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ABSTRACT 
 

A RUNNING TIME IMPROVEMENT FOR  
TWO THRESHOLDS TWO DIVISORS ALGORITHM 

 
by BingChun Chang 

 
Chunking algorithms play an important role in data de-duplication systems.  The Basic 
Sliding Window (BSW) algorithm is the first prototype of the content-based chunking 
algorithm which can handle most types of data.  The Two Thresholds Two Divisors 
(TTTD) algorithm was proposed to improve the BSW algorithm in terms of controlling 
the variations of the chunk-size.  In this project, we investigate and compare the BSW 
algorithm and TTTD algorithm from different factors by a series of systematic 
experiments.  Up to now, no paper conducts these experimental evaluations for these 
two algorithms.  This is the first value of this paper.  According to our analyses and the 
results of experiments, we provide a running time improvement for the TTTD algorithm.  
Our new solution reduces about 7 % of the total running time and also reduces about 50 
% of the large-sized chunks while comparing with the original TTTD algorithm and 
make average chunk-size closer to the expected chunk-size.  These significant results 
are the second important value of this project. 
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1. Background 
In this section, we provide related information as the fundamental knowledge in order to 
obtain the basic understanding about our project.   
 
 
1.1 Data De-Duplication 
A research [1] estimated the 13 % of mid-sized enterprises used more than 10 terabytes 
of data storage in 2004, but this percentage had increased to 42 % in 2008.  This 
increasing percentage indicates that the enterprises need to deploy more storage systems 
to handle and manage the information.  Most of the information, however, is redundant.  
For example, performing system backup creates identical copies, same e-mail 
attachments are sent to multiple receivers, or different users duplicate same documents 
for individual working.  In brief, deploying more data storage systems requires more 
energy to process information and more network resources to transmit information. 
 
To reduce the costs, more and more enterprises are using data de-duplication technology 
[2].  The concept of data de-duplication technology is to identify redundant data, store 
only one copy for all duplicate data, and create logical reference to the copy so that users 
can access the data when needed.  Decreasing the amount of data equals reducing a lot 
of costs for storage requirement, power consumption, and equipment maintenance.  
Moreover, de-duplication technology also makes data replication and data recovery more 
efficient and effective.  We introduce two different schemes, the hash-based and the 
content-aware schemes, which are used for most popular data de-duplication systems. 
 
 
1.2 Hash-Based Approach 
According the research [3], a hash-based de-duplication system consists of three 
components - file chunking, hash value generation, and redundancy detection.  The 
Figure 1 shows these components and illustrates the concept of the hash-based approach. 
Simply speaking (see Figure 1), when a new file arrives, the de-duplication system breaks 
entire file into many small blocks as know as chunks.  Then the system uses hash 
algorithm, like Secure Hash Algorithm - 1 (SHA-1) or Message Digest Algorithm - 5 
(MD-5), to generate the unique signatures to present these chunks.  Now, the 
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de-duplication system can more easily and accurately compare these signatures with its 
database or lookup table to identify these small chunks are new data or redundant data.  
During the comparisons, if the system cannot find any signature matching in its lookup 
table or database, then the system assumes these chunks are new data and stores them.  
If the system detects a signature matching, then it creates a logical reference to the 
duplicate data whose copy was already stored in database. 
 

 

Figure 1: Three Main Components in Hash-Based De-Duplication  
System. 

 
 
1.3 Content-Aware Approach 
In terms of the content-aware scheme [4], this approach firstly compares the new 
incoming file with its databases to identify the similarities and relationships (e.g., html 
files to html files or pdf documents to pdf documents).  Once the system identified what 
specific the incoming file is, it then chooses a similar file as a reference file depending on 
file’s name, path, or other related information.  After that, the content-aware data 
de-duplication system performs a byte-to-byte or block-to-block comparisons after 
chunking.  During the comparisons, the de-duplication system computes the delta [5] to 
present the duplicates and the differences between the new incoming file and its reference 
file.  Finally, the system only stores the delta and a pointer which points to the reference 
file rather than entire incoming file.   
 
We provide an example to illustrate the byte-to-byte comparisons shown in Figure 2.  In 
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Figure 2, (a) presents the content of a new incoming file - file A.  And (b) shows that the 
system chooses the file B as its reference file after identifying the similarities and 
relationships.  During the byte-to-byte comparisons, the de-duplication system detects 
there are duplicate data from position 0 to 21 and from position 23 to 41.  Then the 
system computes the delta, shown in (c), and only stores the delta as well as some related 
information for file A rather than entire file A.  
 

 
Figure 2: A Byte-To-Byte Comparisons Example for the Content-Aware 

Scheme. (a) The New Coming File. (b) The Reference File.  
(c) The delta. 

 
These two schemes have been implemented and developed by current industries for 
different purposes especially in data backup systems.  For content-aware scheme, there 
are products from Sepaton [6, 7] and ExaGrid [8] (byte-level), NetApp [9] (block-level), 
and Hewlett-Packard [10, 11] (object-level) in current market.  In addition, Quantum is 
the leading company in the hash-based horizon [12].  There are other popular leading 
companies, like IBM, EMC/Data Domain and Symantec, use their own specific 
techniques for data de-duplication technology [1].  
 
Among all processes of de-duplication, the chunking algorithm plays an important role 
no matter which scheme is used for data de-duplication.  In brief, the chunking 
algorithm has many significant influences on the performance of the data de-duplication 
systems.  In our project, our topic focuses on two different chunking algorithms.  We 
provide the fundamental concepts for the chunking algorithms in next section.   
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2. Chunking 
Chunking is a process to partition entire file into small pieces of chunks.  For any data 
de-duplication system, chunking is the most time consuming processes since it has to 
traverse entire file without any exception.  The process time of chunking totally depends 
on how the chunking algorithms break a file.  Moreover, the smaller the size of a chunk 
has, the better result a de-duplication system has.  Increasing the number of chunks, 
however, results in increasing the processing time for both schemes which we presented 
in previous section.  For the hash-based de-duplication systems, increasing the number 
of chunk also means increasing the size of lookup table, and then the systems need to 
spend more time to perform the comparisons.  The worst case is that the systems cannot 
load entire lookup table into memory when the size of the lookup table becomes very 
huge.  In this case, the systems have to pay most expensive costs in disk I/O.  The 
content-aware systems face the similar tradeoffs while performing the block-to-block 
comparisons.  In other words, a good chunking algorithm has to satisfy certain 
conditions such as minimizing the processing time, balancing the scalability and 
de-duplication ratio, and controlling the variations of chunk-size.   
 
 
2.1 Chunking Level 
According to how to break a file, there are three different chunking categories as shown 
in Figure 3.   
 

 
Figure 3: Three Different Chunking Categories. 
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These categories have been studied and researched [13, 14].  Generally speaking, 
whole-file chunking is the simplest and fastest, but it has the worst results regarding 
de-duplication ratio.  The de-duplication ratio of the fixed-size chunking is totally 
depending on what the fixed-size is.  The smaller the fixed size is, the better 
de-duplication ratio has.  Again, the fixed-size chunking faces the tradeoffs in balancing 
the capacity scalability and the de-duplication ratio.  Moreover, the most important issue 
of these two chunking algorithms is the boundary shifting problem [15].  We introduce 
this issue and then discuss the variable size chunking in next section.   
 
 
2.2 Boundary Shifting Problem 
Both whole-file chunking and fixed-size chunking face the boundary shifting problem 
due to the data modifications.  When users only insert or delete one byte, the whole file 
chunking will result in two different hash values between the modified file and the 
original file, even if most of the data remain unchanged.  In same situation, after 
one-byte modification happens, the fixed-size chunking will generate totally different 
results for all the subsequent chunks even though most of the data in the file are 
unchanged.  This problem is called as the boundary shifting problem.  We show an 
example in Figure 4.  In Figure 4, (a) shows the case when we break entire file into 
fixed-size chunks, and (b) shows after inserting 2 bytes string - “12” in the c2 position of 
the original file, we obtain the totally different results, even other data remain the same.  
 

 
Figure 4: A Boundary Shifting Problem Example. (a) The Original File.  

(b) The File after Insertion. 
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Variable-size chunking is also called content-based chunking [15].  In other words, 
chunking algorithms determine chunk boundaries depending on the content of the file.  
For example, content-based chunking algorithm may determine chunk boundaries by 
punctuation, each line, or every paragraph.  In contrast with fixed-size chunking 
algorithms which determine chunk boundaries by the distance from the beginning of the 
file.  Therefore when data modifications happen, most of the chunks remain unchanged. 
This is why variable-size chunking can avoid the boundary shifting problem [3, 16].   
 
 
2.3 Related Work 
Regarding the variable-size chunking algorithm, the paper [17] provided a detailed 
analyses about variable-size algorithm such as k-gram and 0 mod p algorithms and also 
proposed a new variable-size algorithm - Winnowing.  The paper [18] deeply 
categorized these variable-size chunking algorithms into overlap method such as k-gram, 
0 mod p, and Winnowing algorithms, and non-overlap method such as hash-breaking.  
Moreover, it also proved that the overlap methods need to use a good chunk selection 
technique to handle the huge number of chunks.  The Basic Sliding Window (BSW) 
algorithm [16] is the first prototype of the hash-breaking chunking algorithm 
(non-overlap) and already been proven [16] to obtain the best performance in balancing 
capacity scalability and the de-duplication ratio.  The Two Thresholds, Two Divisors 
(TTTD) algorithm [15] is the adaptation of the BSW algorithm to improve the problems 
in the BSW algorithm.  The BSW algorithm and the TTTD algorithm are the important 
cores in our project.  We introduce these two algorithms in following sections.  
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3. The Basic Sliding Window (BSW) Algorithm  
The BSW algorithm was proposed for a low bandwidth network file (LBFS) system [16].  
The main purpose of this algorithm is to reduce the network bandwidth requirements by 
avoiding the boundary shifting problem.  In following sections, we discuss the concepts 
and problems of BSW algorithm. 
 
 
3.1 Concept of the BSW Algorithm 
In the BSW algorithm, there are three main parameters needed to be pre-configured, a 
fixed size of window W, an integer divisor - D, and an integer remainder - R, where R < 
D.  We describe how the BSW algorithm works as follows (see Figure 5 [15, 19]):  
 

 
Figure 5: Concept of the BSW Algorithm. 

 
(1) A fixed-size window W is shifting one byte at one time from the beginning of 

abin Fingerprinting algorithm to compute a hash 

nt for chunk boundary.  Then the 

, the sliding window W keeps shifting one byte.  And repeats 

the file to end of the file. 
(2) At every position p, uses R

value h for the content of current window. 
(3) If h mod D = R, the position P is a breakpoi

sliding window W starts at the position P.  And repeats the computation and 
comparison.  

(4) If h mod D ≠ R
the computation and comparison.  
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e 

 

.3 Problems of the BSW Algorithm 
orithm.  The fist problem is that the sliding 

This 

r 
o 

hese two worst cases are very unusual, but it does not mean these problems will never 

lp 

ince the BSW algorithm determines the chu
approach has been proved to be success to avoid the boundary shifting problem. 
 
 
3
In practice, the parameter D plays the m
it can be configured to make the chunk-size close to our expectancy.  Since any integer 
divided by D, the remainder is between 0 and D – 1.  The window shifts one byte at one
time.  In each shifting, the probability of h mod D = R is 1/D.  In other words, we 
expect to find a breakpoint for chunk boundary at every D bytes.  For example, if w
expect the size of every chunk equals to1000 bytes, then we set the value of D as 1000 
and the value of R is any integer where 0 ≦ R ≦ 999.  In the best case, we can 
always expect to find a matching for h mod D = R in every 1000 shifts, that is, 1000
bytes.  
 
 
3
There are two main problems in the BSW alg
window may determine the breakpoint in each shifting in the worst case if the file 
contains a lot of continuous repeating string such as aaaaaaaaaa or 1111111111.  
worst case [10] causes that the metadata has same size as the original file, even has larger 
size than original file if metadata include extra information for the chunks.  The second 
issue is that if the sliding window cannot find any breakpoint after traversing entire file.  
In this case, the BSW algorithm may treat entire file as one chunk, then we face the 
boundary shifting problem again.  In other words, the BSW algorithm has very poo
controls on the variations of chunk-size and the chunk-size may vary from very small t
very large.  It is not efficient and effective to transmit very small data or large data due 
to only one-byte modification.   
 
T
happen.  They only waste network resources while these situations happen.  In next 
section, we introduce Two Thresholds and Two Divisors (TTTD) algorithm [15] can he
us to solve these problems. 
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4. The Two Thresholds Two Divisors (TTTD) Algorithm 
The TTTD algorithm was proposed by HP laboratory [15] at Palo Alto, California.  This 
algorithm use same idea as the BSW algorithm does.  In addition, the TTTD algorithm 
uses four parameters, the maximum threshold, the minimum threshold, the main divisor, 
and the second divisor, to avoid the problems of the BSW algorithm which we presented 
in Section 3.3.  We discuss the concept in following section. 
 
 
4.1 Concept of the TTTD Algorithm 
The maximum and minimum thresholds are used to eliminate very large-sized and very 
small-sized chunks in order to control the variations of chunk-size.  The main divisor 
plays the same role as the BSW algorithm and can be used to make the chunk-size close 
to our expected chunk-size.  In usual, the value of the second divisor is half of the main 
divisor.  Due to its higher probability, second divisor assists algorithm to determine a 
backup breakpoint for chunks in case the algorithm cannot find any breakpoint by main 
divisor.  According to the research [15], we list these four parameters and their optimal 
values as shown in Table 1 when considering the expected chunk-size is 1000 bytes. 
 
Table 1: Purposes and Optimal Value of Four Parameters in the TTTD 

Algorithm. 
 

Parameter Purpose Optimal Value

Maximum Threshold To reduce very large chunks 2800 (bytes) 
Minimum Threshold To reduce very small chunks 460 (bytes) 
Main Divisor To determine breakpoint same as the BSW 540 
Second Divisor To determined a backup breakpoint 270 

 
Since the TTTD Algorithm uses the same concept as the BSW algorithm does.  We 
describe how it works as follows and provide the pseudo code [15] in Figure 6. 
 

(1) The algorithm shifts one byte at one time and computes the hash value. 
(2) If the size from last breakpoint to current position is larger than minimum 
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threshold, it starts to determine the breakpoint by second and main divisors. 
(3) Before the algorithm reaches the maximum threshold, if it can find a breakpoint 

by main divisor, then uses it as the chunk boundary.  The sliding window starts 
at this position and repeats the computation and comparison until the end of file.  

(4) When the algorithm reaches the maximum threshold, it uses the backup 
breakpoint if it found any one, otherwise use the maximum threshold as a 
breakpoint.  

 
Figure 6: The TTTD Algorithm Pseudo Code. 
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4.2 Problems of the TTTD Algorithm 
The first problem is the tradeoffs.  In order to control the variations of chunk-size, the 
TTTD algorithm uses the minimum and maximum thresholds to eliminate very 
large-sized and very small-sized chunks.  Obviously, these eliminations cost the TTTD 
algorithm to increase the total number of chunks.  Increasing the total number of chunks 
also increases the amount of metadata, the size of lookup table, and the lookup table 
searching time.  The second issue is the role of the second divisor.  In following 
discussion, we assume that the algorithm cannot find the breakpoint by main divisor and 
we use the optimal configuration in Table 1 (in page 12) to discuss this issue. 
  
The values of the main divisor and second divisor are 540 and 270 respectively.  In 
other words, the probability which breakpoints are determined by second divisor is twice 
larger than the first divisor.  From 460 to 2800, these are about 4 chances to obtain the 
breakpoint by the main divisor (2800 – 460 = 2340 and 2340/540 ≈ 4.33).  Also, there 
are about 8 chances to obtain the backup breakpoint by the second divisor (2340/270 ≈ 
8.66).   
 
However, if we carefully review the algorithm from line 22 to line 31 in Figure 6 (in page 
13), the TTTD algorithm decides whether it uses a backup breakpoint or maximum 
threshold as the chunk boundary only until the algorithm reaches the maximum threshold.  
In other words, the algorithm wastes time in calculations and comparison even if it can 
find a backup breakpoint earlier during the total 8 chances.  This situation also implies 
the algorithm will always pick up the last backup breakpoint it found as the chunk 
boundary and the chunk-size which is determined by second divisor will be closer to the 
maximum threshold.  In other words, the second divisor only prevents the algorithm 
from using the maximum threshold as the breakpoint and plays a trivial role in the TTTD 
algorithm.  
 
The above analyses point out that the TTTD algorithm obviously increases both total 
running time and total number of chunks in order to obtain better controls on the 
variations of chunk-size while comparing with the BSW algorithm.  If these increasing 
ratios are very large, said 1:2 or 1:3, then the TTTD algorithm needed to be re-considered.  
In the next section, we perform a series of experiments in order to compare and evaluate 
the BSW and the TTTD algorithms in terms of these factors. 
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5. Experimental Comparisons and Evaluations 
In this section, we perform the complete experiments to compare and evaluate the BSW 
and the TTTD algorithms.  Up to now, no report conducts these experimental analyses 
for BSW and TTTD algorithms.  This is the first important value of this paper.  The 
goals of our experiments are to compare the performances for BSW and TTTD 
algorithms and also prove our observations and assumptions about the tradeoffs and the 
issues of the second divisor for the TTTD algorithm. 
 
 
5.1 Experimental Configurations  
We perform our experiments on a machine with following hardware equipments: 

 Intel Core2 T7200 2.00GHz processor. 
 2GBytes Physical Memory.  
 120GBytes SATA-2 hard disk drive, 5400 RPM, Toshiba. 

 
We implement BSW and TTTD algorithms by C++ and use Visual Studio 6.0 as the 
compiler.  In our experiments, the expected chunk-size is 1000 bytes and we use the 
same parameter configurations as the original paper [15] in order to perform fair and 
accurate evaluations.  We use main divisor – 1 as the remainder R for two algorithms 
and second divisor –1 as the remainder to determine the backup breakpoint in the TTTD 
algorithm.  We list the parameter configurations for two algorithms in Table 2. 
 

Table 2: Parameters Configuration for the BSW and the TTTD Algorithms 
 

          Algorithm
Parameter 

BSW TTTD 

Window Size (bytes) 48 48 
Main Divisor 1000 540 
Second Divisor N/A 270 
Maximum Threshold N/A 2800 
Minimum Threshold N/A 460 
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5.2 Experimental Datasets 
We use open resources as our test data and download all test data from GNU website [20].    
Table 3 provides the summary about our test data sets.  Please refer to Appendix – A 
and Appendix – B for the detailed information. 
 

Table 3: Test Data Sets of the Experiments. 

Data Set #1 #2 #3 #4 

Data Name  Emacs Emacs GNU Manuals GNU Manuals 
Data Type  tar source code html txt 
No. of Files  5 16994 40 40 

Total Size (MB) 171.3 607.2 36 22.3 

 
Data Set #1 contains five versions of Emacs from version 21.4 to version 23.1.  They 
are all compressed tar files.  We uncompress all tar files from Data Set#1 as our Data 
Set #2.  Most of the files in Data Set #2 are .c and .h source code.  We use the software 
manuals from GNU Manual Online [20] for our Data Set #3 and #4.  The contents of 
Data Set #3 and #4 are same as each other except that there are different format – html 
and txt.  We carefully choose a variety of data sets depending on their types, size, 
formats, and number of files.  We believe these data can help us to perform the 
comprehensive evaluations.  Finally, we would like to point out three special cases that 
chunks cannot be determined by algorithm itself.   
 
(1) The size of file is smaller than window size or minimum threshold. 
(2) The fragment, from last break point to end of file, whose size is smaller than 

window size or minimum threshold.  
(3) The algorithm cannot find any breakpoint from last break point to end of file, 

even if the size of this fragment is larger than window size or minimum 
threshold.  

 
Of course, these three situations are unusual.  We carefully choose our test data to 
avoid the first case.  For second and third case, we take this fragment as one chunk 
regardless what the size is. 
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5.3 Results of Experiments 
We present the results of our experiments and take deeper analyses for the BSW and 
TTTD algorithms in this section. 
 
5.3.1 Running Time, Total Chunks, and Average Chunk-Size 
We discussed the importance for running time, total number of chunks, and average 
chunk-size in Section 3.2 and Section 4.2.  The first thing we are interested in is how the 
performances of the BSW and the TTTD algorithms are in term of these factors.  We 
present the results in Table 4. 
  

Table 4: Running Time, Total Chunks and Average Chunk-Size Comparisons 
for the BSW and the TTTD Algorithms. 

 
  Total Running 

Time (sec) 
Total number  

of Chunks 
Average 

Chunk-Size (bytes)

Data Set BSW TTTD BSW TTTD BSW TTTD 

#1 2910 2885 172874 182582 1040 985 

#2 10568 11011 391036 481963 1629 1321 

#3 617 639 24692 32364 1532 1169 

#4 381 398 17803 19590 1316 1196 

Average 3619 3733 151601 179125 1379 1168 

 
 

In Table 4, we clearly understand the TTTD algorithm increase the total running time and 
total number of chunks.  In average case, the ratio of the BSW algorithm to the TTTD 
algorithm is about 1:1.03 for running time, and is about 1:1.18 for the total number of 
chunks.  These two ratios are close to 1:1 and show the tradeoffs for the TTTD 
algorithm are very small.   
 

Regarding the average chunk-size, the results of the TTTD algorithm is much closer to 
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our expected chunk-size (1000 bytes) than the BSW algorithm for all data sets since the  
TTTD algorithm has a better control on the variations of chunk-size.  Comparing with 
the BSW algorithm, the TTTD algorithm obtains much better performance without too 
many concessions.  
 

5.3.2 Maximum and Minimum Chunk-Size 
The second interesting we would like to present is how better the TTTD algorithm 
controls the variations of chunk-size.  We compare the maximum and minimum 
chink-size for the BSW and TTTD algorithms.  The result is presented on Table 5.  
 

Table 5: The Maximum and Minimum Chunk-Size for the BSW and the TTTD  
 Algorithms. 

 
 Max Chunk-Size (bytes) Min Chunk-Size (bytes) 

Data Set BSW TTTD BSW TTTD 

#1 16442 2800 48 412 

#2 154075 2800 8 8 

#3 97168 2800 48 68 

#4 68224 2800 48 62 

Average 83977 2800 38 138 

 
 

For the TTTD algorithm, all the maximum chunk-sizes are 2800 bytes in all data sets.   
This is because the TTTD algorithm uses maximum threshold to limit the maximum 
chunk-size.  The BSW algorithm, however, has a huge variation in maximum 
chunk-size among all data sets.  In average case, the difference of maximum chunk-size 
for two algorithms is 81177 bytes.  This difference is large enough to affect how 
average chunk-size closes to the expected chunk-size.  This difference also indicates 
that the BSW algorithm needs to consume more network resource to transmit large-sized 
chunk while data modifications happen.  Theoretically speaking, the minimum 
chunk-size should be 460 bytes for TTTD algorithm.  The results are little bit different 
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from assumption.  This is because the special cases, the fragments, which we presented 
in the Section 5.2.   
 
The results illustrate why the maximum threshold plays an important role in the TTTD 
algorithm and how the TTTD algorithm controls the variations of chunk-size by 
eliminating the large size of chunks which the BSW algorithm generates.  
 

5.3.3 Chunk-Size Distributions 
In the last part of comparison, we consider the chunk-size distribution for two algorithms. 
According to the features of two algorithms, we take the chunk-size which is from 0 to 48 
bytes (window size) as the first interval for the BSW algorithm, and from 0 to 460 bytes 
(minimum threshold) as the first interval for TTTD algorithm.  After that, we simply 
increase 400 bytes for each interval to group our statistical data.  We present the results 
of the BSW algorithm in Table 6 and the TTTD algorithm in Table 7. 

 
Table 6: Chunk-Size Distributions of the BSW Algorithm. 
 

 Data Set # 

Interval (bytes) #1 #2 #3 #4 Average

< 48 (%) 0 0.01 0 0 0.002 
48 ~ 459 (%) 34.14 42.64 41.04 43.28 40.28 

460 ~ 799 (%) 19.35 13.55 14.1 14.62 15.41 
800 ~ 1199 (%) 15.3 9.23 10.3 11.2 11.51 

1200 ~ 1599 (%) 10.29 6.35 7.24 6.94 7.71 
1600 ~ 1999 (%) 6.93 4.93 5.27 5.63 5.69 
2000 ~ 2399 (%) 4.51 3.79 4.09 3.65 4.01 
2400 ~ 2799 (%) 3.07 3.07 3.06 3 3.05 

>= 2800 (%) 6.41 16.41 14.91 11.67 12.35 

 
Firstly, we re-indicate the problems of the fragment which we presented in Section 4.2.  
In the average case of the first interval, the BSW algorithm is 0.002 % (in Table 6) and 
the TTTD algorithm is 0.28 % (in Table 7).  The two very small numbers present the 
percentage of the fragments.  These fragments are totally depending on how we conduct 
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the experiments, that is, how many files the algorithm processes at one time.  For 
example, data set #1 only has 5 files (in Table 3, page 16) needed to be processed at one 
time, so both Table 6 and Table 7 show the percentages are close to 0.  Moreover, both 
Table 6 and Table 7 also show the data set #2 has the largest percentage because data set 
#2 has 16994 files (in Table 3, page 16) needed to be handled at one time.  Even though 
each file has at most one fragment, the total percentage is too small to affect the results of 
experiments and we can simply ignore it. 
 

Table 7: Chunk-Size Distributions of the TTTD Algorithm. 
 Data Set # 

Interval (bytes) #1 #2 #3 #4 Average

< 460 (%) 0 1.03 0.05 0.05 0.28 
460 ~ 799 (%) 47.0 32.17 42.88 39.75 40.45 

800 ~ 1199 (%) 27.7 20.78 21.47 22.54 23.12 
1200 ~ 1599 (%) 13.4 13.63 11.15 12.28 12.62 
1600 ~ 1999 (%) 6.43 10.09 8.48 8.96 8.49 
2000 ~ 2399 (%) 3.34 8.91 6.19 6.88 6.33 
2400 ~ 2799 (%) 2.11 11.3 6.67 7.17 6.81 

= 2800 (%) 0.03 2.09 3.11 2.36 1.9 

 
Secondly, Table 6 shows that the most of the chunks, 40.28 % in average, are 
determined before 460 bytes in the BSW algorithm.  Table 7 indicates that most of the 
chunks, 40.45 % in average, are determined from 460 to 799 bytes in the TTTD 
algorithm.  In other words, the minimum threshold of the TTTD algorithm successfully 
reduces the very small-sized chunks.  The percentages of the last interval in average 
case, 12.35 % (BSW algorithm) and 1.9 % (TTTD algorithm), also show the maximum 
threshold of the TTTD algorithm really plays a good role to limit the large-sized chunks.   
 
According to the above comparisons and evaluations, the TTTD algorithm forces the 
average chunk-size close to expected chunk-size by a better control on the variations of 
chunk-size.  In brief, the TTTD algorithm only increases a little cost in total running 
time and total number of chunks to obtain the better performance than the BSW 
algorithm. 
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6. New Improvement of the TTTD Algorithm 
The second important value of this paper is that we proposal a new improvement of the 
TTTD and this new improvement really obtains some significant achievements.  In this 
section, we review the problems of the TTTD algorithm and introduce our improvement.  
We also perform the experiments to evaluate our new solution.  
 
 
6.1 Review for problems of the Second Divisor  
We discussed the problems of the TTTD algorithm in the Section 4.2.  The major issue 
comes from the second divisor.  Simply speaking, the TTTD algorithm decides whether 
using the backup breakpoint until the algorithm reaches the maximum threshold.  We 
measure the total number of chunks and their percentages depending on how they are 
determined.  We present the result in Table 8. 

 
Table 8: The Percentage of the Chunks Determined by Main Divisor, Second 

Divisor, and the Maximum Threshold in the TTTD Algorithm. 
 

 Data Set # 
Chunk 

Determined by 
#1 #2 #3 #4 Average

Main Divisor  
180156 

(98.67%)
391106 

(84.04%)
28784 

(89.04%)
17470 

(89.36%) 
90.3% 

Second Divisor  
2374 

(1.3%) 
64481 

(13.86%)
2545 

(7.87%) 
1619 

(8.28%) 
7.8 % 

Max Threshold  
47 

(0.03%) 
9795 

(2.1%) 
997 

(3.08%) 
461 

(2.36%) 
1.9 % 

 
In average case, most of the chunks are determined by main divisor (90.3 %) and only 7.8 
% of the total chunks are determined by second divisor.  We re-present the data which 
are shown in Table 7 (in page 20) as the Figure 7 to compare the results with Table 8 and 
we can obtain a clearer view.   
 
In Figure 7, we can see the first peak appears between 460 and 799 bytes.  No doubt this 
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peak presents the chunks which are determined by the main divisor.  The second peak, 
between 2400 bytes and 2799 bytes, indicates that chunks which are determined by 
second divisor.  Obviously, this peak is close to the maximum threshold.  Combining 
Figure 7 with the Table 8 (in page 21), the second peak implies the second divisor wants 
to prevent the TTTD algorithm from using the maximum threshold as the breakpoints, 
but the result only has slightly different.  In other words, the TTTD algorithm wastes 
extra time in unnecessary calculations and comparisons due to the second divisor.  It 
also has a poor control on the variations of chunk-size since these chunks which are 
determined by the second divisor are larger and close to the maximum threshold.  From 
the results of our experiments, we prove our analyses in section 4.2. 
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Figure 7: Chunk-Size Distributions of the TTTD Algorithm. 

 
 
 
6.2 Concept of the New Improvement 
We cannot simply remove the second divisor from the algorithm in order to achieve our 
targets.  If we remove the second divisor, then about 10 % of the total chunks will be 
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determined by maximum threshold.  In this case, the 10 % of the total chunks are 
chunked by fixed-size chunking.  In other words, they may face the boundary shifting 
problem again.  Moreover, we cannot adjust the value of the maximum threshold to be 
smaller either.  According to the research [15], the value of the maximum threshold 
should be 2.8 times average chunk-size due to the simplifying system design for 
components such as buffer size or packet size.   
 
However, if we can make second peak happen earlier, which means the chunks are 
determined earlier, then we can reduce the unnecessary calculations and comparisons to 
increase the running time.  By this approach, we also obtain the better controls on the 
variations of chunk-size by reducing the large-size chunks.  We use this concept to 
improve the TTTD algorithm.  For convenience, we assume our expected chunk-size is 
1000 bytes and use the same optimal parameters’ configuration as the original TTTD 
algorithm to explain our concept.   
 
According to the results of our experiments, we know that about 70 % of the total chunks 
which are determined before 1600 bytes are determined by main divisor.  We also know 
that the second peak begins at 2400 bytes.  The concept of our new improvement is that 
we use a new parameter, where 1500 < new parameter < 2400.  When the size from the 
previous breakpoint to current position is larger than this parameter, then we use the 
value of the second divisor as the value of the main divisor and use 1/2 of the original 
value of second divisor as the new value of the second divisor.  After we found a 
breakpoint, then we switch the values back to the original values for two divisors.  By 
increasing the probability of the main divisor after the first peak, we expect the second 
peak will happen earlier.   
 
Since we use the new parameter to switch the values of two divisors at the specific 
position, we call this new parameter as switchP; and hence, we call our improvement as 
TTTD-S in the following discussions.  We provide the pseudo code for the TTTD-S 
algorithm in Figure 8.  We perform the same experiments to evaluate our approach and 
the original TTTD algorithm.  In Figure 8, the TTTD-S algorithm uses the function - 
switchDivisor( ), in line12, to reduce values of the main divisor and second divisor.  
Once the algorithm determines the breakpoints, it uses function - resetDivisor( ), in 
line21, 31, and 37, to set the main divisor and second divisor back to original values. 
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Figure 8: The TTTD-S Algorithm Pseudo Code 

 24 
 



 

6.3 Experimental Evaluations for the TTTD-S Algorithm 
We use the same parameters’ configuration and same data sets to evaluate our new 
improvement.  We perform a series of systematic experiments and hill-climbing strategy 
to test different values for the parameter – switchP, from 1400 to 2200.  We found the 
best value for the switchP is 1600.  In practice, the value of switchP should be 1.6 times 
the expected chunk-size. 
 
We perform the same comparisons for the TTTD algorithm and our new improvement – 
TTTT-S algorithm in terms of running time, total number of chunks, and the average 
chunk-size.  We present the results in Table 9. 
 

Table 9: The Maximum Chunk-Size and Minimum Chunk-Size Comparisons  
 for the TTTD and the TTTD-S Algorithms. 
 

 Total Running Time 
(sec) 

Total number  
of Chunks 

Average Chunk-Size 
(bytes) 

Data Set TTTD TTTD - S TTTD TTTD - S TTTD TTTD - S

#1 2885 2818 182582 186757 985 963 
#2 11011 10242 481963 513330 1321 1241 
#3 639 603 32364 33360 1169 1134 
#4 398 379 19590 20385 1196 1149 

Average 3733 3510 179125 188458 1168 1121 

 
Firstly, our improvement really reduces the total running time from 3777 seconds to 3510 
seconds in average case.  This number is even better than 3619 seconds in the BSW 
algorithm (in Table 4, page 17).  For running time, the ratio of the TTTD-S algorithm to 
the TTTD algorithm is 1: 1.07.  In other words, we speed up about 7 % running time for 
the original TTTD algorithm.  This is a significant achievement in our project.  The 
average size of all test data sets is only 207.58 MB.  However, data de-duplication 
systems need to deal with the data from hundred GB to TB in reality.  Moreover, our 
new improvement makes the average chunk-size closer to the expected chunk-size from 
1168 bytes to 1121 bytes.     
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Secondly, we present the chunk-size distribution of the TTTD-S algorithm in Table 10 
and Figure 9.  We found that our new solution does not affect the chunk-size 
distribution before 1600 bytes.  While comparing the percentage of the average case, the 
TTTD algorithm has 76.47 % before 1600 bytes (in Table 7, page 20), and the TTTD-S 
has 75.74 % before 1600 bytes (in Table 10).  These two percentages are similar.  In 
other words, the TTTD-S algorithm does not affect the original behaviors of the main 
divisor for the TTTD algorithm.  Also, our new improvement reduces large-size chunks 
between 2400 bytes to 2800 bytes from 8.7 % of the TTTD algorithm to 4.4 % of the 
TTTD-S algorithm.  The decreasing ratio is about 50 %. 
 

Table 10: Chunk-Size Distributions of the TTTD-S Algorithm. 
 

 Data Set # 

Interval (bytes) #1 #2 #3 #4 Average

< 460 (%) 0 1.13 0.05 0.06 0.31 
460 ~ 799 (%) 47.13 32.35 42.64 39.95 40.52 

800 ~ 1199 (%) 27.67 20.38 21.38 22.21 22.91 
1200 ~ 1599 (%) 13.31 12.64 10.49 11.55 12.0 
1600 ~ 1999 (%) 9.23 20.62 15.26 15.34 15.11 
2000 ~ 2399 (%) 2.09 7.24 5.34 5.71 5.1 
2400 ~ 2799 (%) 0.86 5.34 4.67 5.68 4.14 

= 2800 (%) 0.0 0.3 0.25 0.53 0.27 

 
We present the data of the Table 10 in Figure 9 to obtain a deeper view.  Comparing 
with the original TTTD algorithm (in Figure 7, page 22), our improvement successfully 
make the second peak happen earlier.  The tradeoff is the increasing total chunks.  For 
the increasing chunks, the ratio of the TTTD algorithm to the TTTD- S algorithm is 
1:1.05.  This ratio is acceptable when comparing the ratio of the BSW algorithm to the 
TTTD algorithm - 1:1.18. 
 
Simply speaking, our new improvement obtains the better performance in average only 
by adding a new parameter and without changing the structure of the original algorithm.  
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Figure 9: Chunk-Size Distributions of the TTTD-S Algorithm. 

 
 

7. Conclusion and Future Work 
In brief, our new approach, the TTTD-S algorithm, not only successfully achieves the 
significant improvements in running time and average chunk-size, but also obtains the 
better controls on the variations of chunk-size by reducing the large-sized chunks.  Our 
project focuses on the chunking algorithm.  However, there are still many related 
problems and issues needed to be studied for data de-duplication system.  For example, 
the hashing-based data de-duplication systems have to face the natural limitation – the 
hash collision problem [1].  Moreover, how to index the metadata to speed up the 
lookup table searching is another interesting topic [12].  Finally, the security issue [1] of 
the hashing-based data de-duplication cannot be ignored either.  These related topics are 
also worth working on in the future.     
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Appendix – A: Test Data Set #1 and #2 Detailed Information  
 
Table 11: The Detailed Information for Test Data Set #1 and Data Set #2 
 

Data Set # #1 (tar type)  #2 (uncompressed type) 

File Name No. of Files File Size (MB) No. of Files File Size (MB) 

emacs-21.4a 1 19.4 2553 70.9 
emacs-22.1 1 36.4 3492 129.5 
emacs-22.2 1 36.9 3514 131.3 
emacs-22.3 1 37.7 3525 132.6 
emacs-23.1 1 40.9 3910 142.9 

Total 5 171.3 16994 607.2 
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Appendix – B: Test Data Set #3 and #4 Detailed Information 
 
Table 12: The Detailed Information for Test Data Set #3 and Data Set #4. 
 

File Size (KB) 
File Name 

No. of 
Files Data Set #3 (html type) Data Set #4 (txt type) 

Autoconf 1 1567 915 
Autogen 1 1192 493 

Automake 1 906 529 
Bash 1 588 398 
Bison 1 629 425 
Cflow 1 128 81 

Coreutils 1 1261 665 
Diffutils 1 256 183 

Elisp 1 4361 2892 
Emacs 1 3266 2087 

Emacs Lisp Intro 1 1003 684 
Epsilon 1 242 198 
Gawk 1 1818 1005 

Gawkinet 1 268 200 
GMP 1 512 355 

GNATS 1 418 273 
Gnulib 1 2530 1177 

GnuTLS 1 1107 776 
Gperf 1 102 72 
Grep 1 155 85 
SASL 1 367 292 
GSL 1 2153 1241 
GSS 1 262 228 
Guile 1 2683 1697 

Guile-RPC  1 144 98 
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Appendix – B: Test Data Set #3 and #4 Detailed Information 

(Cont’d) 
 

Table 12: The Detailed Information for Test Data Set #3 and Data Set #4.  
 

File Size (KB) 
File Name 

No. of 
Files Data Set #3 (html type) Data Set #4 (txt type) 

Hello 1 45 35 
ID utils 1 99 50 
indent 1 136 65 
Info 1 100 61 

info standalone 1 166 96 
Libc 1 4392 2772 

Libidn 1 277 223 
Libtool 1 433 274 

lightning 1 151 122 
M4 1 1 334 

Make 1 793 483 
Sed 1 161 87 
Tar 1 1066 526 

Texinfo 1 1196 712 
Wdiff 1 19 14 

total 40 36.0 (MB) 22.3 (MB) 
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