
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

A Running Time Improvement for Two Thresholds Two Divisors A Running Time Improvement for Two Thresholds Two Divisors

Algorithm Algorithm

BingChun Chang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chang, BingChun, "A Running Time Improvement for Two Thresholds Two Divisors Algorithm" (2009).
Master's Projects. 42.
DOI: https://doi.org/10.31979/etd.xeqs-v4ft
https://scholarworks.sjsu.edu/etd_projects/42

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/42?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A RUNNING TIME IMPROVEMENT FOR

TWO THRESHOLDS TWO DIVISORS ALGORITHM

A Project Report
Presented to

The Faculty of the Department of Computer Science
San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Computer Science

By
BingChun Chang
December 2009

© 2009
BingChun Chang

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Teng Moh Department of Computer Science Date

Dr. Agustin Araya Department of Computer Science Date

Dr. Sami Khuri Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

ABSTRACT

A RUNNING TIME IMPROVEMENT FOR
TWO THRESHOLDS TWO DIVISORS ALGORITHM

by BingChun Chang

Chunking algorithms play an important role in data de-duplication systems. The Basic
Sliding Window (BSW) algorithm is the first prototype of the content-based chunking
algorithm which can handle most types of data. The Two Thresholds Two Divisors
(TTTD) algorithm was proposed to improve the BSW algorithm in terms of controlling
the variations of the chunk-size. In this project, we investigate and compare the BSW
algorithm and TTTD algorithm from different factors by a series of systematic
experiments. Up to now, no paper conducts these experimental evaluations for these
two algorithms. This is the first value of this paper. According to our analyses and the
results of experiments, we provide a running time improvement for the TTTD algorithm.
Our new solution reduces about 7 % of the total running time and also reduces about 50
% of the large-sized chunks while comparing with the original TTTD algorithm and
make average chunk-size closer to the expected chunk-size. These significant results
are the second important value of this project.

Table of Contents

1. Background………….…………….…….…………………………………... 4
1.1 Data De-Duplication..…………………………………..………………. 4
1.2 Hash-Based Approach.…………………..……….…………………….. 4
1.3 Content-Aware Approach…………………………………………......... 5

2. Chunking……………………...……………..………………………………. 7
2.1 Chunking Level………………………………..………………..…......... 7
2.2 Boundary Shifting Problem……..………………………………….…... 8
2.3 Related Work…………………………….……………………………… 9

3. The Basic Sliding Window (BSW) Algorithm………......………….. 10
3.1 Concept of the BSW Algorithm ………..…...………………..….......... 10
3.2 The Expected Chunk-Size…………..………………….………………. 11
3.3 Problems of the BSW Algorithm ..……….…….…………………….. 11

4. The Two Thresholds Two Divisors (TTTD) Algorithm………….. 12
4.1 Concept of the TTTD Algorithm…...…………………….……………. 12
4.2 Problems of the TTTD Algorithm………………………….………….. 14

5. Experimental Comparisons and Evaluations....………….………… 15
5.1 Experimental Configurations……….…………………………..……… 15
5.2 Experimental Datasets ……………………..………..……………...... 16
5.3 Results of Experiments... 17

5.3.1 Running Time, Total Chunks, and Average Chunk-Size….…………. 17
5.3.2 Maximum and Minimum Chunk-Size……………………………….. 18
5.3.3 Chunk-Size Distributions…………….………………………….…… 19

6. New Improvement of the TTTD Algorithm……..…..………………. 21
6.1 Review for Problems of the Second Divisor……..…………………… 21
6.2 Concept of the New Improvement…………….……………..………... 22
6.3 Experimental Evaluations for the TTTD-S Algorithm………...…….. 25

7. Conclusion and Future Work…………………………………………... 27

Reference………………………………………………….……………………… 28
Appendix – A: Test Data Set #1 and #2 Detailed Information…….… 31
Appendix – B: Test Data Set #1 and #2 Detailed Information…….… 32

 1

List of Figures
Figure 1: Three Main Components in Hash-Based De-Duplication System..…….... 5

Figure 2: A Byte-To-Byte Comparisons Example for the Content-Aware
Scheme.……………………………………………………..……………. 6

Figure 3: Three Different Chunking Categories………………..……..……………. 7

Figure 4: A Boundary Shifting Problem Example....……………………………….. 8

Figure 5: Concept of the BSW Algorithm……………….……………………… 10

Figure 6: The TTTD Algorithm Pseudo Code…..………….………………………. 13

Figure 7: Chunk-Size Distributions of the TTTD Algorithm……………..………... 22

Figure 8: The TTTD-S Algorithm Pseudo Code…..…….…………………… 24

Figure 9: Chunk-Size Distributions of the TTTD-S Algorithm……………….......... 27

 2

List of Tables
Table 1: Purposes and Optimal Values of Four Parameters for the TTTD

Algorithm………………………………………………………………….. 12

Table 2: Parameters Configuration for the BSW and the TTTD Algorithms……..... 15

Table 3: Test Data Sets of the Experiments…………….……..……………………. 16

Table 4: Running Time, Total Chunks and Average Chunk-Size Comparisons for
the BSW and the TTTD Algorithms.…………………………………….... 17

Table 5: The Maximum and Minimum Chunk-Size for the BSW and the TTTD
Algorithms……………………………………………………………….... 18

Table 6: Chunk-Size Distributions of the BSW Algorithm …….…..…..………….. 19

Table 7: Chunk-Size Distributions of the TTTD Algorithm …….…………………. 20

Table 8: The Percentage of the Chunks Determined by Main Divisor, Second
Divisor, and the Maximum Threshold in the TTTD Algorithm………….. 21

Table 9: The Maximum Chunk-Size and Minimum Chunk-Size Comparisons for
the TTTD and the TTTD-S Algorithms…………………………………… 25

Table 10: Chunk-Size Distributions of the TTTD-S Algorithm……………………. 26

Table 11: The Detailed Information for Test Data Set #1 and Data Set #2…………. 31

Table 12: The Detailed Information for Test Data Set #3 and Data Set #4…………. 32

 3

1. Background
In this section, we provide related information as the fundamental knowledge in order to
obtain the basic understanding about our project.

1.1 Data De-Duplication
A research [1] estimated the 13 % of mid-sized enterprises used more than 10 terabytes
of data storage in 2004, but this percentage had increased to 42 % in 2008. This
increasing percentage indicates that the enterprises need to deploy more storage systems
to handle and manage the information. Most of the information, however, is redundant.
For example, performing system backup creates identical copies, same e-mail
attachments are sent to multiple receivers, or different users duplicate same documents
for individual working. In brief, deploying more data storage systems requires more
energy to process information and more network resources to transmit information.

To reduce the costs, more and more enterprises are using data de-duplication technology
[2]. The concept of data de-duplication technology is to identify redundant data, store
only one copy for all duplicate data, and create logical reference to the copy so that users
can access the data when needed. Decreasing the amount of data equals reducing a lot
of costs for storage requirement, power consumption, and equipment maintenance.
Moreover, de-duplication technology also makes data replication and data recovery more
efficient and effective. We introduce two different schemes, the hash-based and the
content-aware schemes, which are used for most popular data de-duplication systems.

1.2 Hash-Based Approach
According the research [3], a hash-based de-duplication system consists of three
components - file chunking, hash value generation, and redundancy detection. The
Figure 1 shows these components and illustrates the concept of the hash-based approach.
Simply speaking (see Figure 1), when a new file arrives, the de-duplication system breaks
entire file into many small blocks as know as chunks. Then the system uses hash
algorithm, like Secure Hash Algorithm - 1 (SHA-1) or Message Digest Algorithm - 5
(MD-5), to generate the unique signatures to present these chunks. Now, the

 4

de-duplication system can more easily and accurately compare these signatures with its
database or lookup table to identify these small chunks are new data or redundant data.
During the comparisons, if the system cannot find any signature matching in its lookup
table or database, then the system assumes these chunks are new data and stores them.
If the system detects a signature matching, then it creates a logical reference to the
duplicate data whose copy was already stored in database.

Figure 1: Three Main Components in Hash-Based De-Duplication
System.

1.3 Content-Aware Approach
In terms of the content-aware scheme [4], this approach firstly compares the new
incoming file with its databases to identify the similarities and relationships (e.g., html
files to html files or pdf documents to pdf documents). Once the system identified what
specific the incoming file is, it then chooses a similar file as a reference file depending on
file’s name, path, or other related information. After that, the content-aware data
de-duplication system performs a byte-to-byte or block-to-block comparisons after
chunking. During the comparisons, the de-duplication system computes the delta [5] to
present the duplicates and the differences between the new incoming file and its reference
file. Finally, the system only stores the delta and a pointer which points to the reference
file rather than entire incoming file.

We provide an example to illustrate the byte-to-byte comparisons shown in Figure 2. In

 5

Figure 2, (a) presents the content of a new incoming file - file A. And (b) shows that the
system chooses the file B as its reference file after identifying the similarities and
relationships. During the byte-to-byte comparisons, the de-duplication system detects
there are duplicate data from position 0 to 21 and from position 23 to 41. Then the
system computes the delta, shown in (c), and only stores the delta as well as some related
information for file A rather than entire file A.

Figure 2: A Byte-To-Byte Comparisons Example for the Content-Aware

Scheme. (a) The New Coming File. (b) The Reference File.
(c) The delta.

These two schemes have been implemented and developed by current industries for
different purposes especially in data backup systems. For content-aware scheme, there
are products from Sepaton [6, 7] and ExaGrid [8] (byte-level), NetApp [9] (block-level),
and Hewlett-Packard [10, 11] (object-level) in current market. In addition, Quantum is
the leading company in the hash-based horizon [12]. There are other popular leading
companies, like IBM, EMC/Data Domain and Symantec, use their own specific
techniques for data de-duplication technology [1].

Among all processes of de-duplication, the chunking algorithm plays an important role
no matter which scheme is used for data de-duplication. In brief, the chunking
algorithm has many significant influences on the performance of the data de-duplication
systems. In our project, our topic focuses on two different chunking algorithms. We
provide the fundamental concepts for the chunking algorithms in next section.

 6

2. Chunking
Chunking is a process to partition entire file into small pieces of chunks. For any data
de-duplication system, chunking is the most time consuming processes since it has to
traverse entire file without any exception. The process time of chunking totally depends
on how the chunking algorithms break a file. Moreover, the smaller the size of a chunk
has, the better result a de-duplication system has. Increasing the number of chunks,
however, results in increasing the processing time for both schemes which we presented
in previous section. For the hash-based de-duplication systems, increasing the number
of chunk also means increasing the size of lookup table, and then the systems need to
spend more time to perform the comparisons. The worst case is that the systems cannot
load entire lookup table into memory when the size of the lookup table becomes very
huge. In this case, the systems have to pay most expensive costs in disk I/O. The
content-aware systems face the similar tradeoffs while performing the block-to-block
comparisons. In other words, a good chunking algorithm has to satisfy certain
conditions such as minimizing the processing time, balancing the scalability and
de-duplication ratio, and controlling the variations of chunk-size.

2.1 Chunking Level
According to how to break a file, there are three different chunking categories as shown
in Figure 3.

Figure 3: Three Different Chunking Categories.

 7

These categories have been studied and researched [13, 14]. Generally speaking,
whole-file chunking is the simplest and fastest, but it has the worst results regarding
de-duplication ratio. The de-duplication ratio of the fixed-size chunking is totally
depending on what the fixed-size is. The smaller the fixed size is, the better
de-duplication ratio has. Again, the fixed-size chunking faces the tradeoffs in balancing
the capacity scalability and the de-duplication ratio. Moreover, the most important issue
of these two chunking algorithms is the boundary shifting problem [15]. We introduce
this issue and then discuss the variable size chunking in next section.

2.2 Boundary Shifting Problem
Both whole-file chunking and fixed-size chunking face the boundary shifting problem
due to the data modifications. When users only insert or delete one byte, the whole file
chunking will result in two different hash values between the modified file and the
original file, even if most of the data remain unchanged. In same situation, after
one-byte modification happens, the fixed-size chunking will generate totally different
results for all the subsequent chunks even though most of the data in the file are
unchanged. This problem is called as the boundary shifting problem. We show an
example in Figure 4. In Figure 4, (a) shows the case when we break entire file into
fixed-size chunks, and (b) shows after inserting 2 bytes string - “12” in the c2 position of
the original file, we obtain the totally different results, even other data remain the same.

Figure 4: A Boundary Shifting Problem Example. (a) The Original File.

(b) The File after Insertion.

 8

Variable-size chunking is also called content-based chunking [15]. In other words,
chunking algorithms determine chunk boundaries depending on the content of the file.
For example, content-based chunking algorithm may determine chunk boundaries by
punctuation, each line, or every paragraph. In contrast with fixed-size chunking
algorithms which determine chunk boundaries by the distance from the beginning of the
file. Therefore when data modifications happen, most of the chunks remain unchanged.
This is why variable-size chunking can avoid the boundary shifting problem [3, 16].

2.3 Related Work
Regarding the variable-size chunking algorithm, the paper [17] provided a detailed
analyses about variable-size algorithm such as k-gram and 0 mod p algorithms and also
proposed a new variable-size algorithm - Winnowing. The paper [18] deeply
categorized these variable-size chunking algorithms into overlap method such as k-gram,
0 mod p, and Winnowing algorithms, and non-overlap method such as hash-breaking.
Moreover, it also proved that the overlap methods need to use a good chunk selection
technique to handle the huge number of chunks. The Basic Sliding Window (BSW)
algorithm [16] is the first prototype of the hash-breaking chunking algorithm
(non-overlap) and already been proven [16] to obtain the best performance in balancing
capacity scalability and the de-duplication ratio. The Two Thresholds, Two Divisors
(TTTD) algorithm [15] is the adaptation of the BSW algorithm to improve the problems
in the BSW algorithm. The BSW algorithm and the TTTD algorithm are the important
cores in our project. We introduce these two algorithms in following sections.

 9

3. The Basic Sliding Window (BSW) Algorithm
The BSW algorithm was proposed for a low bandwidth network file (LBFS) system [16].
The main purpose of this algorithm is to reduce the network bandwidth requirements by
avoiding the boundary shifting problem. In following sections, we discuss the concepts
and problems of BSW algorithm.

3.1 Concept of the BSW Algorithm
In the BSW algorithm, there are three main parameters needed to be pre-configured, a
fixed size of window W, an integer divisor - D, and an integer remainder - R, where R <
D. We describe how the BSW algorithm works as follows (see Figure 5 [15, 19]):

Figure 5: Concept of the BSW Algorithm.

(1) A fixed-size window W is shifting one byte at one time from the beginning of

abin Fingerprinting algorithm to compute a hash

nt for chunk boundary. Then the

, the sliding window W keeps shifting one byte. And repeats

the file to end of the file.
(2) At every position p, uses R

value h for the content of current window.
(3) If h mod D = R, the position P is a breakpoi

sliding window W starts at the position P. And repeats the computation and
comparison.

(4) If h mod D ≠ R
the computation and comparison.

 10

S nk boundaries by the content of file, this

.2 The Expected Chunk-Size
ost important role in the BSW algorithm because

e

.3 Problems of the BSW Algorithm
orithm. The fist problem is that the sliding

This

r
o

hese two worst cases are very unusual, but it does not mean these problems will never

lp

ince the BSW algorithm determines the chu
approach has been proved to be success to avoid the boundary shifting problem.

3
In practice, the parameter D plays the m
it can be configured to make the chunk-size close to our expectancy. Since any integer
divided by D, the remainder is between 0 and D – 1. The window shifts one byte at one
time. In each shifting, the probability of h mod D = R is 1/D. In other words, we
expect to find a breakpoint for chunk boundary at every D bytes. For example, if w
expect the size of every chunk equals to1000 bytes, then we set the value of D as 1000
and the value of R is any integer where 0 ≦ R ≦ 999. In the best case, we can
always expect to find a matching for h mod D = R in every 1000 shifts, that is, 1000
bytes.

3
There are two main problems in the BSW alg
window may determine the breakpoint in each shifting in the worst case if the file
contains a lot of continuous repeating string such as aaaaaaaaaa or 1111111111.
worst case [10] causes that the metadata has same size as the original file, even has larger
size than original file if metadata include extra information for the chunks. The second
issue is that if the sliding window cannot find any breakpoint after traversing entire file.
In this case, the BSW algorithm may treat entire file as one chunk, then we face the
boundary shifting problem again. In other words, the BSW algorithm has very poo
controls on the variations of chunk-size and the chunk-size may vary from very small t
very large. It is not efficient and effective to transmit very small data or large data due
to only one-byte modification.

T
happen. They only waste network resources while these situations happen. In next
section, we introduce Two Thresholds and Two Divisors (TTTD) algorithm [15] can he
us to solve these problems.

 11

4. The Two Thresholds Two Divisors (TTTD) Algorithm
The TTTD algorithm was proposed by HP laboratory [15] at Palo Alto, California. This
algorithm use same idea as the BSW algorithm does. In addition, the TTTD algorithm
uses four parameters, the maximum threshold, the minimum threshold, the main divisor,
and the second divisor, to avoid the problems of the BSW algorithm which we presented
in Section 3.3. We discuss the concept in following section.

4.1 Concept of the TTTD Algorithm
The maximum and minimum thresholds are used to eliminate very large-sized and very
small-sized chunks in order to control the variations of chunk-size. The main divisor
plays the same role as the BSW algorithm and can be used to make the chunk-size close
to our expected chunk-size. In usual, the value of the second divisor is half of the main
divisor. Due to its higher probability, second divisor assists algorithm to determine a
backup breakpoint for chunks in case the algorithm cannot find any breakpoint by main
divisor. According to the research [15], we list these four parameters and their optimal
values as shown in Table 1 when considering the expected chunk-size is 1000 bytes.

Table 1: Purposes and Optimal Value of Four Parameters in the TTTD

Algorithm.

Parameter Purpose Optimal Value

Maximum Threshold To reduce very large chunks 2800 (bytes)
Minimum Threshold To reduce very small chunks 460 (bytes)
Main Divisor To determine breakpoint same as the BSW 540
Second Divisor To determined a backup breakpoint 270

Since the TTTD Algorithm uses the same concept as the BSW algorithm does. We
describe how it works as follows and provide the pseudo code [15] in Figure 6.

(1) The algorithm shifts one byte at one time and computes the hash value.
(2) If the size from last breakpoint to current position is larger than minimum

 12

threshold, it starts to determine the breakpoint by second and main divisors.
(3) Before the algorithm reaches the maximum threshold, if it can find a breakpoint

by main divisor, then uses it as the chunk boundary. The sliding window starts
at this position and repeats the computation and comparison until the end of file.

(4) When the algorithm reaches the maximum threshold, it uses the backup
breakpoint if it found any one, otherwise use the maximum threshold as a
breakpoint.

Figure 6: The TTTD Algorithm Pseudo Code.

 13

4.2 Problems of the TTTD Algorithm
The first problem is the tradeoffs. In order to control the variations of chunk-size, the
TTTD algorithm uses the minimum and maximum thresholds to eliminate very
large-sized and very small-sized chunks. Obviously, these eliminations cost the TTTD
algorithm to increase the total number of chunks. Increasing the total number of chunks
also increases the amount of metadata, the size of lookup table, and the lookup table
searching time. The second issue is the role of the second divisor. In following
discussion, we assume that the algorithm cannot find the breakpoint by main divisor and
we use the optimal configuration in Table 1 (in page 12) to discuss this issue.

The values of the main divisor and second divisor are 540 and 270 respectively. In
other words, the probability which breakpoints are determined by second divisor is twice
larger than the first divisor. From 460 to 2800, these are about 4 chances to obtain the
breakpoint by the main divisor (2800 – 460 = 2340 and 2340/540 ≈ 4.33). Also, there
are about 8 chances to obtain the backup breakpoint by the second divisor (2340/270 ≈
8.66).

However, if we carefully review the algorithm from line 22 to line 31 in Figure 6 (in page
13), the TTTD algorithm decides whether it uses a backup breakpoint or maximum
threshold as the chunk boundary only until the algorithm reaches the maximum threshold.
In other words, the algorithm wastes time in calculations and comparison even if it can
find a backup breakpoint earlier during the total 8 chances. This situation also implies
the algorithm will always pick up the last backup breakpoint it found as the chunk
boundary and the chunk-size which is determined by second divisor will be closer to the
maximum threshold. In other words, the second divisor only prevents the algorithm
from using the maximum threshold as the breakpoint and plays a trivial role in the TTTD
algorithm.

The above analyses point out that the TTTD algorithm obviously increases both total
running time and total number of chunks in order to obtain better controls on the
variations of chunk-size while comparing with the BSW algorithm. If these increasing
ratios are very large, said 1:2 or 1:3, then the TTTD algorithm needed to be re-considered.
In the next section, we perform a series of experiments in order to compare and evaluate
the BSW and the TTTD algorithms in terms of these factors.

 14

5. Experimental Comparisons and Evaluations
In this section, we perform the complete experiments to compare and evaluate the BSW
and the TTTD algorithms. Up to now, no report conducts these experimental analyses
for BSW and TTTD algorithms. This is the first important value of this paper. The
goals of our experiments are to compare the performances for BSW and TTTD
algorithms and also prove our observations and assumptions about the tradeoffs and the
issues of the second divisor for the TTTD algorithm.

5.1 Experimental Configurations
We perform our experiments on a machine with following hardware equipments:

 Intel Core2 T7200 2.00GHz processor.
 2GBytes Physical Memory.
 120GBytes SATA-2 hard disk drive, 5400 RPM, Toshiba.

We implement BSW and TTTD algorithms by C++ and use Visual Studio 6.0 as the
compiler. In our experiments, the expected chunk-size is 1000 bytes and we use the
same parameter configurations as the original paper [15] in order to perform fair and
accurate evaluations. We use main divisor – 1 as the remainder R for two algorithms
and second divisor –1 as the remainder to determine the backup breakpoint in the TTTD
algorithm. We list the parameter configurations for two algorithms in Table 2.

Table 2: Parameters Configuration for the BSW and the TTTD Algorithms

 Algorithm
Parameter

BSW TTTD

Window Size (bytes) 48 48
Main Divisor 1000 540
Second Divisor N/A 270
Maximum Threshold N/A 2800
Minimum Threshold N/A 460

 15

5.2 Experimental Datasets
We use open resources as our test data and download all test data from GNU website [20].
Table 3 provides the summary about our test data sets. Please refer to Appendix – A
and Appendix – B for the detailed information.

Table 3: Test Data Sets of the Experiments.

Data Set #1 #2 #3 #4

Data Name Emacs Emacs GNU Manuals GNU Manuals
Data Type tar source code html txt
No. of Files 5 16994 40 40

Total Size (MB) 171.3 607.2 36 22.3

Data Set #1 contains five versions of Emacs from version 21.4 to version 23.1. They
are all compressed tar files. We uncompress all tar files from Data Set#1 as our Data
Set #2. Most of the files in Data Set #2 are .c and .h source code. We use the software
manuals from GNU Manual Online [20] for our Data Set #3 and #4. The contents of
Data Set #3 and #4 are same as each other except that there are different format – html
and txt. We carefully choose a variety of data sets depending on their types, size,
formats, and number of files. We believe these data can help us to perform the
comprehensive evaluations. Finally, we would like to point out three special cases that
chunks cannot be determined by algorithm itself.

(1) The size of file is smaller than window size or minimum threshold.
(2) The fragment, from last break point to end of file, whose size is smaller than

window size or minimum threshold.
(3) The algorithm cannot find any breakpoint from last break point to end of file,

even if the size of this fragment is larger than window size or minimum
threshold.

Of course, these three situations are unusual. We carefully choose our test data to
avoid the first case. For second and third case, we take this fragment as one chunk
regardless what the size is.

 16

5.3 Results of Experiments
We present the results of our experiments and take deeper analyses for the BSW and
TTTD algorithms in this section.

5.3.1 Running Time, Total Chunks, and Average Chunk-Size
We discussed the importance for running time, total number of chunks, and average
chunk-size in Section 3.2 and Section 4.2. The first thing we are interested in is how the
performances of the BSW and the TTTD algorithms are in term of these factors. We
present the results in Table 4.

Table 4: Running Time, Total Chunks and Average Chunk-Size Comparisons
for the BSW and the TTTD Algorithms.

 Total Running

Time (sec)
Total number

of Chunks
Average

Chunk-Size (bytes)

Data Set BSW TTTD BSW TTTD BSW TTTD

#1 2910 2885 172874 182582 1040 985

#2 10568 11011 391036 481963 1629 1321

#3 617 639 24692 32364 1532 1169

#4 381 398 17803 19590 1316 1196

Average 3619 3733 151601 179125 1379 1168

In Table 4, we clearly understand the TTTD algorithm increase the total running time and
total number of chunks. In average case, the ratio of the BSW algorithm to the TTTD
algorithm is about 1:1.03 for running time, and is about 1:1.18 for the total number of
chunks. These two ratios are close to 1:1 and show the tradeoffs for the TTTD
algorithm are very small.

Regarding the average chunk-size, the results of the TTTD algorithm is much closer to

 17

our expected chunk-size (1000 bytes) than the BSW algorithm for all data sets since the
TTTD algorithm has a better control on the variations of chunk-size. Comparing with
the BSW algorithm, the TTTD algorithm obtains much better performance without too
many concessions.

5.3.2 Maximum and Minimum Chunk-Size
The second interesting we would like to present is how better the TTTD algorithm
controls the variations of chunk-size. We compare the maximum and minimum
chink-size for the BSW and TTTD algorithms. The result is presented on Table 5.

Table 5: The Maximum and Minimum Chunk-Size for the BSW and the TTTD
 Algorithms.

 Max Chunk-Size (bytes) Min Chunk-Size (bytes)

Data Set BSW TTTD BSW TTTD

#1 16442 2800 48 412

#2 154075 2800 8 8

#3 97168 2800 48 68

#4 68224 2800 48 62

Average 83977 2800 38 138

For the TTTD algorithm, all the maximum chunk-sizes are 2800 bytes in all data sets.
This is because the TTTD algorithm uses maximum threshold to limit the maximum
chunk-size. The BSW algorithm, however, has a huge variation in maximum
chunk-size among all data sets. In average case, the difference of maximum chunk-size
for two algorithms is 81177 bytes. This difference is large enough to affect how
average chunk-size closes to the expected chunk-size. This difference also indicates
that the BSW algorithm needs to consume more network resource to transmit large-sized
chunk while data modifications happen. Theoretically speaking, the minimum
chunk-size should be 460 bytes for TTTD algorithm. The results are little bit different

 18

from assumption. This is because the special cases, the fragments, which we presented
in the Section 5.2.

The results illustrate why the maximum threshold plays an important role in the TTTD
algorithm and how the TTTD algorithm controls the variations of chunk-size by
eliminating the large size of chunks which the BSW algorithm generates.

5.3.3 Chunk-Size Distributions
In the last part of comparison, we consider the chunk-size distribution for two algorithms.
According to the features of two algorithms, we take the chunk-size which is from 0 to 48
bytes (window size) as the first interval for the BSW algorithm, and from 0 to 460 bytes
(minimum threshold) as the first interval for TTTD algorithm. After that, we simply
increase 400 bytes for each interval to group our statistical data. We present the results
of the BSW algorithm in Table 6 and the TTTD algorithm in Table 7.

Table 6: Chunk-Size Distributions of the BSW Algorithm.

 Data Set #

Interval (bytes) #1 #2 #3 #4 Average

< 48 (%) 0 0.01 0 0 0.002
48 ~ 459 (%) 34.14 42.64 41.04 43.28 40.28

460 ~ 799 (%) 19.35 13.55 14.1 14.62 15.41
800 ~ 1199 (%) 15.3 9.23 10.3 11.2 11.51

1200 ~ 1599 (%) 10.29 6.35 7.24 6.94 7.71
1600 ~ 1999 (%) 6.93 4.93 5.27 5.63 5.69
2000 ~ 2399 (%) 4.51 3.79 4.09 3.65 4.01
2400 ~ 2799 (%) 3.07 3.07 3.06 3 3.05

>= 2800 (%) 6.41 16.41 14.91 11.67 12.35

Firstly, we re-indicate the problems of the fragment which we presented in Section 4.2.
In the average case of the first interval, the BSW algorithm is 0.002 % (in Table 6) and
the TTTD algorithm is 0.28 % (in Table 7). The two very small numbers present the
percentage of the fragments. These fragments are totally depending on how we conduct

 19

the experiments, that is, how many files the algorithm processes at one time. For
example, data set #1 only has 5 files (in Table 3, page 16) needed to be processed at one
time, so both Table 6 and Table 7 show the percentages are close to 0. Moreover, both
Table 6 and Table 7 also show the data set #2 has the largest percentage because data set
#2 has 16994 files (in Table 3, page 16) needed to be handled at one time. Even though
each file has at most one fragment, the total percentage is too small to affect the results of
experiments and we can simply ignore it.

Table 7: Chunk-Size Distributions of the TTTD Algorithm.
 Data Set #

Interval (bytes) #1 #2 #3 #4 Average

< 460 (%) 0 1.03 0.05 0.05 0.28
460 ~ 799 (%) 47.0 32.17 42.88 39.75 40.45

800 ~ 1199 (%) 27.7 20.78 21.47 22.54 23.12
1200 ~ 1599 (%) 13.4 13.63 11.15 12.28 12.62
1600 ~ 1999 (%) 6.43 10.09 8.48 8.96 8.49
2000 ~ 2399 (%) 3.34 8.91 6.19 6.88 6.33
2400 ~ 2799 (%) 2.11 11.3 6.67 7.17 6.81

= 2800 (%) 0.03 2.09 3.11 2.36 1.9

Secondly, Table 6 shows that the most of the chunks, 40.28 % in average, are
determined before 460 bytes in the BSW algorithm. Table 7 indicates that most of the
chunks, 40.45 % in average, are determined from 460 to 799 bytes in the TTTD
algorithm. In other words, the minimum threshold of the TTTD algorithm successfully
reduces the very small-sized chunks. The percentages of the last interval in average
case, 12.35 % (BSW algorithm) and 1.9 % (TTTD algorithm), also show the maximum
threshold of the TTTD algorithm really plays a good role to limit the large-sized chunks.

According to the above comparisons and evaluations, the TTTD algorithm forces the
average chunk-size close to expected chunk-size by a better control on the variations of
chunk-size. In brief, the TTTD algorithm only increases a little cost in total running
time and total number of chunks to obtain the better performance than the BSW
algorithm.

 20

6. New Improvement of the TTTD Algorithm
The second important value of this paper is that we proposal a new improvement of the
TTTD and this new improvement really obtains some significant achievements. In this
section, we review the problems of the TTTD algorithm and introduce our improvement.
We also perform the experiments to evaluate our new solution.

6.1 Review for problems of the Second Divisor
We discussed the problems of the TTTD algorithm in the Section 4.2. The major issue
comes from the second divisor. Simply speaking, the TTTD algorithm decides whether
using the backup breakpoint until the algorithm reaches the maximum threshold. We
measure the total number of chunks and their percentages depending on how they are
determined. We present the result in Table 8.

Table 8: The Percentage of the Chunks Determined by Main Divisor, Second

Divisor, and the Maximum Threshold in the TTTD Algorithm.

 Data Set #
Chunk

Determined by
#1 #2 #3 #4 Average

Main Divisor
180156

(98.67%)
391106

(84.04%)
28784

(89.04%)
17470

(89.36%)
90.3%

Second Divisor
2374

(1.3%)
64481

(13.86%)
2545

(7.87%)
1619

(8.28%)
7.8 %

Max Threshold
47

(0.03%)
9795

(2.1%)
997

(3.08%)
461

(2.36%)
1.9 %

In average case, most of the chunks are determined by main divisor (90.3 %) and only 7.8
% of the total chunks are determined by second divisor. We re-present the data which
are shown in Table 7 (in page 20) as the Figure 7 to compare the results with Table 8 and
we can obtain a clearer view.

In Figure 7, we can see the first peak appears between 460 and 799 bytes. No doubt this

 21

peak presents the chunks which are determined by the main divisor. The second peak,
between 2400 bytes and 2799 bytes, indicates that chunks which are determined by
second divisor. Obviously, this peak is close to the maximum threshold. Combining
Figure 7 with the Table 8 (in page 21), the second peak implies the second divisor wants
to prevent the TTTD algorithm from using the maximum threshold as the breakpoints,
but the result only has slightly different. In other words, the TTTD algorithm wastes
extra time in unnecessary calculations and comparisons due to the second divisor. It
also has a poor control on the variations of chunk-size since these chunks which are
determined by the second divisor are larger and close to the maximum threshold. From
the results of our experiments, we prove our analyses in section 4.2.

0

10

20

30

40

50

< 46
0

46
0 ~

 79
9

80
0 ~

 11
99

12
00

 ~ 15
99

16
00

 ~ 19
99

20
00

 ~ 23
99

24
00

 ~ 27
99

28
00

Chunk-Size Interval

Pe
rc

en
ta

ge
 %

Data Set-1
Data Set-2
Data Set-3
Data Set-4
Average

Figure 7: Chunk-Size Distributions of the TTTD Algorithm.

6.2 Concept of the New Improvement
We cannot simply remove the second divisor from the algorithm in order to achieve our
targets. If we remove the second divisor, then about 10 % of the total chunks will be

 22

determined by maximum threshold. In this case, the 10 % of the total chunks are
chunked by fixed-size chunking. In other words, they may face the boundary shifting
problem again. Moreover, we cannot adjust the value of the maximum threshold to be
smaller either. According to the research [15], the value of the maximum threshold
should be 2.8 times average chunk-size due to the simplifying system design for
components such as buffer size or packet size.

However, if we can make second peak happen earlier, which means the chunks are
determined earlier, then we can reduce the unnecessary calculations and comparisons to
increase the running time. By this approach, we also obtain the better controls on the
variations of chunk-size by reducing the large-size chunks. We use this concept to
improve the TTTD algorithm. For convenience, we assume our expected chunk-size is
1000 bytes and use the same optimal parameters’ configuration as the original TTTD
algorithm to explain our concept.

According to the results of our experiments, we know that about 70 % of the total chunks
which are determined before 1600 bytes are determined by main divisor. We also know
that the second peak begins at 2400 bytes. The concept of our new improvement is that
we use a new parameter, where 1500 < new parameter < 2400. When the size from the
previous breakpoint to current position is larger than this parameter, then we use the
value of the second divisor as the value of the main divisor and use 1/2 of the original
value of second divisor as the new value of the second divisor. After we found a
breakpoint, then we switch the values back to the original values for two divisors. By
increasing the probability of the main divisor after the first peak, we expect the second
peak will happen earlier.

Since we use the new parameter to switch the values of two divisors at the specific
position, we call this new parameter as switchP; and hence, we call our improvement as
TTTD-S in the following discussions. We provide the pseudo code for the TTTD-S
algorithm in Figure 8. We perform the same experiments to evaluate our approach and
the original TTTD algorithm. In Figure 8, the TTTD-S algorithm uses the function -
switchDivisor(), in line12, to reduce values of the main divisor and second divisor.
Once the algorithm determines the breakpoints, it uses function - resetDivisor(), in
line21, 31, and 37, to set the main divisor and second divisor back to original values.

 23

Figure 8: The TTTD-S Algorithm Pseudo Code

 24

6.3 Experimental Evaluations for the TTTD-S Algorithm
We use the same parameters’ configuration and same data sets to evaluate our new
improvement. We perform a series of systematic experiments and hill-climbing strategy
to test different values for the parameter – switchP, from 1400 to 2200. We found the
best value for the switchP is 1600. In practice, the value of switchP should be 1.6 times
the expected chunk-size.

We perform the same comparisons for the TTTD algorithm and our new improvement –
TTTT-S algorithm in terms of running time, total number of chunks, and the average
chunk-size. We present the results in Table 9.

Table 9: The Maximum Chunk-Size and Minimum Chunk-Size Comparisons
 for the TTTD and the TTTD-S Algorithms.

 Total Running Time
(sec)

Total number
of Chunks

Average Chunk-Size
(bytes)

Data Set TTTD TTTD - S TTTD TTTD - S TTTD TTTD - S

#1 2885 2818 182582 186757 985 963
#2 11011 10242 481963 513330 1321 1241
#3 639 603 32364 33360 1169 1134
#4 398 379 19590 20385 1196 1149

Average 3733 3510 179125 188458 1168 1121

Firstly, our improvement really reduces the total running time from 3777 seconds to 3510
seconds in average case. This number is even better than 3619 seconds in the BSW
algorithm (in Table 4, page 17). For running time, the ratio of the TTTD-S algorithm to
the TTTD algorithm is 1: 1.07. In other words, we speed up about 7 % running time for
the original TTTD algorithm. This is a significant achievement in our project. The
average size of all test data sets is only 207.58 MB. However, data de-duplication
systems need to deal with the data from hundred GB to TB in reality. Moreover, our
new improvement makes the average chunk-size closer to the expected chunk-size from
1168 bytes to 1121 bytes.

 25

Secondly, we present the chunk-size distribution of the TTTD-S algorithm in Table 10
and Figure 9. We found that our new solution does not affect the chunk-size
distribution before 1600 bytes. While comparing the percentage of the average case, the
TTTD algorithm has 76.47 % before 1600 bytes (in Table 7, page 20), and the TTTD-S
has 75.74 % before 1600 bytes (in Table 10). These two percentages are similar. In
other words, the TTTD-S algorithm does not affect the original behaviors of the main
divisor for the TTTD algorithm. Also, our new improvement reduces large-size chunks
between 2400 bytes to 2800 bytes from 8.7 % of the TTTD algorithm to 4.4 % of the
TTTD-S algorithm. The decreasing ratio is about 50 %.

Table 10: Chunk-Size Distributions of the TTTD-S Algorithm.

 Data Set #

Interval (bytes) #1 #2 #3 #4 Average

< 460 (%) 0 1.13 0.05 0.06 0.31
460 ~ 799 (%) 47.13 32.35 42.64 39.95 40.52

800 ~ 1199 (%) 27.67 20.38 21.38 22.21 22.91
1200 ~ 1599 (%) 13.31 12.64 10.49 11.55 12.0
1600 ~ 1999 (%) 9.23 20.62 15.26 15.34 15.11
2000 ~ 2399 (%) 2.09 7.24 5.34 5.71 5.1
2400 ~ 2799 (%) 0.86 5.34 4.67 5.68 4.14

= 2800 (%) 0.0 0.3 0.25 0.53 0.27

We present the data of the Table 10 in Figure 9 to obtain a deeper view. Comparing
with the original TTTD algorithm (in Figure 7, page 22), our improvement successfully
make the second peak happen earlier. The tradeoff is the increasing total chunks. For
the increasing chunks, the ratio of the TTTD algorithm to the TTTD- S algorithm is
1:1.05. This ratio is acceptable when comparing the ratio of the BSW algorithm to the
TTTD algorithm - 1:1.18.

Simply speaking, our new improvement obtains the better performance in average only
by adding a new parameter and without changing the structure of the original algorithm.

 26

0

10

20

30

40

50

< 46
0

46
0 ~

 79
9

80
0 ~

 11
99

12
00

 ~ 15
99

16
00

 ~ 19
99

20
00

 ~ 23
99

24
00

 ~ 27
99

28
00

Chunk-Size Interval

Pe
rc

en
ta

ge
 %

Data Set-1
Data Set-2
Data Set-3
Data Set-4
Average

Figure 9: Chunk-Size Distributions of the TTTD-S Algorithm.

7. Conclusion and Future Work
In brief, our new approach, the TTTD-S algorithm, not only successfully achieves the
significant improvements in running time and average chunk-size, but also obtains the
better controls on the variations of chunk-size by reducing the large-sized chunks. Our
project focuses on the chunking algorithm. However, there are still many related
problems and issues needed to be studied for data de-duplication system. For example,
the hashing-based data de-duplication systems have to face the natural limitation – the
hash collision problem [1]. Moreover, how to index the metadata to speed up the
lookup table searching is another interesting topic [12]. Finally, the security issue [1] of
the hashing-based data de-duplication cannot be ignored either. These related topics are
also worth working on in the future.

 27

Reference
[1] D. Geer. Reducing the Storage Burden via Data Deduplication. Computer,

41(12):15-17, December 2008.

[2] IDC., “White paper: Data Deduplication for Backup: Accelerating and Efficieeency
Driving Down IT Costs,” 2009. [Online]. Available:
http://www.emc.com/collateral/analyst-reports/idc-20090519-data-deduplication.pdf.

[3] Y. W, R. Kim, J. Ban, J.Hur, S. Oh, and J. Lee. PRUN: Eliminating Information

Redundancy for Large Scale Data Backup System. In Computational Sciences and Its
Applications, ICCSA 2008, International Conference on, Pages 139-144, 2008.

[4] IBM Corporation., “White paper: Redbooks - Guide to Data De-duplication,” 2008.

[Online]. Available:
http://www.redbooks.ibm.com/redpieces/abstracts/sg247652.html?Open

[5] L. You, and C. Karamanolis, Evaluation of Efficient Archival Storage Techniques. in

12th NASA Goddard Conference on Mass Storage Systems and Technologies. April
2004.

[6] SEPATON, Inc., “White paper: Comparing Deduplication Approaches: Technology

Considerations for Enterprise Environments,” 2008. [Online]. Available:
http://www.sepaton.com/about_us/resourceCenter_whitepapers.php#

[7] SEPATON, Inc., “White paper: Reducing Costs in the Data Center: Comparing Costs

and Benefits of Leading Data Protection Technologies,” 2007. [Online]. Available:
http://www.sepaton.com/about_us/resourceCenter_whitepapers.php#

[8] ExaGrid Systems, “White paper: Data De-duplication Methodologies: Comparing

ExaGrid's Byte-Level Data Deduplication to Block Level Data Deduplication,”
[Online]. Available:
http://www.exagrid.com/products/disk-based_backup_whitepapers.asp

 28

[9] The Enterprise Strategy Group, Inc., “Lab Validation Report: NetApp deduplication
for FAS - Doing More with Less,” 2008. [Online]. Available:
http://www.enterprisestrategygroup.com/ESGPublications/ReportDetail.asp?ReportI
D=1237

[10] Hewlett-Packard Development Company, L.P., “White paper: Understanding the HP
 Deduplication Strategy: Why one size doesn't fit everyone,”2008. [Online].
ilable:

Data
Ava

http://h20195.www2.hp.com/V2/getdocument.aspx?docname=/4AA1-9796ENW.pdf

[11] Hewlett-Packard Development Company, L.P., “White paper: Integrating HP Data
Protector software with HP Data Deduplication Solutions,”2009. [Online]. Available:
http://h20338.www2.hp.com/ERC/downloads/4AA2-2654ENW.pdf

[12] Quantum Corp., “White paper: Data Deduplication Background: A Technical White

Paper” 2009. [Online]. Available:
http://salestools.quantum.com/querydocretriever_inc.cfm?ext=.pdf&mime=applicati
on/pdf&filename=283835.pdf

[13] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani. Demystifying Data

Deduplication. in Companion '08: Proceedings of the ACM/IFIP/USENIX
Middleware '08 Conference Companion, pages 12-17, 2008.

[14] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, Improving Duplicate

Elimination in Storage Systems. ACM Transactions on Stroage, 2(4):424-448,
November 2006.

[15] K. Eshghi and H.K. Tang . A Framework for Analyzing and Improving

Content-Based Chunking Algorithms. Hewlett-Packard Labs Technical Report, TR
2005-30. URL: http://www.hpl.hp.com/techreports/2005/HPL-2005-30R1.html

[16] A. Muthitacharoen, B. Chen, and D. Mazieres, A low-bandwidth network file system.

in Symposium on Operating Systems Principles, 2001, page 174-187, 2001.

 29

[17] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local Algorithms for
Document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, page 76 - 85, June 2003.

[18] J. Seo, and W. B. Croft. Local Text Reuse Detection. In Proceedings of the 31st

annual international ACM SIGIR conference on Research and development in
information retrieval, page 105-112, July 2008.

[19] G. Forman, K. Eshghi, and S. Chiocchetti. Finding Similar Files in Large Document

Repositories. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, page 394 - 400, July 2008.

[20] GNU website http://www.gnu.org/

[21] D. Bhagwat, K. Eshghi and P. Mehra. Content-based Document Routing and Index

Partitioning for Scalable Similarity-based Searches in a Large Corpus. In
Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, page 105 – 112, August 2007.

 30

Appendix – A: Test Data Set #1 and #2 Detailed Information

Table 11: The Detailed Information for Test Data Set #1 and Data Set #2

Data Set # #1 (tar type) #2 (uncompressed type)

File Name No. of Files File Size (MB) No. of Files File Size (MB)

emacs-21.4a 1 19.4 2553 70.9
emacs-22.1 1 36.4 3492 129.5
emacs-22.2 1 36.9 3514 131.3
emacs-22.3 1 37.7 3525 132.6
emacs-23.1 1 40.9 3910 142.9

Total 5 171.3 16994 607.2

 31

Appendix – B: Test Data Set #3 and #4 Detailed Information

Table 12: The Detailed Information for Test Data Set #3 and Data Set #4.

File Size (KB)
File Name

No. of
Files Data Set #3 (html type) Data Set #4 (txt type)

Autoconf 1 1567 915
Autogen 1 1192 493

Automake 1 906 529
Bash 1 588 398
Bison 1 629 425
Cflow 1 128 81

Coreutils 1 1261 665
Diffutils 1 256 183

Elisp 1 4361 2892
Emacs 1 3266 2087

Emacs Lisp Intro 1 1003 684
Epsilon 1 242 198
Gawk 1 1818 1005

Gawkinet 1 268 200
GMP 1 512 355

GNATS 1 418 273
Gnulib 1 2530 1177

GnuTLS 1 1107 776
Gperf 1 102 72
Grep 1 155 85
SASL 1 367 292
GSL 1 2153 1241
GSS 1 262 228
Guile 1 2683 1697

Guile-RPC 1 144 98

 32

 33

Appendix – B: Test Data Set #3 and #4 Detailed Information

(Cont’d)

Table 12: The Detailed Information for Test Data Set #3 and Data Set #4.

File Size (KB)
File Name

No. of
Files Data Set #3 (html type) Data Set #4 (txt type)

Hello 1 45 35
ID utils 1 99 50
indent 1 136 65
Info 1 100 61

info standalone 1 166 96
Libc 1 4392 2772

Libidn 1 277 223
Libtool 1 433 274

lightning 1 151 122
M4 1 1 334

Make 1 793 483
Sed 1 161 87
Tar 1 1066 526

Texinfo 1 1196 712
Wdiff 1 19 14

total 40 36.0 (MB) 22.3 (MB)

	A Running Time Improvement for Two Thresholds Two Divisors Algorithm
	Recommended Citation

	[10] Hewlett-Packard Development Company, L.P., “White paper: Understanding the HP Data Deduplication Strategy: Why one size doesn't fit everyone,”2008. [Online]. Available:

