
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

Intrusion Detection And Prevention System: CGI Attacks Intrusion Detection And Prevention System: CGI Attacks

Tejinder Aulakh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Aulakh, Tejinder, "Intrusion Detection And Prevention System: CGI Attacks" (2009). Master's Projects. 41.
DOI: https://doi.org/10.31979/etd.9at2-yu5x
https://scholarworks.sjsu.edu/etd_projects/41

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/41?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INTRUSION DETECTION AND PREVENTION SYSTEM: CGI ATTACKS

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Tejinder Aulakh

December 2009

ii

© 2009

Tejinder Aulakh

ALL RIGHTS RESERVED

iii

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

INTRUSION DETECTION AND PREVENTION SYSTEM: CGI ATTACKS

by

Tejinder Aulakh

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date

Dr. Robert Chun, Department of Computer Science Date

Ms. Sunitha Thummuri, Cisco Systems Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

iv

ABSTRACT

INTRUSION DETECTION AND PREVENTION SYSTEM: CGI ATTACKS

by Tejinder Aulakh

Over the past decade, the popularity of the Internet has been on the rise. The

Internet is being used by its clients to access both static and dynamic data residing on

remote servers. In the client-server interaction, the client asks the server to provide

information, and, in addition, the server may also request that clients provide information

such as in “web forms.” Therefore, the Internet is being used for many different purposes

which also include the web servers collecting the information from the clients.

Consequently, attacks on the web servers have been increasing over the years. Due to the

fact that web servers are now able to produce dynamic web pages based on the received

requests, the web servers are now more vulnerable to attack than ever before.

One of the ways to produce the dynamic web page is Common Gateway Interface

(CGI) technology. Attackers take the advantage of CGI scripts to perform an attack by

sending illegitimate inputs to the web server. This report includes the findings and the

results of the thorough research performed on the CGI-related web server attacks during

the course of the project. In addition, this report contains a detailed explanation of the

design and the implementation of the work done to develop an Intrusion Detection and

Prevention System for CGI based web server attacks.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his continuous guidance and support

throughout the period of this project. I would also like to thank the committee members, Dr.

Robert Chun and Ms. Sunitha Thummuri, for being part of the committee and providing the

valuable assistance and guidance in the completion of this project.

vi

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 COMMON GATEWAY INTERFACE (CGI) .. 3

2.1 What is CGI? .. 3

2.2 CGI Applications.. 4

2.2.1 CGI Forms .. 4

2.2.2 CGI Gateways ... 5

2.2.3 CGI Virtual Documents .. 6

3 CGI SECURITY .. 8

3.1 PHF Attack ... 10

3.2 Test Attack ... 11

3.3 JJ Attack ... 12

3.4 Compas Attack ... 12

3.5 Count Attack .. 12

4 EXISTING TOOLS ... 13

4.1 CGI-IDS ... 13

4.1.1 Disadvantages ... 15

4.2 ModSecurity ... 16

4.2.1 Disadvantages ... 17

vii

5 INTRUSION DETECTION SYSTEM ... 19

5.1 Fundamentals ... 19

5.2 IDPS Detection Models .. 20

5.2.1 Signature-Based Detection Model .. 20

5.2.2 Anomaly-Based Detection Model... 21

5.3 IDPS Components .. 23

6 DEVELOPED IDPS .. 25

6.1 Graphical User Interface (GUI) .. 25

6.1.1 CGI Attacks Interface ... 25

6.1.2 Attacker History Interface ... 27

6.1.3 Blocked Attackers Interface .. 29

6.2 MySQL Database ... 31

6.3 Management Module.. 31

6.4 Email Generation.. 32

7 DESIGN AND IMPLEMENTATION .. 34

7.1 CGI Attack Detection ... 34

7.2 Storing Attacks ... 34

7.3 Blocking Attackers ... 35

7.4 Email Notifications .. 35

viii

8 IDPS REQUEST HANDLING FLOW CHART... 36

9 RESULTS AND OUTCOMES ... 38

9.1 Performing the Attack .. 38

10 FUTURE WORK .. 40

11 CONCLUSION ... 41

REFERENCES ... 42

ix

LIST OF FIGURES

Figure 1: Common Gateway Interface .. 3

Figure 2: CGI Form .. 5

Figure 3: CGI Gateway ... 6

Figure 4: CGI Application Communication ... 9

Figure 5: IDPS .. 20

Figure 6: IDPS Components ... 24

Figure 7: CGI Attacks Interface .. 27

Figure 8: Attacker History Interface ... 29

Figure 9: Blocked Attackers Interface .. 31

Figure 10: CGI Attack Email Notification.. 33

Figure 11: Attack Detection Flow Chart ... 37

Figure 12: Attack Prevention Output .. 39

x

LIST OF TABLES

Table 1: Test-cgi Output ... 11

Table 2: CGI Attacks Interface Fields .. 26

Table 3: Attacker History Interface Fields.. 28

Table 4: Blocked Attackers Interface Fields ... 30

Table 5: Email Message Fields ... 32

file:///C:/Documents%20and%20Settings/taulakh/My%20Documents/My%20Dropbox/CS299/thesis/cs299_thesis.docx%23_Toc248466338

1

1 INTRODUCTION

In the past, a web server has been mainly used to serve static HTML requests. A

web client would send a static HTML request to the web server, and the web server

would respond with a static HTML response (Syroid, 2002). Over the years, there has

been a tremendous change in the way we use the Internet. Today, a typical Internet user

has much more interaction with the Internet than in the past. The Internet is now being

used for sharing pictures, social networking, stock trading, banking, and many other uses.

There has been a great increase in the development of new Internet-based tools while

taking advantage of the gigantic popularity of the Internet among the general population.

Photo editing tools such as Picnik, Picasa Web, video sharing, and editing on YouTube

are good examples of the recent Internet-based tools. These popular tools were made

possible only because of the abilities of the technologies like Common Gateway Interface

(CGI) and Server Side Includes (SSI) to produce dynamic content based on the received

requests (Selamt, 2003).

However, this enhanced client-server interaction has made the web server highly

vulnerable to attacks. CGI works as a communication gateway between the programs

and the web server (Hollander, n.d.). The security risk with the CGI programs is that

they can intentionally or unintentionally leak out confidential information to the attacker.

In addition, an attacker can also modify the user input for CGI scripts in a way such that

the CGI script will execute harmful commands on the server (Presis, n.d.).

2

There are several existing web server security solutions such as Firewalls to

protect the systems from attacks, but they fail to prevent the attacks in most of the cases.

For example, a Firewall does not always protect the server against the attacks because for

a business to function properly behind a Firewall, some popular ports such as 80 and 21

on the Firewall will need to be left open, hence opening the doors for attacks (Huseby,

2005). An attacker can craft a legitimate HTTP request in such a way that it will look

legitimate and perform the evil actions.

In this report, we will begin with providing the detailed information of the

Common Gateway Interface Technology and its common uses. Then, we will talk about

the security vulnerabilities that CGI technologies contain and well-known CGI attacks,

including how they are performed. Next, we will analyze the existing tools that handle

CGI related attacks and we will talk about their capabilities and limitations. Further, we

will cover the background of the Intrusion Detection Systems, including their types and

the components used in implementing them. Then, we will introduce an enhanced

Intrusion Detection and Prevention System for CGI based attacks. We will also talk

about the services that the proposed system will provide. In the next part, we will

comprehensively explain the design and implementation of the proposed system. Finally,

in the last part of the report, we will cover the outcomes of the project and make

recommendations for the future work in this filed.

3

2 COMMON GATEWAY INTERFACE (CGI)

2.1 What is CGI?

Common Gateway Interface, commonly known as CGI, is a standard protocol

used primarily by the web server to produce dynamic web pages. It is the CGI programs

that have enabled the web servers to create the customized response with regard to the

received request. With CGI, a web server can communicate with other parts or the

programs running on the server to prepare the response. A CGI program calls other

applications on the server and passes the user-specific information to the applications to

prepare the response for the requested data or output (Gundavaram, 1996). After

completing the operations, the CGI program returns the output to the web server and the

web server then sends the response back to the client. The CGI programs are not

language specific. They can be written in any language that provides standard input

(STDIN) and standard output (STDOUT) (Marshall, 2002). The high level model of the

CGI is illustrated in Figure 1.

Figure 1: Common Gateway Interface

4

2.2 CGI Applications

CGI transforms the web server from a static server which primarily stores static

web pages to an interactive server that clients can use to provide information to the server

or access other applications running on the server. Let us discuss some of the popular

applications that use CGI programs.

2.2.1 CGI Forms

CGI programs are most commonly used in the processing the input received from

the forms. The forms can be used to gather information from the user or to enable the

users run commands on the server. The forms can also be used to access other

applications running on the server (Gundavaram, 1996). The CGI program then calls the

appropriate application to process the input received the forms. The examples of the

actions performed by the CGI include storing the information in the database, searching

for documents, and running the Linux/Unix commands on the server etc. A CGI program

is linked to the forms embedded in the web pages on the server by using the ACTION

attribute of the HTML FORM tag. This is done as follows:

Every time the user submits the form, the CGI program “CGI_handle_forms.pl” is called

to process the input received from the user. A sample form is shown in Figure 2.

<FORM ACTION="/cgi-bin/CGI_handle_forms.pl" METHOD="POST">

5

Figure 2: CGI Form

2.2.2 CGI Gateways

Making some crucial information or applications available on the web server for

anyone to access is an incredibly useful feature but it generates immense security

vulnerabilities. Therefore, direct access to such information or applications is not

provided to the clients. Instead, all requests from the clients are passed through the

Gateways before they reach the web server for processing. Gateways which use CGI

programs perform application level authorization tasks determining if the client is

6

allowed to be given access to the requested information. If yes, Gateways use the

available API‟s to access the information and prepare the response. The information

requested could include file access and database access. Figure 3 includes the example of

clients accessing the databases via the CGI Gateway.

Figure 3: CGI Gateway

2.2.3 CGI Virtual Documents

CGI programs are also used in the creation of the Virtual Documents which are

also known as Dynamic Documents. The content of the documents is dependent on the

information received from the requests received from the server (Gundavaram, 1996).

This is very useful in providing the customized information to the user. An example of a

virtual document in presented below.

7

Here, the CGI program was automatically able to detect where the client user is

visiting from. The CGI program also keeps track of the average load on the server and

displays it in the virtual documents. This is a very useful feature to be able to write extra

information to the logs and gather other visitor related statistics to better serve the clients.

Welcome to Tejinder's WWW Server!

You are visiting from homes.com. The average load on my

server is 1.25.

Happy navigating!

8

3 CGI SECURITY

Most of the web servers have a directory named “cgi-bin” which contains the CGI

scripts. This directory contains some CGI scripts that present security vulnerability and

make the server prone to many types of attacks. By exploiting these scripts, attackers can

gain access to the server, modify the files, and retrieve confidential information which

could be hidden in a non-public directory on the server. Figure 4 shows the intense

interactivity of CGI with other applications such as the database, email, and OS

commands. Attackers will try all possible ways to exploit the CGI scripts in order to

reach these applications and have them produce the wanted output which is confidential

information in most of the cases.

9

Figure 4: CGI Application Communication

Some of the well-known exploits of the CGI scripts are given below:

10

3.1 PHF Attack

A script named “phf” which is installed by default in the cgi-bin directory can be

used to perform an attack on the web server. The legitimate use of the script is to update

the people directory (The Hack FAQ, 2003). The script‟s behavior changes if used with

the “0a” character in the URL when calling the script. To perform an attack, the attacker

appends “0a” to the URL along with some other UNIX command. The following are

some of the examples of the attacks performed using the “phf” CGI script.

o Read the password file using “cat /etc/passwd” UNIX command

http://victim.com/cgi-bin/phf?Qalias=x%0a/bin/cat%20/etc/passwd

o The output of the “id” command

http://victim.com/cgi-bin/phf?%0aid==haqr==_phone=

o List the files in the home directory the user “john” using “ls –la ~john” command

http://victim.com/cgi-bin/phf?%0als%20-la%20%7Ejohn==haqr==_phone=

o Copy the password file to another location

http://victim.com/cgi-

bin/phf?%0acp%20/etc/passwd%20%7Ejohn/passwd%0A==haqr==_phone=

o Remove the password file in the home directory of the user “john”

http://victim.com/cgi-bin/phf?%0arm%20%7Ejohn/passwd==haqr==_phone=

http://victim.com/cgi-bin/phf?Qalias=x%0a/bin/cat%20/etc/passwd
http://victim.com/cgi-bin/phf?%0aid==haqr==_phone
http://victim.com/cgi-bin/phf?%0als%20-la%20%7Ejohn==haqr==_phone
http://victim.com/cgi-bin/phf?%0acp%20/etc/passwd%20%7Ejohn/passwd%0A==haqr==_phone
http://victim.com/cgi-bin/phf?%0acp%20/etc/passwd%20%7Ejohn/passwd%0A==haqr==_phone
http://victim.com/cgi-bin/phf?%0arm%20%7Ejohn/passwd==haqr==_phone

11

3.2 Test Attack

Another CGI script named “test-cgi” is also included in most of the servers by

default and can be found in the cgi-bin directory. This script is used in verifying the

environment variables while processing the server requests. This script can be used by

the attackers to print the server specific information such as the environment variables

(The Hack FAQ, 2003). It can also be used along with the “0a” string to perform other

operations. As an example, the attacker is able to get all the server related information by

using the following URL.

http://victim.com/cgi-bin/test-cgi?\whatever

Table 1 contains the sample output produced by the test-cgi script.

I/1.0 test script report:

argc is 0. argv is .

SERVER_SOFTWARE = NCSA/1.4B

SERVER_NAME = something.com

GATEWAY_INTERFACE = CGI/1.1

SERVER_PROTOCOL = HTTP/1.0

SERVER_PORT = 80

REQUEST_METHOD = GET

HTTP_ACCEPT = text/plain, application/x-html,

application/html,

text/html, text/x-html

PATH_INFO =

PATH_TRANSLATED =

SCRIPT_NAME = /cgi-bin/test-cgi

QUERY_STRING = whatever

REMOTE_HOST = something.com

REMOTE_ADDR = 231.100.210.100

REMOTE_USER =

AUTH_TYPE =

CONTENT_TYPE =

CONTENT_LENGTH

Table 1: Test-cgi Output

http://victim.com/cgi-bin/test-cgi?/whatever

12

3.3 JJ Attack

The script named “jj.c” in the “cgi-bin” directory is for the demonstration purposes.

When this script is called, it gets the user input and passes it on to the „/bin/mail‟ without

scanning or filtering the input. This is a big advantage for the attackers since the input is

not scanned and passed directly to the other programs. Therefore, an attacker can add “|”

and a UNIX command in the request to perform an attack.

3.4 Compas Attack

NCSA server comes with a script named “compass.sh” which can also be exploited

by the attackers to attack the server. This script does not scan the input from the user and

can be used with the “0a” string to issue the UNIX commands for the server to run (The

Hack FAQ, 2003). As an example, look at the following URL:

http://www.victim.com/cgi-bin/campas?%0acat%0a/etc/passwd%0

This URL would output the contents of the “/etc/passwd” file.

3.5 Count Attack

The “count.cgi” script is used to find the number of hits for the web pages. The

script versions less than 2.4 contained exploits that can be used by the attackers to issue

arbitrary UNIX commands at the same level as the httpd daemon (The Hack FAQ, 2003).

As an example, an attacker can use the following URL to view the password file:

http://www.victim.com/cgi-bin/count.cgi?%0acat%0a/etc/passwd%0

Similarly, the attacker can use this script to issue other Unix commands on the server to

possibly get unauthorized access or to bring the server down.

http://www.victim.com/cgi-bin/campas?%0acat%0a/etc/passwd%250
http://www.victim.com/cgi-bin/count.cgi/etc/passwd

13

4 EXISTING TOOLS

There are several tools that deal with the CGI security vulnerability issues. The

two popular tools used as the IDS for web based attacks are:

 CGI-IDS

 ModSecurity

The details of these two tools are described below.

4.1 CGI-IDS

This tool is a Perl based Intrusion Detection System and is based off PHP IDS. It

scans the requests for any kind of patterns of the known attacks. It reads the attack

patterns through an XML file which contains different kind of Filters (Altenburg, 2008).

The following contains the structure of the CGI-IDS:

use CGI;

use CGI::IDS;

$cgi = new CGI;

instantiate the IDS object;

do not scan keys, values only; don't scan PHP code injection filters (IDs

58,59,60);

All arguments are optional, 'my $ids = new CGI::IDS();' is also working

correctly,

loading the entire shipped filter set and not scanning the keys.

See new() for all possible arguments.

my $ids = new CGI::IDS(

whitelist_file => '/home/hinnerk/ids/param_whitelist.xml',

disable_filters => [58,59,60],

);

start detection

my %params = $cgi->Vars;

my $impact = $ids->detect_attacks(request => \%params);

if ($impact > 0) {

my_log($ids->get_attacks());

}

14

if ($impact > 30) {

my_warn_user();

my_email($ids->get_attacks());

}

if ($impact > 50) {

my_deactivate_user();

my_sms($ids->get_attacks());

}

now with scanning the hash keys

$ids->set_scan_keys(scan_keys => 1);

$impact = $ids->detect_attacks(request => \%params); (Altenburg, 2008)

The users of this IDS can expand the scope of this tool by adding more filters to the XML

file and make the IDS detect additional attacks. A sample XML Filter file looks like the

following:

<filters>

 <filter>

 <id>1</id>

 <rule><![CDATA[(?:"+.*>)|(?:[^\w\s]\s*\/>)|(?:>")]]></rule>

 <description>finds html breaking injections attacks</description>

 <tags>

 <tag>xss</tag>

 <tag>csrf</tag>

 </tags>

 <impact>4</impact>

 </filter>

</filters> (Altenburg, 2008)

The IDS also allows the users to set rules for which the requests are not gone through the

intense analysis of the IDS. A White List file which is also an XML file and fully

customizable allows the requests to pass through the IDS quickly. It plays a significant

role in improving the speed of a busy server. A sample XML White List file is shown

below:

15

<whitelist>

 <param>

 <key>scr_id</key>

 <rule><![CDATA[(?:^[0-9]+\.[0-9a-f]+$)]]></rule>

 </param>

 <param>

 <key>uid</key>

 </param>

</whitelist> (Altenburg, 2008)

4.1.1 Disadvantages

This IDS lacks many features to make it a desirable IDS for the administrators to

use. Below are some of the important features that this IDS does not provide.

 This tool does not have a user interface for the administrators of the systems to

monitor the IDS activities and gather attack statistics. The console is a very crucial

part of an IDS since via the console, the administrators of the systems are able to

configure, upgrade, and add additional signature patters to the IDS. In this tool, the

administrator would need to manually modify the XML files to add additional filters

and White List entries.

 This tool does not use the databases to keep track of the attacks and the attacker‟s

history. Databases are another important component of an IDS which lets the

administrators to gather the statistics.

 This tool does not provide the capability to block the attacker for some limited

amount of time or permanently. It is believed that this ability is important in some

cases.

16

4.2 ModSecurity

ModSecurity is another application level IDS that operates while fully integrated into the

web server to shield it from the application level attacks (ModSecurity for Apache User

Guide, 2006). Some of the primary features of this IDS are described below.

 It performs filtering on the received requests which also includes looking for the

strings that are commonly used to perform the attacks. Due to the fact this IDS is

directly embedded into the web server, the filtering is done at the very low level of

the application layer (ModSecurity for Apache User Guide, 2006).

 It provides any invasion capabilities.

 It has a good knowledge of the HTTP protocol. Therefore, it is able to perform

specific filtering and also capable of analyzing the HTTP parameters.

 It performs analysis on the POST requests.

 It writes the details of the requests received to the logs for analysis by the

administrators.

 It is able to perform HTTPS analysis because the IDS is implemented at the web

server level. It is also capable of examining the data after the protocol decrypts the

requests.

The configurations for this IDS are performed by editing the configuration file. A

recommended configuration file by the ModSecurity team is show below:

Turn ModSecurity On

SecFilterEngine On

Reject requests with status 403

17

SecFilterDefaultAction "deny,log,status:403"

Some sane defaults

SecFilterScanPOST On

SecFilterCheckURLEncoding On

SecFilterCheckUnicodeEncoding Off

Accept almost all byte values

SecFilterForceByteRange 1 255

Server masking is optional

SecServerSignature "Microsoft-IIS/5.0"

SecUploadDir /tmp

SecUploadKeepFiles Off

Only record the interesting stuff

SecAuditEngine RelevantOnly

SecAuditLog logs/audit_log

You normally won't need debug logging

SecFilterDebugLevel 0

SecFilterDebugLog logs/modsec_debug_log

Only accept request encodings we know how to handle

we exclude GET requests from this because some (automated)

clients supply "text/html" as Content-Type

SecFilterSelective REQUEST_METHOD "!^(GET|HEAD)$" chain

SecFilterSelective HTTP_Content-Type \

"!(^application/x-www-form-urlencoded$|^multipart/form-data;)"

Do not accept GET or HEAD requests with bodies

SecFilterSelective REQUEST_METHOD "^(GET|HEAD)$" chain

SecFilterSelective HTTP_Content-Length "!^$"

Require Content-Length to be provided with

every POST request

SecFilterSelective REQUEST_METHOD "^POST$" chain

SecFilterSelective HTTP_Content-Length "^$"

Don't accept transfer encodings we know we don't handle

SecFilterSelective HTTP_Transfer-Encoding "!^$" (ModSecurity for Apache

User Guide, 2006)

4.2.1 Disadvantages

Like CGI-IDS, this IDS also lacks many important features of a good IDS. First,

this tool also does not provide a user-friendly console for the administrators to perform

the configurations and upgrades. Second, it does not use databases to keep track of the

18

incidents. In addition, this IDS also lacks the capability to block the attacker for some

limited amount of time or permanently.

19

5 INTRUSION DETECTION SYSTEM

5.1 Fundamentals

Intrusion Detection refers to the process of monitoring the system for

unauthorized access incidents which can be the violation of the security policy, system

use policy, or any other security standards (Scarfone, 2007). An Intrusion Detection

System (IDS) is software that implements the intrusion detection process. On the other

hand, an Intrusion Prevention System (IPS) prevents unauthorized access incidents from

being successful. To better protect the system from any attacks, Intrusion Detection and

Prevention System (IDPS) which provides a completely automated monitoring services,

is deployed on the systems.

Most of the IDPS systems log the incident every time an attack on the system is

detected and notifies the administration of the system so that all necessary actions can be

taken to avoid such incidents again in the future. The administrators of the system can

also configure the IDPS to monitor the violations of the end user policies and other

unauthorized activities (Scarfone, 2007). As an example, if the user policy of a web

server prohibits the users from uploading music files to the server, a properly configured

IDPS would record the incidents when the users try to upload music files to the server.

In some cases, IDPS are used to gather the attack statistics so that patterns of the attacks

can be determined and also to better understand the attacks including how they are

performed (Scarfone, 2007). Figure 5 illustrates where an IDPS is placed and how it

functions.

20

Figure 5: IDPS

5.2 IDPS Detection Models

The models that the IDPS follows to detect attacks can be divided into two

categories:

 Signature-Based Detection Model

 Anomaly-Based Detection Model

In some cases, an IDPS is composed of more than a single detection model to provide the

most level of security to the system (Scarfone, 2007). The two models are described

below.

5.2.1 Signature-Based Detection Model

A signature refers to the pattern in which a previously known attack was

performed. The signature-based detection methodology is the process of comparing the

current events with the signatures (Scarfone, 2007). Below are some of the examples of

the signatures:

21

 Log in attempt as the “root” which refers to the violation of the security policy of

the system

 Emails with the subject “Free Screensavers” and containing an attachment

“screensaver.exe” which refers to the spam emails

 The operating system log entry code 645 which refers to disabling of the server‟s

auditing

This type of IDPS model is a very efficient detection model due to its low

complexity in implementation and detection. It simply compares the current activity to

the stored signatures to find any pattern similarities in order to detect the attacks. In

addition, the signature-based detection model produces very specific attack event reports

as oppose to the anomaly-based detection model which we will analyze in the next

section (Stamp, 2009). The drawback of a signature-based detection model is its inability

to detect new unknown attacks since the system does not have any signature entry in the

system for the new attacks.

5.2.2 Anomaly-Based Detection Model

The anomaly-based detection model detects the attacks based on the profiles. The

profiles contain the patters or the normal behavior in which the system is being used.

The profiles are based on specific users, networks, or the applications. They are created

by monitoring the system use over a period of time, known as the evaluation period. This

model compares the current activities with the profiles to discover the abnormal activity

in progress which in most cases is an attack (Scarfone, 2007). Since the system use and

22

the network use are not static and always contain some variation over time, the profile

must also adjust accordingly. Therefore, after the creation of the profiles in the

evaluation period, an IDPS changes the profiles over time. The examples of the profiles

are mentioned below.

 A user profile contains an email activity of 5%. When the IDPS using anomaly-

based detection model senses that the email activity on the system is more than

5%, it will consider it an attack.

 Over the past few weeks, on average a user performs open, read, and write

operations on the file system for 2% of the time. When the IDPS detects a sudden

increase in the file access operations, it reports an attack incident.

The advantage of the anomaly-based detection model is that it is able to detect even

unknown attacks by comparing the current abnormal events with something that is

considered normal. Further, this model can also be more efficient than the signature-

based model given that there are a huge number of signatures to compare with in the

signature-based detection model (Stamp, 2009). On the other hand, the attack incidents

that anomaly-based model produces are not very specific and it takes some efforts by the

administrator to pin-point the root of the attack (Stamp, 2009). In addition, this model is

subject to a “slow attack.” In this type of attack, the attacker first finds out the threshold

between the normal and abnormal activities. The attacker then would slowly attack the

23

system making sure that the activities during the attack do not reach the threshold which

results into the anomaly-based detection model not detect the attack.

5.3 IDPS Components

An IDPS is composed of the following components.

 Agent

Agent is the module that listens for the events and analyzes the system activities. In

case of IDPS used for network attacks, the agent is called “sensor” (Scarfone, 2007).

 Management Server

Management server is responsible for analyzing the received information from the

current activity to decide if an attack is in progress. It would use the information

from other elements also such as signatures and profiles to complete the analysis.

 Database Server

Database server is used to store the information received from the agents and the

management server. The management server also uses the database server to

complete it operations.

 Console

Console or management interface serves as the interface between the IDPS and the

administrator. The console is used to monitor the system events produced by the

IDPS. Some consoles are also used to configure the agents and perform software

upgrades (Scarfone, 2007).

24

Figure 6 illustrates all the required components that an IDS is composed of.

 Figure 6: IDPS Components

25

6 DEVELOPED IDPS

 The system designed and implemented during this project is a complete IDPS which

uses a signature-based detection model. The system contains a list of signatures that are

used to detect the attacks. The signatures are well-known CGI patterns that have been

used in the past to attack the systems. The system contains the following crucial

components to provide a robust web server security against the CGI attacks.

6.1 Graphical User Interface (GUI)

The system provides a user-friendly interface for the server administrator to

monitor the attacks. Through the user interface, the administrator can view past CGI

attacks, block attacker IP addresses, unblock IP addresses etc. The GUI contains the

following interfaces:

6.1.1 CGI Attacks Interface

The interface named “CGI Attacks” lists all past CGI attacks detected by the

system with the most recent attacks listed on the top. Table 2 contains the fields and their

description that are shown on this interface.

26

Table 2: CGI Attacks Interface Fields

Field Description

Attack ID ID of the attack

IP Attacker‟s IP address linked to “Attacker History” interface

Request Attacker‟s browser that was used in the attack

Browser Browser used to perform

Timestamp Timestamp at which the attack was detected.

The IP address entries of the attacker are clickable and linked to the “Attacker History”

page displaying the attack history from the clicked IP address. In addition, the interface

also contains the links to the “Blocked Attackers” page and “phpMyAdmin”. Figure 7

contains the screenshot of “CGI Attacks” interface.

27

Figure 7: CGI Attacks Interface

6.1.2 Attacker History Interface

The interface “Attacker History” contains attacker history of the attacker whose

IP address was clicked on the “CGI Attacks” interface. In addition to the attacks table

and the links, the interface also displays additional fields which are shown in the Table 3

below.

28

Table 3: Attacker History Interface Fields

Field Description

Attacker IP Attacker‟s IP address

Total Attacks Total number of attacks performed by this attacker

Action “Block Attacker” button to block this IP address from

accessing the server again

“Block Attacker” button calls another script which blocks the IP address and takes the

administrator to the confirmation page displaying the success of the operation. It also

gives the option to undo the operation which means unblocking the IP address which was

just blocked. Figure 8 contains the screen shot of this interface.

29

Figure 8: Attacker History Interface

6.1.3 Blocked Attackers Interface

This interface displays the IP address of all the attackers that have been banned

from accessing the server. This interface contains links to other interfaces and also a

table of banned IP addresses. The fields that are shown on this interface are explained in

Table 4.

30

Table 4: Blocked Attackers Interface Fields

Field Description

Action Unblock action which contains the link to the script which

performs the unblock operation

IP IP addressed that has been banned

Timestamp Timestamp at which the IP address was banned

Clicking on the unblock action calls another script which unblocks the IP address and

takes the administrator to the confirmation page displaying the success of the operation.

Figure 9 contains the screen shot of this interface.

31

 Figure 9: Blocked Attackers Interface

6.2 MySQL Database

The MySQL database keeps track of all the attacks and stores the necessary

information for analysis by the administrators later on. The database is also used for

blocking and unblocking the IP addresses.

6.3 Management Module

The management module is a fundamental component of the implemented system.

It is responsible for detecting the attack by checking the current activity pattern against

32

the signatures. It also provides access to the database and stores the attack information in

the database.

6.4 Email Generation

Every time an attack event is detected, an email is generated and sent to the

administrator of the system. This is done to ensure that the administrator is always kept

informed about the attacks. If any additional actions are needed, the administrator can

perform them after receiving the attack email and being informed about the CGI attack.

The email contains the following information that is explained in Table 5.

Table 5: Email Message Fields

Field Description

Attack Time The timestamp for the attack

Server Name The hostname of the server at which the attack was aimed

Admin The administrator‟s email address

Attack URL The signature of the URL used in the attack

Attacker‟s Browser The web browser used in performing the attack

The screenshot of the email message is shown in Figure 10.

33

 Figure 10: CGI Attack Email Notification

34

7 DESIGN AND IMPLEMENTATION

The system was implemented using various languages such as PHP, Perl, and

HTML. For database connectivity SQL query language was used.

7.1 CGI Attack Detection

Apache config file httpd.config was modified to allow the execution of Perl scripts

by the server. In addition, it was also modified for the detection of the CGI attacks.

Using the ReWriteCond the system scans the request for the attack patters. If the patter is

found in the request, the system uses the RewriteRule to forward the whole request to a

Perl script called “IDPS-server” which will use the request to extract the required

information.

7.2 Storing Attacks

A MySQL database is used to store the attack information to be reviewed by the

administrator. The database contains a table named “attacks” in which the attack

information is stored. The module “IDPS-server” is responsible for storing the attack

information into the database. IDPS-server module uses MySQL API‟s for Perl to

interact with the database. When an attack event is detected, it stores the following

information in the database:

 The URL or the request used to perform the attack.

 Attacker‟s browser that was used in the attack.

 Timestamp at which the attack was detected.

35

7.3 Blocking Attackers

A table named “blocked_hackers” is used to store the IP addresses of the attackers

that have been marked “blocked” by the administrator to ban the access to the server.

When the server receives the request, the first thing that is checked is the IP address of

the client to see if it is marked as “blocked” in the database. If it is marked “blocked”,

the request is ignored by the server.

7.4 Email Notifications

After storing the necessary information in the database, the module “IDPS-server”

then sends the attack information to the administrator of the server via an email message.

A procedure named send_mail() was written to send the email notifications to the

administrator. The procedure uses the Perl API “Mail::Sendmail” to talk to the mail

server and send the emails.

36

8 IDPS REQUEST HANDLING FLOW CHART

When the web server receives the CGI request from the client, it is forwarded to

the developed IDPS. After the IDPS receives the forwarded request, it checks if the

client is marked as block in the databases. If it is, then the access to the server is denied.

Otherwise, the IDPS moves on to check if the request contains any attack signatures to

detect for a possible CGI attack in the process. If no CGI attack signatures are found in

the request, then the request is given back to the web server for normal request

processing. Otherwise, the request is handed over to the IDPS attack handler module to

store the attack information, notify the administrator and finally deny the access to the

server for the request. The Attack Detection Flow Chart diagram is shown in Figure 11.

37

Attack Pattern

Found?

Scan for Attack

Patterns

Process Normally

Forward the request

to IDPS attack

handler

Store the attack

information to the

Database

Notify the

administrator via

Email

Y
E

S

NO

Request

Is the Client

marked as

Blocked?

Request is forwarded

to Tejinder’s IDPS

Access Denied

N
O

YES

Access Denied

Figure 11: Attack Detection Flow Chart

38

9 RESULTS AND OUTCOMES

The developed system was tested by sending several bad CGI requests to perform

the attacks. The system successfully prevented the attacks and sent the email

notifications to the server administrator. The system was also tested the ability to block

and unblock the attackers.

9.1 Performing the Attack

When sending an attack URL to the server, the web server is successfully able to

prevent the attack, log the attack entry in the database, and notified the administrator of

the server about the attack. Figure 12 shows the screenshot of the GUI displaying the

confirmation of the attack detection and prevention.

39

Figure 12: Attack Prevention Output

40

10 FUTURE WORK

The developed system can be further enhanced adding the capability to protect the

server from other types of attacks such as:

 PHP related attacks

The support for PHP related attacks can be added to this IDPS.

 SQL Injection

Another module can be developed and added to the IDPS which will prevent SQL

Injection attacks by scanning the input entered in the forms.

 An attempt to access private documents

This IDPS can be further modified to track and block the attempts to access the

private documents. The administrator can choose which documents should be

considered private.

 Option to block attacker for limited time

If useful, the administrator can be given the option to block the attacker for some

limited period of time such as an hour or so. To add this functionality the cron

jobs will have to be regularly scheduled on the web server to unblock the

attackers if the time duration for which the attacker was blocked has expired.

41

11 CONCLUSION

In this paper, I presented detailed information of the CGI technologies. I

discussed different applications in which CGI technology is being used. I then stated

numerous kinds of security vulnerability that the use of CGI technology presents. I

demonstrated that the attackers perform the attack on the web server by crafting

illegitimate HTTP requests into legitimate HTTP requests so that the web server would

process the requests without detecting the hidden harms. By doing so, the attackers are

able to perform prohibited actions on the server which includes getting unauthorized

access to the web server, bringing the web server down, and making it unable to serve the

genuine clients.

 In addition, I analyzed two commercial tools that are being used to protect the

web servers from the attacks. I analyzed CGI-IDS and ModSecurity in details and

concluded that neither of the tools are user-friendly in performing configurations and

monitoring attacks. I mentioned that these two tools lack major IDS components such as

the management console and the database to keep track of the past attacks. I provided

evidence that there is a need for another tool which should consist of all significant IDS

components and better protect the web servers from CGI-related web attacks.

 I discussed the design and implementation of the new tool that was developed for

this project. I demonstrated that the tool provides a robust web-server security against

CGI-based attacks. The tool contains crucial IDPS components and provides capabilities

that other tools failed to provide. The features include IDPS management configuration

interface, ability to block the attackers, and automatic email notification.

42

REFERENCES

Altenburg, H. (2008). CGI-IDS. CPAN. Retrieved March 22, 2009, from

http://search.cpan.org/~hinnerk/CGI-IDS/lib/CGI/IDS.pm

Gundavaram, S. (1996, March). CGI programming on the world wide web. O'reilly

Online Catalog. Retrieved March 29, 2009, from http://oreilly.com/openbook/cgi/

Hollander, Y. (n.d.). The future of web server security. Entercept Security Technologies.

Retrieved March 4, 2009, from http://www.cgisecurity.com/lib/wpfuture.pdf

Huseby, S. (2005, June 1). Common security problems in the code of dynamic web

applications. Web Application Security Consortium. Retrieved February 3, 2009,

from http://www.webappsec.org/projects/articles/062105.shtml

Intrusion detection system. (2007, August 17). Hill Associates. Retrieved March 25,

2009, from http://www.hill2dot0.com/wiki/index.php?title=IDS

Kazienko, P., & Dorosz, P. (2004, June 14). Intrusion detection systems. Windows

Security. Retrieved March 22, 2009, from

http://www.windowsecurity.com/articles/Intrusion_Detection_Systems_IDS_Part

_I__network_intrusions_attack_symptoms_IDS_tasks_and_IDS_architecture.htm

l

Marshall, J. (2002, April 12). Writing CGI scripts to process web forms. CGI Made

Really Easy. Retrieved March 25, 2009, from http://www.jmarshall.com/easy/cgi/

ModSecurity for apache user guide. (2006, April 10). ModSecurity. Retrieved March 28,

2009, from http://www.modsecurity.org/documentation/modsecurity-

apache/1.9.3/html-multipage/index.html

Presis, B. (n.d.). On the security of CGI scripts. Website of Bruno R. Preiss. Retrieved

March 10, 2009, from http://www.brpreiss.com/talks/1996/padsgroup/slides.pdf

Scarfone, K. (2007). Guide to intrusion detection and prevention systems. National

Institute of Standards and Technology. Retrieved March 13, 2009, from

http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf

Selamt, S. (2003). Web server scanner: scanning on IIS, CGI and HTTP. IEEE. Retrieved

May 23, 2009, from

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1274232

Sole, S. (n.d.). Server-side scripting. Web Developer's Virtual Library. Retrieved March

20, 2009, from http://www.wdvl.com/Authoring/Scripting/WebWare/Server/

43

Stamp, M. (2009). Information security: principles and practice. San Jose, CA: Wiley-

Interscience.

Stanley, N. (2008, January 4). Intruder alert. Server Management. Retrieved April 2,

2009, from http://www.server-management.co.uk/features/643

Syroid, T. (2002, September 1). Web server security. IBM. Retrieved February 22, 2009,

from http://www.ibm.com/developerworks/linux/library/s-wssec.html

The hack FAQ. (2003, July 25). Nomad Mobile Research Centre. Retrieved March 20,

2009, from http://www.nmrc.org/pub/faq/hackfaq/hackfaq-09.html

	Intrusion Detection And Prevention System: CGI Attacks
	Recommended Citation

	tmp.1295901364.pdf.ZBDmd

