversely proportional to the number of documents, which offsets the calculated value.

Search engines use different variations of tf-idf weighting schemes to rank documents

based on a given user query.

Frequency of a term in a given document simply means the number of times that term

appears within that document. But taking this frequency will lead to a bias towards

longer documents (longer document can lead to higher count regardless of the term’s

overall importance in that document), so this frequency is normalized to give a correct

measure of the importance of the term ti for that particular document”.

CS298 Report

 Page 14 of 40 Created by: Rajesh Singh 14

 tfi = ni ⁄ Σk nk

In the above formula ni represents the number of times a concerned word appears in a

document and the denominator Σk nk represent the total number of all terms in that

document.

“The inverse document frequency (idf) is statistical quantity that gives the general

importance of the term. It is obtained by dividing the total number of documents by the

number of documents containing the term, and then taking its logarithm”

 idfi = Log (|D| ⁄ |{d : ti ε d}|)

Here |D| represents total number of documents in the collection, and |d : ti ε d}|

is the number of documents where the term ti appears.

Therefore we have the final formula by multiplying the above two equations as below.

 TFIDF = tfi * idfi

The above formula will be used to calculate weight of all the terms (tokens) in the table

and then only terms that have a TFIDF value higher than a certain value will be

considered. This step will prune the table significantly and the right value of TFIDF will

be considered after trying several values and looking at the final result. It is not possible

to get a universally correct value that would work in all the circumstances, as it will

depend on the document sizes as well as the total number of documents in the collection.

 Once pruning is done based on TFIDF values the table (SQL table) will contain

all the important tokens such that each row will have the document name, token, and its

position. Now I will apply the apriori principle [6] of data mining on the table data so that

in the end we can get simplexes from the tokens. The apriori approach is done by pairing

all the tokens that are equal to or less than ‘d’ distance apart. Again there is no

universally correct value of ‘d’ so I have chosen d = 5 for my experiment for which the

results are very reasonable. The result of applying the apriori approach on the pruned

SQL table will generate a SQL table that will have document name, token1, token2, pos1,

pos2, and diff (pos2 – pos1) in each row. One of the problems with this approach is that it

will again cause the table to swell, but fortunately for us we can prune this table too based

on our notion of concept, mentioned in section 2.2, that says about commonly occurring

keyword patterns in multiple documents of a document set [1]. The pruning again here

would require some sort of quantitative criterion for which again there is no universal

rule. I am assuming that keyword patterns occurring in 20 or more documents for my

document collection are important so rest of them can be ignored.

CS298 Report

 Page 15 of 40 Created by: Rajesh Singh 15

 At this stage what we have is a pruned table of keyword pairs. This table can be

used to find higher pairing of keywords i.e. using the n-pair tokens to get (n+1)-pair

tokens. For example, a 2-pair tokens table will be used to give a 3-pair tokens by making

SQL self joins on the tokens, document name, and their positions. This step can be

successively performed to get higher token pairing. At each step of generating (n+1)-pair

tokens by n-pair tokens table, the (n+1)-pair tokens table can be pruned by using the

notion of section 2.2 of commonly occurring patterns in multiple documents of a

document set. Successive pruning will significantly reduce the query execution time for

higher order pairing. I will continue this process till getting 5-pair tokens. While

generating all the token pairs, I will not only keep the final result pair tokens but also the

intermediate token pairs. For example if my final resulting pair is 5-pair tokens table then

I will also keep 4-pair, 3-pair, and 2-pair tokens table respectively. These tables will then

be used to give 4-simplex, 3-simplex, 2-simplex, and 1-simplex respectively. The

simplexes will be stored in separate text files, depending on the simplex size (n-simplex),

where each line will contain the document names and the respective keyword pairs or

group. There will be 4 separate files for all the four different simplex size, as mentioned

above, respectively. These simplexes will be further used by the project to find concepts

by running the graph theory approach and geometrical approach respectively.

4.3 Project Flow Charts.

There are three major parts of the project

1. Tokenizing

2. Simplex Creation

3. Finding Concepts

CS298 Report

 Page 16 of 40 Created by: Rajesh Singh 16

4.3.1 Tokenizing Flow Diagram

Input Root Folder

Child folder

Folder (n-1) Folder n Some folder

Text docs

Read all files under

<Input Root Folder>

Write tokens to a file

(doc_name, token, position)

CS298 Report

 Page 17 of 40 Created by: Rajesh Singh 17

4.3.2 Simplex Creation Flowchart

Read token data

into SQL table

(doc, token, pos)

Pruned table

(doc,token,pos)

Prune based

on TFIDF

1-simplex

(.txt file)

2-pair token

table

Apply apriori algorithm

Pruned 2-pair

table

Prune based on DF

(doc freq) Group by

2-pair

2-simplex

(.txt file)

3-pair token

table Pruned 3-pair

table

4-simplex

(.txt file)

5-pair token

table Pruned 5-pair

table

Group by

3-pair

Group by

5-pair

Prune based on DF

(doc freq)

Prune based on DF

(doc freq)

Make SQL Self join

CS298 Report

 Page 18 of 40 Created by: Rajesh Singh 18

Read Simplexes

all sizes

Make graph and find

connected components

Find set of Union of

simplex intersection

Set of

Concepts

Apply graph approach Apply geometrical approach

simplexes

Write connected components Write set of Union

Result.txt

4.3.3 Finding Concepts Flowchart

CS298 Report

 Page 19 of 40 Created by: Rajesh Singh 19

4.4 Graph Theory Approach

As mentioned under section 3.3, the interaction of keywords within a document can be

captured in a simplicial complex. Since simplicial complex is a polyhedron in Euclidian

space [2], it is too complex for human analysis. A simplicial complex can be reduced to a

graph where each keyword set of a simplex will be a vertex and their relation, also called

a face-off, will be shown by an edge between the vertices (keyword set). Here in my

approach the relation, which is represented by an edge in the graph, will be ascertained

between two keyword set if one is a subset of the other. For example, consider a

simplicial complex that contains the keyword sets {ABCDE}, {UVWXY}, {ABE},

{BCE}, {DCB}, and {B}. In a graph representation all the six keyword sets will be

represented by a vertex. According to our definition of relation between these vertices

following edges will exit.

1. {ABCDE} ------------------{ABE}

2. {ABCDE} ------------------ {BCE}

The explanation for the two edges shown above is as follows:

The first edge is between {ABCDE} to {ABE} because we can see that {ABE} is a

subset of {ABCDE} plus the relative ordering of A, B, and E is same in both keyword

set. We will not consider {B} here because we cannot find its relative order. Remember

we are interested in the interaction of keywords within a document and hence their

ordering is important. Also note that {DCB} is also a subset of {ABCDE} but the relative

ordering of D,C, and B are different in both the keyword set so they will not form an

edge.

One of the advantages of graph theory approach lies in the fact that it can be used even if

the keyword set within a simplicial complex do not form a closed simplex. A closed

simplex will contain all its subsets. In this approach the simplexes (that were generated

from the input data according to the process mentioned in section 4.2.2) will be used to

construct a graph. Graph construction requires reading all the keyword sets as vertices

and then finding edges between them. Once all the edges have been found the algorithm

to find connected component of a graph [6] can be run. In this project we are more

interested in finding connected component that encompasses the maximal dimension

simplexes. It is my anticipation that connected components containing maximal

dimension simplexes will be more precise and crisp in clustering the document set.

In the above example of keyword sets and edges we will have the following connected

components.

1. {ABCDE}, {ABE}, {BCE}.

2. {UVWXY}.

3. {DCB}.

4. {B}.

We are only interested in the maximal dimensional simplexes so we will discard {DCB}

and {B}. Therefore, our result will contain connected components represented by

{ABCDE} {ABE} {BCE} and {UVWXY} respectively. The documents represented by

these connected components should be semantically similar as per the hypothesis of this

project. The connected components can be made more precise and crisp with respect to

CS298 Report

 Page 20 of 40 Created by: Rajesh Singh 20

semantic clustering by discarding the lower dimensional simplexes while constructing the

graph. Suppose the maximum dimensional simplex is of 5-keyword (4 – simplex) then

we may decide to discard simplexes that are smaller than 3-keyword (2 – simplex). This

can improve clustering in a sense that there will now be fewer documents represented by

that connected component but at the same time the semantic similarity of these

documents will be high.

CS298 Report

 Page 21 of 40 Created by: Rajesh Singh 21

4.5 Geometrical Approach

This method can be used to find the concepts only if the keyword sets generated from the

document, as mentioned in section 4.2.2, forms a closed simplex. This method is based

on properties of set theory namely intersection and union except that it also takes into

account ordering which is insignificant in set theory.

The exact algorithm of this approach can be understood by looking at the following

example. Let us consider the keyword sets {ABCDE}, {UVWXY}, {ALMNB},

{CRSTU}, {MNQIJ}, {U}, {A} gets generated after performing steps mentioned in

section 4.2.2. The algorithm starts by reading the first keyword set say {ABCDE} and

stores it as an intermediate concept. In the next pass the program reads the next keyword

set which is {UVWXY} and tries to find relationship with the existing concepts. The

relationship is determined by searching for a common subset between the current

keyword set and the existing concepts. Since the there are no common subsets between

the existing intermediate concepts ({ABCDE}) and the present one ({UVWXY})

{UVWXY} will be stored as another intermediate concept. In the next pass the program

will read {ALMNB}, which will be compared with all the existing concepts. We see that

{ABCDE} and {ALMNB} both have a common subset which is {AB} because they both

have {AB} with their relative ordering preserved (A comes before B). Therefore

{ALMNB} will stick with {ABCDE}. After the third pass the intermediate concepts

available will be ({ABCDE} U {ALMNB}) and {UVWXY}. We will continue this

approach till all the keyword sets are consumed where by all the intermediate concepts

during the program run will become the concepts after program has finished running. To

sum it up the concepts that will form in the above example at the end of the program

execution are: {ABCDE} U {ALMNB} U {MNQIJ}, {UVWXY}, {CRSTU}. We will

discard the single keyword terms {U} and {A}. One interesting scenario that may happen

in this approach is that if a keyword set has subset match relationship with more than one

intermediate concept then the matching intermediate concepts will merge to form a

union. The same approach as mentioned above in section 4.4 about maximum keyword

size to minimum keyword size (discarding simplexes below a certain size, only

considering subset match between max and min simplex size) can be applied here too for

crisper and precise clustering of documents on the basis of their semantics.

CS298 Report

 Page 22 of 40 Created by: Rajesh Singh 22

5 Test Results
The data used for this test run, Abstracts_part1.zip, was taken from the site

http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html. The zip file is a collection of

approximately 51,000 files.

5.1 Effect of Simplex Size

a) Results from running the program considering 5−keyword set (4−simplex) and

4−keyword set (3−simplex).

CS298 Report

 Page 23 of 40 Created by: Rajesh Singh 23

As shown in the above screen shots of the test run following are the results.

Total number of 5-keyword sets = 137.

Total number of 4-keyword sets = 1346 – 137 = 1209

The total number of connected components (concepts) = 60

b) Results from running the program considering 5−keyword set (4−simplex),

4−keyword set (3−simplex), and 3−keyword set (2−simplex).

CS298 Report

 Page 24 of 40 Created by: Rajesh Singh 24

The screen shots of the test run with 5, 4, and 3 keyword sets is as follows.

Total number of 5-keyword sets = 137.

Total number of 4-keyword sets = 1346 – 137 = 1209

Total number of 3-keyword sets = 5920 – 1346 = 4574

The total number of connected components (concepts) = 55

c) Results from running the program considering 5−keyword set (4-simplex),

4−keyword set (3−simplex), 3−keyword set (2−simplex), and 2−keyword set

(1−simplex).

CS298 Report

 Page 25 of 40 Created by: Rajesh Singh 25

The screen shots of the test run with 5, 4, 3, and 2 keyword sets is as follows.

Total number of 5-keyword sets = 137.

Total number of 4-keyword sets = 1346 – 137 = 1209

Total number of 3-keyword sets = 5920 – 1346 = 4574

Total number of 2-keyword sets = 29673 – 5920 = 23753

The total number of connected components (concepts) = 21

S.No Keyword sets Connected components

1 5 keyword set, 4 keyword set 60

2 5 keyword set, 4 keyword set, 3 keyword set 55

3 5 keyword set, 4 keyword set, 3 keyword set, 2

keyword set

21

Table 5.1

In the summary table (Table 5.1), for the three test run scenarios, we see that as the

number of keyword set group size (column name Keyword sets) increases the total

number of connected components also decreases. This implies that as the keyword set

group becomes bigger the resulting connected component also becomes bigger (i.e.

represents more documents) there by reducing the total number of unique connected

components. The bigger each connected component becomes less precisely it represents

the concepts of all the referenced documents, conversely the smaller a connected

component becomes more precisely it represents the concepts of the referenced

documents.

CS298 Report

 Page 26 of 40 Created by: Rajesh Singh 26

5.2 Changing Association Rules for Simplex Generation

We know that most of the languages have some rules which we commonly called as

grammar. We know by our experience of English language that there are certain words

that are used within the document so that a sentence adheres to a certain predefined

structure. For example, according to English grammar laws every sentence must have a

verb. A document (text document) is a collection of sentences and it is very likely that all

the verbs used in all the sentences respectively may not contribute enough towards the

semantics of that document. The same can be said about other grammatical constructs

such as prepositions, pronouns etc. As per our hypothesis the semantics of a document

will depend upon the interaction of keywords so we can neglect the words which are

present because of the language grammar’s requirement. This approach can be applied to

documents of other languages too and relevant grammatical construct enforcing words

can be neglected. We will apply this approach on English language text documents and

neglect very common words as prepositions, pronouns, verbs etc and then analyze the

end result by running our algorithm.

The words that were neglected for this test run are: a, the, an, his, he, her, him, has, she,

if, for, of, by, it, its, is, at, to, be, but, and, this, that, they, and them. Neglecting these

words effect the association rules for simplex generation which can be explained with an

example as follows. Suppose a document contains a phrase “hazards of earthquake”,

since we are interested in near by keywords we can consider the relative positions of the

words “hazards” and “earthquake” to be n and n+1 respectively after neglecting the

word “of”. If we don’t neglect the word “of” then the relative positions of the two words

(“hazards” and “earthquake”) will be n and n+2. Therefore the simplex generating

algorithm, mentioned in section 4.2.2, will generate “hazards earthquake”, as one of its

two keyword set when the word “of” is neglected, or “hazards of earthquake”, as one of

its three keyword set when the word “of” is not neglected.

The test run results on the same data, similar to section 5.1, but under these changed

simplex generation association rules are as follows.

a) Results from running the program considering 5−keyword set (4−simplex) and

4−keyword set (3−simplex).

CS298 Report

 Page 27 of 40 Created by: Rajesh Singh 27

From the above shown screen shots of the test run we see the following results.

Total number of 5-keyword sets = 597.

Total number of 4-keyword sets = 4050 – 597 = 3453

The total number of connected components (concepts) = 153

b) Results from running the program considering 5−keyword set (4−simplex),

4−keyword set (3−simplex), and 3−keyword set (2−simplex).

CS298 Report

 Page 28 of 40 Created by: Rajesh Singh 28

The screen shots of the test run with 5, 4, and 3 keyword sets shown above is as follows.

Total number of 5-keyword sets = 597.

Total number of 4-keyword sets = 4050 – 597 = 3453

Total number of 3-keyword sets = 12974 – 4050 = 8924

The total number of connected components (concepts) = 104

c) Results from running the program considering 5−keyword set (4-simplex),

4−keyword set (3−simplex), 3−keyword set (2−simplex), and 2−keyword set

(1−simplex).

Similarly, the screen shots of the test run with 5, 4, 3, and 2 keyword sets is as follows.

Total number of 5-keyword sets = 597.

Total number of 4-keyword sets = 4050 – 597 = 3453

Total number of 3-keyword sets = 12974 – 4050 = 8924

CS298 Report

 Page 29 of 40 Created by: Rajesh Singh 29

Total number of 2-keyword sets = 54920 – 12974 = 41946

The total number of connected components (concepts) = 18.

S.No Keyword sets Connected components

1 5 keyword set, 4 keyword set 153

2 5 keyword set, 4 keyword set, 3 keyword set 104

3 5 keyword set, 4 keyword set, 3 keyword set, 2

keyword set

18

Table 5.2

Similarly in the summary table (Table 5.2), for the three test run scenarios, we see that as

the number of keyword set group size (column name Keyword sets) increases the total

number of connected components also decreases. This behavior is consistent with the

observation in section 5.1 (Table 5.1) which says that as the keyword set group becomes

bigger the resulting connected component also becomes bigger (i.e. represents more

documents) there by reducing the total number of unique connected components. The

bigger each connected component becomes less precisely it represents the concepts of all

the referenced documents, conversely the smaller a connected component becomes more

precisely it represents the concepts of the referenced documents. One additional inference

that can be made by comparing the results in summary tables (Table 5.1 and Table 5.2) is

that neglecting certain grammatical construct enforcing words leads to identification of

more connected components or concepts. The correctness of these concepts will be

ascertained by comparing it with the human notion of concepts.

CS298 Report

 Page 30 of 40 Created by: Rajesh Singh 30

5.3 Comparison of Graph Theory and Geometrical Approach

A comparative study about the runtime behavior of graphical and geometrical approach

was performed using the same machine and data. The result metrics that were measured

are execution time, the amount of free memory in the Java Virtual Machine after

finishing all the major computations, and the total amount of memory in the Java virtual

machine after finishing all the major computations. The java methods used for free

memory and total memory measurements are Runtime.freeMemory(), and

Runtime.totalMemory() respectively. The exact details and description of these methods

can be found at http://java.sun.com/j2se/1.4.2/docs/api/.

a) Measurements on the graph theory approach. To run type as below:

Program Folder > java Driverprog (hit Enter)

CS298 Report

 Page 31 of 40 Created by: Rajesh Singh 31

In the end portion of the second screen shot we can see that values of the three important

performance metrics are:

Execution time = 3828 milliseconds.

Free memory in JVM = 6413512 Bytes.

Total memory in JVM = 28441088 Bytes.

b) Measurements on the geometrical approach. To run type as below:

Program Folder > java Driverprog1 (hit Enter)

CS298 Report

 Page 32 of 40 Created by: Rajesh Singh 32

Similarly in the end portion of the second screen shot we can see that values of the three

important performance metrics are:

Execution time = 4391 milliseconds.

Free memory in JVM = 7661432 Bytes.

Total memory in JVM = 46987776 Bytes.

CS298 Report

 Page 33 of 40 Created by: Rajesh Singh 33

The comparison of the above results (from section (a) and (b)) reveals that:

1. The execution time for graph theory approach (3828 msecs) is less than

execution time for geometrical approach (4391 msecs). This means that graph

theory approach for this implementation runs faster.

2. The free memory for graph theory approach (6413512 Bytes) is less than free

memory for geometrical approach (7661432 Bytes). According to java API

documentation free memory is an approximation to the total amount of memory

currently available for future allocated objects. The free memory readings show

that geometrical approach uses less memory than the graph memory.

3. The total memory for graph theory approach (28441088 Bytes) is also less than

total memory for geometrical approach (46987776 Bytes). According to java

API documentation total memory is the total amount of memory currently

available for current and future objects. The total memory readings also show

that with graph approach less total memory is available in the JVM than

geometrical approach. Hence geometrical approach is more memory efficient

than graph approach, a point also complimented by free memory reading above.

CS298 Report

 Page 34 of 40 Created by: Rajesh Singh 34

5.4 Comparison with Yahoo Desktop Search

To gauge the accuracy of my project I have decided to compare it with a very popular

text search engine namely Yahoo Desktop Search. Here are some of the observations.

a) The output of this project is saved in a text file (ConnComp.txt) which will

contain the concepts. Each concept is composed of a collection of phrases plus some

document names (from the original input document set). Taking a concept randomly from

the output file and comparing it with yahoo desktop search is shown below.

Collection of phrase in that concept: “special purpose computing equipment
dedicated, purpose computing equipment dedicated, computing equipment

dedicated, purpose equipment dedicated, purpose computing dedicated,

purpose computing equipment, special computing equipment dedicated,

special equipment dedicated, special computing dedicated, special

computing equipment, special purpose equipment dedicated, special

purpose dedicated, special purpose equipment, special purpose computing

dedicated, special purpose computing, special purpose computing

equipment, purchase special purpose computing, purchase purpose

computing, purchase special computing, purchase special purpose”.

Document names: “a9003921.txt, a9005831.txt, a9005696.txt,
a9005885.txt, a9005905.txt, a9005924.txt, a9003682.txt, a9216171.txt,

a9003401.txt, a9005931.txt, a9004700.txt, a9005805.txt, a9004981.txt,

a9005331.txt, a9005783.txt, a9005791.txt, a9004195.txt, a9005939.txt,

a9005503.txt, a9006043.txt, a9005889.txt, a9260946.txt, a9001488.txt,

a9005914.txt, a9005698.txt, a9003353.txt, a9004628.txt, a9005689.txt,

a9005846.txt”.

From the above collection of phrase I am taking the longest phrase “special purpose

computing equipment dedicated” to perform a query in yahoo desktop search.

A screen shot of the yahoo desktop is also shown below.

CS298 Report

 Page 35 of 40 Created by: Rajesh Singh 35

The document names for the above search query “special purpose computing

equipment dedicated” as given by yahoo desktop search are as below.

Yahoo Desktop Search Document Names: “a9020365.txt, a9003921.txt,
a9005831.txt, a9005696.txt, a9005885.txt, a9005905.txt, a9005924.txt,

a9003682.txt, a9003401.txt, a9005931.txt, a9004700.txt, a9005805.txt,

a9004981.txt, a9005331.txt, a9005783.txt, a9005791.txt, a9004195.txt,

a9005939.txt, a9005503.txt, a9006043.txt, a9005889.txt, a9001488.txt,

a9005914.txt, a9005698.txt, a9003353.txt, a9004628.txt, a9005689.txt,

a9005846.txt”.

Comparison of the document names given by my project and yahoo desktop search

reveals the following information.

1. The total number of documents returned by yahoo desktop search is 28.

The total number of documents returned by my project is 29.

The number of documents returned by both (common) is 27. There was discrepancy in

the results of both the searches by 3 documents. One document that yahoo desktop search

returned (a9020365.txt) was not returned by my project, on the other hand two

CS298 Report

 Page 36 of 40 Created by: Rajesh Singh 36

documents (a9216171.txt, and a9260946.txt) that were part of my document result set

were not returned by yahoo desktop search. A human analysis of the document

a9020365.txt can easily reveal that this document, which was picked by yahoo desktop

search and discarded by my project, is not semantically close to other documents in the

result set. This document was picked by yahoo desktop search simply on the basis of

matching words specialized, purpose, and dedicated. To account for the documents

a9216171.txt and a9260946.txt, which were returned by my project and discarded by

yahoo, my human analysis finds them semantically closer to the other documents in the

result set. The document a9216171.txt talks about video coding and image processing and

hence can be easily accepted to be close to the query phrase “special purpose

computing equipment dedicated”. Similarly, document a9260946.txt talks about

using some special purpose ground equipment in conjunction with GPS for aircraft

landing system. We know by our common sense that quick computation is a must for

highly skilled equipments like aircraft, missile systems etc. Therefore document

a9260946.txt is also semantically close to the query string.

b) Comparing the results obtained by applying the association rule changes as

mentioned in section 5.2 (discarding certain unimportant words). This time I decided to

pick a concept that spans through higher number of files. As mentioned under section 5.4

part (a) above the concept which is a collection of phrases and document names is as

follows.

Collection of phrase in that concept: “National Earthquake Hazard Reduction
Program, Earthquake Hazard Reduction Program, Hazard Reduction Program,

Earthquake Reduction Program, Earthquake Hazard Program, Earthquake

Hazard Reduction, National Hazard Reduction Program, National Reduction

Program, National Hazard Program, National Hazard Reduction, National

Earthquake Reduction Program, National Earthquake Program, National

Earthquake Reduction, National Earthquake Hazard Program, National

Earthquake Hazard, National Earthquake Hazard Reduction, National

Earthquake Hazards Reduction Program, Earthquake Hazards Reduction

Program, National Hazards Reduction Program, National Earthquake

Hazards Program, National Earthquake Hazards Reduction, component

National Earthquake Hazard, Hazards Reduction Program, Earthquake

Hazards Program, Earthquake Hazards Reduction, National Hazards

Program, National Hazards Reduction, National Earthquake Hazards,

component Earthquake Hazard, component National Hazard, component

National Earthquake, research component National Earthquake, research

National Earthquake, research component Earthquake, research component

National”.

Document names: “a9204835.txt, a9416482.txt, a9417493.txt,
a9319417.txt, a9004511.txt, a9011452.txt, a9206565.txt, a9117800.txt,

a9011783.txt, a9416470.txt, a9111877.txt, a9118025.txt, a9405552.txt,

a9003598.txt, a9105050.txt, a9224945.txt, a9405490.txt, a9218652.txt,

a9119335.txt, a9112749.txt, a9404762.txt, a9104158.txt, a9105500.txt,

a9408506.txt, a9116722.txt, a9096302.txt, a9002704.txt, a9014456.txt,

a9011441.txt, a9416223.txt, a9003575.txt, a9416499.txt, a9409013.txt,

a9218704.txt, a9018166.txt, a9018487.txt, a9105322.txt, a9117319.txt,

a9412802.txt, a9415738.txt, a9118090.txt, a9104448.txt, a9416120.txt,

a9416546.txt, a9304110.txt, a9018848.txt, a9416271.txt, a9213236.txt,

CS298 Report

 Page 37 of 40 Created by: Rajesh Singh 37

a9200768.txt, a9416425.txt, a9205235.txt, a9004381.txt, a9004556.txt,

a9011325.txt, a9305180.txt, a9406378.txt, a9406781.txt, a9405498.txt,

a9416196.txt, a9011322.txt, a9022121.txt, a9205369.txt, a9105069.txt,

a9023166.txt, a9304549.txt, a9117699.txt, a9219922.txt, a9416190.txt,

a9011456.txt, a9003646.txt, a9011294.txt, a9416342.txt, a9011332.txt,

a9114967.txt, a9316457.txt, a9017358.txt, a9019003.txt, a9011919.txt,

a9018690.txt, a9011845.txt, a9017657.txt, a9303796.txt, a9121566.txt,

a9416339.txt, a9416416.txt, a9315055.txt, a9096281.txt, a9416183.txt,

a9416144.txt, a9205448.txt, a9105467.txt, a9117768.txt, a9105515.txt,

a9104199.txt, a9304657.txt, a9118525.txt, a9115056.txt, a9005302.txt,

a9117464.txt, a9117834.txt, a9219856.txt, a9304587.txt, a9118332.txt,

a9017661.txt, a9418465.txt, a9416314.txt, a9316528.txt, a9206815.txt,

a9416228.txt, a9105152.txt, a9418643.txt, a9018356.txt, a9405533.txt,

a9219676.txt, a9005594.txt, a9019185.txt, a9219529.txt, a9316337.txt,

a9011121.txt, a9405519.txt, a9205257.txt, a9004428.txt, a9116397.txt,

a9416340.txt, a9418922.txt, a9316150.txt, a9004350.txt, a9118201.txt,

a9416758.txt, a9019193.txt, a9005092.txt, a9205669.txt, a9117730.txt,

a9416213.txt, a9416335.txt, a9009444.txt, a9304232.txt, a9219187.txt,

a9004207.txt, a9011819.txt, a9017767.txt, a9296125.txt, a9405870.txt,

a9405767.txt, a9206545.txt, a9117811.txt, a9417700.txt, a9005300.txt,

a9105970.txt, a9316344.txt, a9118445.txt, a9415728.txt, a9416148.txt,

a9206473.txt, a9011784.txt, a9205830.txt, a9416219.txt, a9104735.txt,

a9204748.txt, a9204643.txt, a9304652.txt, a9004220.txt, a9418754.txt,

a9304949.txt, a9410264.txt, a9105575.txt, a9011449.txt, a9205777.txt,

a9305172.txt, a9011102.txt, a9416320.txt, a9011458.txt, a9411759.txt,

a9201406.txt, a9105733.txt, a9220104.txt, a9014787.txt, a9416119.txt,

a9223453.txt, a9100673.txt, a9316871.txt, a9011319.txt, a9316513.txt,

a9004375.txt, a9416458.txt, a9011041.txt, a9418942.txt, a9417389.txt,

a9103493.txt, a9416214.txt, a9208838.txt, a9219361.txt, a9116254.txt,

a9196115.txt, a9405547.txt, a9003678.txt, a9205591.txt, a9118038.txt,

a9316581.txt, a9304952.txt, a9418482.txt, a9416181.txt, a9118401.txt,

a9416277.txt, a9116736.txt, a9118430.txt, a9412260.txt, a9215158.txt,

a9206092.txt, a9404962.txt, a9022389.txt, a9004177.txt, a9105229.txt,

a9317461.txt, a9416336.txt, a9017569.txt, a9305081.txt, a9011330.txt,

a9118086.txt, a9418905.txt, a9117705.txt, a9415721.txt, a9304555.txt,

a9304560.txt, a9315976.txt, a9207181.txt, a9216637.txt”.

For query string comprising of the longest phrase from the concept’s phrase collection

“National Earthquake Hazard Reduction Program” yahoo desktop search returned

a total of 237 documents. This is too big of a number to go over each document in detail

so I will mention few documents that were picked up by yahoo desktop search engine but

not by my project. Majority of documents returned by both the searches talk about

research done by earthquake hazard reduction program whereas document a9001494.txt

(returned only by yahoo desktop search) pertains to study of walls or buildings made of

RC and document (returned only by yahoo desktop search) a9001256.txt pertains to

structural control research for seismic and wind resistant design. The two documents

a9001494.txt and a9001256.txt are definitely not semantically closer to the majority of

documents returned by this search query. I am sure a further probe can yield some more

such discrepancies in the results returned by Yahoo desktop search. By giving the

examples of a9001494.txt and a9001256.txt documents one thing is certain that Yahoo

desktop search is not very smart in terms of semantic search.

CS298 Report

 Page 38 of 40 Created by: Rajesh Singh 38

c) One more concept comparison from the same result as section 5.4 part (b) yields

interesting results as shown below.

Collection of phrase in that concept: “vessels specifically dedicated
oceanographic research, specifically dedicated oceanographic research,

dedicated oceanographic research, specifically oceanographic research,

specifically dedicated research, specifically dedicated oceanographic,

vessels dedicated oceanographic research, vessels oceanographic

research, vessels dedicated research, vessels dedicated oceanographic,

vessels specifically oceanographic research, vessels specifically

research, vessels specifically oceanographic, vessels specifically

dedicated research, vessels specifically dedicated, vessels

specifically dedicated oceanographic”.

Document names: “a9000251.txt, a9300636.txt, a9000246.txt,
a9314910.txt, a9000393.txt, a9000158.txt, a9302587.txt, a9001169.txt,

a9300825.txt, a9000312.txt, a9000463.txt, a9300411.txt, a9000048.txt,

a9303344.txt, a9000343.txt, a9000049.txt, a9301213.txt, a9000130.txt,

a9000046.txt, a9300503.txt, a9106232.txt, a9302254.txt”.

The query for the longest phrase from the above collection “vessels specifically

dedicated oceanographic research” in yahoo desktop search yields a total of 22

documents. The interesting observation here is that the 22 documents returned by yahoo

desktop search were same as mentioned above (which are returned by my project). So

both the search techniques yielded similar results for this query.

CS298 Report

 Page 39 of 40 Created by: Rajesh Singh 39

6 Conclusion

In order to help search engines give more meaningful results to a user’s query based on

the semantics rather than just the textual match, I propose a novel approach of concept

analysis so that documents can be clustered into groups such that the documents in each

group are semantically similar. The principle idea behind the work is that a document can

be seen as a collection of keywords where each keyword represents some human thought

[2]. The interaction of these keywords leads to some concept formation, in other words

capture the semantics. The semantics of a collection of documents can be structured into

a simplicial complex [2]. One unique aspect of this work lies in the fact that ordering of

keywords within a document is preserved which is not the case with most of the search

engine implementations because they are based on single value decomposition (0-

simplex). According to my hypothesis ordering of words (keywords) becomes very

important with respect to semantics when discussing keyword interactions. For example

the keyword pair “wall street” and “street wall” is semantically very different. The

concept analysis algorithm identifies the concepts (a collection of phrases) plus the

document names for each of the important concepts within a document collection. These

concepts can be indexed (indexing not implemented) to answer semantics based search

queries.

The two techniques used for concept analysis were graph theory approach and

geometrical approach. In graph theory terms the concepts were represented by connected

components after reducing simplicial complex to a graph structure. Graph theory

approach is universally applicable where as geometrical approach can only be used in

case of closed simplexes [3][6]. The test run results show that graph theory approach runs

faster but uses more memory than geometrical approach.

A random comparison of the test run results with yahoo desktop search shows more

precise results. In 3 search result comparison concept analysis yielded better results on

two occasions than yahoo desktop search whereas on one occasion both yielded the same

result. While performing the comparison study I found that all yahoo desktop search does

is look for documents that contain any or all of the keyword from the query phrase, it also

employs stemming if the match is not exact but doesn’t look for ordering of keywords at

all as compared to my approach which looks for ordered keyword sets that are near by.

Finally, the most important aspect of this concept analysis is to decide the association

rules for keywords. After trying with several values I decided to use 5 as the maximum

distance between two keywords to be considered nearby and the number of documents,

for any keyword set to be important, greater than 20. After running the simplex

generation algorithm and applying the graph theory or geometrical approach I found that

concepts that involved the maximum sized keyword pairs were most precise in clustering

the documents semantically. Another important point which is worth noting is that

smaller the range of keyword pairs (i.e. from maximum sized keyword set to the

minimum sized keyword set) more precise is the semantic space of the cluster formed by

that connected component, a point explained in section 5.1 and 5.2 above.

CS298 Report

 Page 40 of 40 Created by: Rajesh Singh 40

7 List of Literature References

[1] – Clara Yu, John Cuadrado, Maciej Ceglowski, and J. Scott Payne. Patterns in

Unstructured Data. Discovery, Aggregation, and Visualization.

(http://www.hirank.com/semantic-indexing-project/lsi/cover_page.htm)
[2] – Lin T. Y., Chiang I-J, and Hu Xiaohua. Semantic Based Clustering of Web

Documents.

[3] - Lin T. Y., Chiang I-J. A simplicial complex, a hypergraph structure in the latent

semantic space of document clustering (International Journal of approximate reasoning

Jan/2005).

[4] - Michael W. Berry, Susan T. Dumais, Gavin W. O’Brien. Using Linear Algebra for

Intelligent Information Retrieval, Department of Computer Science, University of

Tennessee, Knoxville, Dec. 1994.

[5] - S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by

Latent semantic analysis, Journal of the American Society for Information Science, page

1, 1990.

[6] – Margaret H. Dunham. Association Rules (Basic Algorithms), Data Mining

Introductory and Advanced Topics, page 169, 2004.

[7] – Rakesh Agarwal, Tomasz Imielinski, Arun Swami. Mining Association Rules

between Sets of Items in Large Databases (Sigmod 1993).i

	Concept Analysis in Web Documents
	Recommended Citation

	Microsoft Word - cs298report.doc

