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ABSTRACT 

We present the first analysis of extended stellar kinematics of elliptical galaxies where a Yukawa-like correction 
to the Newtonian gravitational potential derived from f (R)-gravity is considered as an alternative to dark matter. 
In this framework, we model long-slit data and planetary nebula data out to 7 Reff of three galaxies with either 
decreasing or flat dispersion profiles. We use the corrected Newtonian potential in a dispersion–kurtosis Jeans 
analysis to account for the mass–anisotropy degeneracy. We find that these modified potentials are able to fit 
nicely all three elliptical galaxies and the anisotropy distribution is consistent with that estimated if a dark halo 
is considered. The parameter which measures the “strength” of the Yukawa-like correction is, on average, smaller 
than the one found previously in spiral galaxies and correlates both with the scale length of the Yukawa-like term 
and the orbital anisotropy. 

Key words: cosmology: theory – galaxies: elliptical and lenticular, cD – galaxies: general – galaxies: kinematics 
and dynamics 

1. INTRODUCTION 

The “concordance” ΛCDM cosmological model, which in­
cludes some unseen cold dark matter (DM) and a cosmological 
constant (Λ) acting as a repulsive form of dark energy (DE), 
has been remarkably successful in explaining the formation and 
evolution of cosmological structures at different scales (e.g., 
Springel et al. 2006). 

However, at cosmological scales, the cosmological constant 
as a “vacuum state” of the gravitational field is about 120 orders 
of magnitude smaller than the value predicted by any quantum 
gravity theory (Weinberg 1989) and comparable to the matter 
density (coincidence problem), even if they evolved decoupled 
in the history of the universe. 

In addition, looking at the galaxy scales there are a few critical 
issues yet to be solved, which are giving a hard time to the whole 
ΛCDM framework. 

Since the discovery of the flat rotation curves of spiral sys­
tems, galaxies have been the most critical laboratory to inves­
tigate the gravitational effects of the DM halos, to be com­
pared against the expectation of the cosmological simulations 
(Navarro et al. 1997, NFW hereafter; Burkert 1995; Navarro  
et al. 2010; Moore et al. 1999). Here, the ΛCDM model is not 
able to fully explain the shallow central density profile of spiral 
and dwarf galaxies (Gilmore et al. 2007; Salucci et al. 2007; 
Kuzio de Naray et al. 2008). Early-type galaxies (ETGs here­
after) have been proven only recently to be consistent with 
ΛCDM predictions (and WMAP5 cosmological parameters, 
e.g., Komatsu et al. 2009) from their centers (Tortora et al. 2009; 
Thomas et al. 2009; Napolitano et al. 2010) to their peripheries 
(Napolitano et al. 2011, N+11 hereafter), although there are also 
diverging results showing that ETGs in some cases have too high 
(Buote et al. 2007) or too low (e.g., Mandelbaum et al. 2008) 
concentrations. 

This very uncertain context has been fertile soil for alternative 
approaches to the so-called missing mass. The basic approach 
is that the Newtonian Theory of Gravity, which has been 

tested only in the solar system, might be inaccurate on larger 
(galaxies and galaxy clusters) scales. The most popular theory 
investigated so far, the Modified Newtonian dynamics (MOND) 
proposed by Milgrom (1983), is based on phenomenological 
modifications of Newton dynamics in order to explain the flat 
rotation curves of spiral galaxies, and has passed a number of 
observational tests (Ferreira & Starkman 2009), including ETG 
kinematics (Milgrom & Sanders 2003; Tiret et al. 2007; Kroupa 
et al. 2010; Cardone et al. 2011; Richtler et al. 2011). Only 
lately has it been derived in a cosmological context (Bekenstein 
2004). 

A new approach, motivated from cosmology and quantum 
field theories on a curved spacetime, has been proposed to 
study the gravitational interaction: the Extended Theories of 
Gravity (Capozziello 2002; Capozziello & Faraoni 2011). In 
particular, the so-called f (R)-gravity seems to have passed 
different observational tests like spiral galaxies’ rotation curves, 
X-ray emission of galaxy clusters, and cosmic acceleration (see, 
e.g., Capozziello et al. 2007a, C+07 hereafter; Capozziello et al. 
2009, C+09 hereafter; Capozziello et al. 2008). This approach 
is based on a straightforward generalization of Einstein theory 
where the gravitational action (the Hilbert–Einstein action) is 
assumed to be linear in the Ricci curvature scalar R. In the case 
of f (R)-gravity, one assumes a generic function f of the Ricci 
scalar R (in particular analytic functions) and asks for a theory 
of gravity having suitable behaviors at small- and large-scale 
lengths. 

As shown in Capozziello et al. (2009), analytic f (R)-models 
give rise, in general, to Yukawa-like corrections to the Newto­
nian potentials in the weak field limit approximation (see also 
Lubini et al. 2011). The correction introduces a new gravita­
tional scale, besides the standard Schwarzschild one, depending 
on the dynamical structure of the self-gravitating system. 

Here, we want to test these Yukawa-like gravitational poten­
tials against a sample of elliptical galaxies. This approach has 
been proposed earlier, in a phenomenological scheme for anti­
gravity, to model flat rotation curves of spiral galaxies (Sanders 
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1984), and recently, in f (R) theories to model disk galaxies 
combined with NFW halos (see Cardone & Capozziello 2011). 
The test we are proposing at galaxy scales is crucial: reproduc­
ing kinematics and then dynamics of these very different classes 
of astrophysical systems in the realm of the same paradigm is 
needed to test these new gravitational theories as an alternative 
to DM which has not been definitely found out at a fundamental 
level. 

The layout of the paper is the following. In Section 2, we  
sketch the main ingredients of f (R)-gravity deriving, in the 
weak field limit, the Yukawa-like corrected gravitational poten­
tial. Section 3 is devoted to the high-order Jeans analysis suitable 
for ellipticals. The dispersion–kurtosis fitting and the data sam­
ple are presented in Section 4. Discussion and conclusions are 
in Section 5. 

2. POST- NEWTONIAN POTENTIALS FROM 
F (R)-GRAVITY 

We are interested in testing a class of modified potentials 
which naturally arise in post-Newtonian approximation of 
f (R)-gravity for which no particular choice of the Lagrangian 
has been provided. 

The starting point is a general gravity action of the form  √ 
A = d4 x −g[f (R) +  XLm] , (1) 

where f (R) is an analytic function of the Ricci scalar, g is the 
determinant of the metric gμν , X = 16πG/c4 is the gravitational 
coupling constant, and Lm describes the standard fluid-matter 
Lagrangian. Such an action is the straightforward generalization 
of the Hilbert–Einstein action obtained as soon as f (R) = R. 

In Capozziello et al. (2009, and reference therein), it has been 
shown that if one solves the field equations in the weak field limit 
under the general assumption of an analytic Taylor expandable 
f (R) function of the form 

f (R) � f0 + f1R + f2R
2 + f3R

3 + · · ·  (2) 

the following gravitational potential arises:   
GM Lδ1(t)e −

r 

Φ = − + 
L 

, (3)
f1r 6r

.
where L = −6f2/f1, and f1 and f2 are the expansion coefficients 
obtained by Taylor expansion. We note that the L parameter is 
related to the effective mass m = (−3/L2)−1/2 = (2f2/f1)1/2 

and can also be interpreted as an effective length. 
From Equation (3), the standard Newton potential is recov­

ered only in the particular case f (R) = R. Furthermore, the 
parameters f1 and f2 and the function δ1 represent the devi­
ations with respect to the standard Newton potential. On the 
solar system scale, it has been shown that Yukawa-like devia­
tions from the pure Newtonian potential are not in contradiction 
with classical tests of general relativity (see, e.g., Capozziello 
& Tsujikawa 2008; Eingorn & Zhuk 2011), thanks to the so-
called Chameleon mechanism (Khoury & Weltman 2004). In 
particular, f1 and f2 parameters are expected to allow the regular 
Newtonian potential, while at larger scales they can assume non­
trivial values (e.g., f1    = 1, δ1(t) = 0, ξ = 1, see Capozziello 
et al. 2007b, 2009). 

Equation (3) can be recast as 

Φ(r) = −  GM 
(1 + δe−

L 
r 

) , (4)
(1 + δ)r 

where the first term is the Newtonian-like part of the potential 
associated with baryonic point-like mass M/(1 + δ) (no  DM),  
and the second term is a modification of the gravity including 
a “scale length,” L associated with the above coefficient of the 
Taylor expansion. If δ = 0, then the Newtonian potential is 
recovered. Comparing Equations (3) and (4), we obtain that 
1 +  δ = f1, and δ is related to δ1(t) through 

6GM δ 
δ1 = −  , (5)

L2 1 +  δ 

where 6GM/L2 and δ1 can be assumed to be quasi-constant. √ 
From Equation (5), it turns out that L ∝ −δ/(1 + δ). Due 
to the arbitrarity of δ1(t), the actual value of the δ parameter 
can assume any value; however, in order to have a Yukawa 
potential with a non imaginary exponent (i.e., L must be real), it 
is required that ξ <  0 or  −1 < δ  <  0. As a comparison, Sanders 
(1984) adopted the same potential as in Equation (4) under the 
assumption of anti-gravity generated by massive particles (of 
mass m0) carrying the additional gravitational force. In this 
case a typical scale length would naturally arise (L = h/m0c 
being a Compton length) and a −1 < δ  <  0 would provide 
a repulsive term to the Newtonian-like term, producing flat 
rotation curves at r » L as observed in spiral galaxies. In 
particular, for a small sample of spiral systems Sanders (1984) 
found −0.95 ; δ ; −0.92. 

Here, we want to test the modified potential in elliptical 
galaxies as in Equation (4), and check whether it is able to 
provide a reasonable match to their kinematics and how the 
model parameters compare with the results obtained from spiral 
systems. We construct equilibrium models based on the solution 
of the radial Jeans equation (see Section 3) to interpret the 
kinematics of planetary nebulae (PNe; see Napolitano et al. 
2002, 2005; Romanowsky et al. 2003; Coccato et al. 2009) 
which are the only stellar-like tracers for galaxy dynamics 
available in ETGs out to ∼5–10 effective radii (Reff ). 

We will use the inner long slit data and the extended PN 
kinematics for three galaxies which have published dynamical 
analyses within the DM halo framework: NGC 3379 (Douglas 
et al. 2007; De Lorenzi et al. 2009, DL+09 hereafter), NGC 4494 
(Napolitano et al. 2009, N+09), and NGC 4374 (N+11). The 
decreasing velocity dispersion profiles of the first two galaxies 
have been modeled with an intermediate mass halo, log Mvir ∼ 
12–12.2 M0, with concentration cvir = 6–8 and a fair amount 
of radial anisotropy in the outer regions. For NGC 4374, having 
a rather flat dispersion profile, a more massive (adiabatically 
contracted) halo with log Mvir ∼ 13.4 M0 and cvir ∼ 7 was  
required with a negligible amount of anisotropy in the outer 
regions. These models turned out to be in fair agreement with 
the expectation of a WMAP5 cvir–Mvir relation (N+11) and with 
a Kroupa (2001) initial mass function (IMF), making this sample 
particularly suitable for a comparison with an alternative theory 
of gravity with no-DM as we want to propose here. 

Before we go on with detailed stellar dynamics, we show 
in Figure 1 the circular velocity of the modified potential as a 
function of the potential parameters L and δ for NGC 4494 and 
NGC 4374. As for the spiral galaxies, negative values of the δ 
parameter make the circular velocity more and more flat, also 
reproducing the typical dip (e.g., NGC 4374) of the circular 
velocity found for the DM models (dot-dashed curves) of the 
most massive systems. On the contrary, positive δ values cannot 
produce flat circular velocity curves (see Figure 1). 
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Figure 1. Circular velocity produced by the modified potential in Equation (4) 
for the two galaxies N4494 (top) and N4374 (bottom). In both cases the M/L∗ 
has been fixed to some fiducial value (as expected from stellar population models 
and Kroupa 2001 IMF): M/L∗ = 4.3ϒ0,B for NGC 4494 and M/L∗ = 5.5ϒ0,V 

for NGC 4374. The potential parameters adopted are: L = 25011 and δ = 
0, −0.65, −0.8, −0.9 (lighter to darker solid lines) and L = 18011 and δ = −0.8 
(dashed lines). The dotted line is a case with a positive coefficient of the Yukawa­
like term and L = 500011 which illustrates that positive δ cannot produce flat 
circular velocity curves. Finally, some reference Navarro–Frenk–White (NFW) 
models are shown as dot-dashed lines. 

2.1. A Consistency Check with Galaxy Scaling Relations 

To conclude the inspection of the modified potential as in 
Equation (4), here we want to show that, beside flat rotation 
curves, this also naturally accounts for fundamental scaling 
relations of galaxies: the Tully–Fisher (TF) relation for spirals 
and Faber–Jackson (FJ) relation for ETGs. 

Both relations connect the total mass M of galaxies with some 
characteristic velocity defining the kinetic energy of the systems 
(i.e., the maximum rotation velocity, vmax, for spirals and the 
central velocity dispersion, σ0, for ETGs). In either case the 
kinematical quantities involved are proportional to the circular 
velocity of the systems through some “structure” constant, and 
thus the arguments below apply to galaxies in general. 

Although the point-like version of the potential implies that 
the circular velocity vc scales with mass as M ∼ v 2 (asc,max 
pointed out by Sanders 1986), if one derives the circular velocity 
for an extended galaxy this can be generalized as 

2 v (r) = (GMtot/r∗) × f (r/r∗; δ, L/r∗), (6)c 

where r is a characteristic radius (e.g., the disk length for ∗ 
spirals or the effective radius encircling half of the galaxy light 
for ETGs) and f (r/r ) ∗ δ, L/r is a generic function which ∗
includes the radial dependence 

;
of the enclosed mass and the 

above Yukawa-like term. This function is defined such as, for 
2δ = 0, it gives v c (r) = GM(r)/r as the usual Newtonian 

expression. It is easy to show that if galaxies are homologous, 
then the maximum of vc is reached at the same r/r∗, for a given 
δ and L/r∗, and this maximum can be written as 

v 2 = (7)c,max KMtot/r∗, 

where the constant K depends on the set of parameters {δ, L, r∗}
adopted. In Equation (7), though, Mtot and r∗ are linked by the 
size–mass relation which is generally written as r∗ ∝ Mα , from  tot 
which Equation (7) can be written as 

2 1−α v ∝ M . (8)c,max tot 

The size-mass relation of spiral galaxies can be found in Persic 
et al. (1996, see also Thomas et al. 2009) to be  r∗ ∝ M0.4, while tot 
it is r∗ ∝ M0.6 for ETGs (e.g., Shen et al. 2003; Napolitano et al. tot 
2005). This would give a TF slope of 3.33 and FJ slope of 5, 
which are both in the range of the observed relations (see, e.g., 
McGaugh 2005; Nigoche-Netro et al. 2010, respectively) with 
the remaining discrepancy being mainly due to the conversion 
factor to the observed quantities and non homologies. 

We finally remark that the TF relation has been found not 
to conflict with f (R) potentials in Capozziello et al. (2006), 
although the potentials from f (R) ∝ Rn adopted there are just 
a series expansion of the Yukawa-like potential coming out from 
a more general polynomial f (R) as in Equation (3). 

3. HIGH-ORDER JEANS ANALYSIS 

From the model point of view, the problem of fitting a 
modified potential as in Equation (4) (which is formally self-
consistent since the source of the potential is the only mass of 
the dynamical tracers, i.e., stars) implies the same kind of de­
generacies between the anisotropy parameter, β = 1 − σ 2/σ 2 

θ r 

(where σθ and σr are the azimuthal and radial dispersion compo­
nents in spherical coordinates), and the non-Newtonian part of 
the potential (characterized by two parameters like typical dark 
halos) in a similar way to the classical mass–anisotropy degen­
eracy. We have shown (N+09, N+11) that these degeneracies 
can be alleviated via higher-order Jeans equations including in 
the dynamical models both the dispersion6 (σp) and the kurtosis 
(κ) profiles of the tracers. 

In the following, we will use the assumption of spherical 
symmetry since galaxies in the sample are all E0–E1, for 
which, if one excludes the singular chance that they are all 
flattened systems seen face-on (see discussion in Section 8.1. 
of Douglas et al. 2007), the spherical approximation is good at 
10% (Kronawitter et al. 2000).7 Under a spherical assumption, 
no-rotation, and β = const (corresponding to the family of 
distribution functions f (E, L) = f0L

−2β ; see Łokas 2002 and 
references therein),8 the 2nd and 4th moment radial equations 
can be compactly written as 

∞ 
−2β 2β s(r) = r x H (x)dx, (9) 

r 

6 For the slow-rotating models we use the velocity, vrms 

√ 
= 2 v + 2 σ as a 

measure of the velocity dispersion. 
7 The effect of non-spherical models is outside the scope of this paper, but 
details for NGC 3379 and NGC 4494 can be found in DL+09 and N+09. 
8 Here, there is the caveat that the solution of Jeans Equations does not 
ensure that the final distribution function is non negative and thus fully 
physical (see, e.g., An & Evans 2006).
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Figure 2. Dispersion in km s−1 (top) and kurtosis fit (bottom) of the galaxy sample for the different f (R) parameter sets: the anisotropic solution (solid lines) is 
compared with the isotropic case (dashed line—for NGC 4374 and NGC 4494, this is almost indistinguishable from the anisotropic case). From left to right, NGC 
4494, NGC 3379, and NGC 4374 are shown with DM models as gray lines from N+09, DL+09 (no kurtosis is provided), and N+11, respectively. 

4where s(r) = {ρσ 2; ρv }, β is the anisotropy parameter, and r r   
dΦ dΦ 

2H (r) = ρ ; 3ρ v ,rdr dr 

respectively, for the dispersion and kurtosis equations, where 
4the latter is κ(r) = v /σ 4. In the same equations, Φ(r) is the  r r 

spherical extended source version of the point-like potential as 
in Equation (4)9 and ρ(r) is the three-dimensional density of 
the tracer obtained by multiplying the deprojection of the stellar 
surface brightness profile, j*(r), by some constant stellar mass­
to-light ratio, M/L*. 

This M/L* = const might be a strong assumption to check 
further in a separate paper as it neglects the presence of stellar 
population gradients (see, e.g., Tortora et al. 2010). However, 
color (and M/L) gradients are generally stronger within Reff 
(see, e.g., Tortora et al. 2010) and might mainly drive the best 
fit in the central regions, while they are possibly shallower 
outside (e.g., Tamura & Ohta 2003) where the f (R) parameters 
should be better constrained. In the following, j*(r) is derived 
by photometry presented in previous dynamical studies (i.e., 
DL+09, N+09, N+11 for NGC 3379, NGC 4494, and NGC 4374, 
respectively). 

Equations (9) are the ones interested by the potential modifi­
cation and include four free parameters to be best fitted: the f (R) 
parameters {δ, L}, the “dynamically inferred” stellar mass­
to-light ratio M/L*, and the constant anisotropy β (see also 
Section 4). The solutions of Equations (9) on a regular grid in 
the parameter space are then projected to match the observed 
line-of-sight kinematical profile via ordinary Abel integrals (see 
N+09 for details). 

As mentioned earlier, Equations (9) are written under the 
assumption of a constant β with radius, which provides an 
average global anisotropy distribution over all the galaxy. As 
seen in previous analyses (e.g., N+09, DL+09, and N+11), it is 

This is obtained assuming the onion shell approximation:    r 2π πΦ(r) = φ(r)r 2 sin θdθdϕdr , see also Equation (18) of C+09. 0 0 0 

Table 1 
Model Parameters for the f (R) Potential 

Galaxy Mag (band) Reff M/L* L δ β χ2/dof 

NGC 3379 −19.8(B)  2.2  6  (7)  6  −0.75 0.5(<0.8) 14/25 
NGC 4374 −21.3(V) 3.4 6 (6) 24 −0.88 0.01(0.01) 14/39 
NGC 4494 −20.5(B) 6.1 3 (4) 20 −0.79 0.5(0.5) 18/43 

Notes. Galaxy ID, total magnitude, effective radius, and model parameters for 
the unified solution. DM-based estimates for M/L* and β (NGC 3379: DL+09; 
NGC 4374: N+11; NGC 4494: N+09) are shown in parentheses for comparison. 
M/L* are in solar units, Reff and L in kpc. Typical errors on M/L* are of the 
order of 0.2 M/L0 and on β of 0.2 (see also Figure 3). The small χ2 values are 
mainly due to the large data error bars. 

likely that this might not be a fair assumption, as β turns out to be 
constant somewhere in the outer regions, but strongly varying 
in the central radii. In this preliminary test we will skip this 
implementation of the models since we expect this to possibly 
improve the fit to the data in the central part only, where we 
do not expect the overall dynamics to be strongly ruled by the 
f (R) potential, whose parameters are the main focus of this 
work. Furthermore, we have shown previously (see, e.g., N+09 
and N+11) that the assumption of a constant or radial varying 
anisotropy did not strongly affect the determination of the other 
important parameter, the dynamically based stellar M/L. In the  
following we will take the β = const as a fair estimate of the 
average galaxy anisotropy. 

4. DISPERSION–KURTOSIS FITTING 

In Figure 2, we show the dispersion and kurtosis profiles of 
the three galaxies with the f (R) models superimposed (solid 
lines). The fitting procedure is based on the simultaneous χ2 

minimization of the dispersion and kurtosis profiles over a 
regular grid in the parameter space. The best-fit parameters are 
summarized in Table 1 together with some info from the galaxy 
sample. 
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Overall, the agreement of the model curves with the data is 
remarkably good and it is comparable with models obtained 
with DM modeling (gray lines in Figure 2). 

In all cases, the f (R) models allow us to accommodate a 
constant orbital anisotropy β which is very close to the esti­
mates from the DM models (see, e.g., Table 110). This is mainly 
guaranteed by the fit to the κ(r) which does not respond much 
differently to the modified potential with respect to the DM 
models. Thus, an important result of the analysis is that the or­
bital anisotropy is fairly stable in relation to the change of the 
galaxy potential. In particular, the use of the kurtosis profiles has 
allowed us to solve the degeneracy of the models and favor the 
anisotropic solutions for NGC 3379 and NGC 4494 (NGC 4374 
being almost isotropic everywhere). Although the isotropic so-
lutions also provide a good fit for the dispersion profile only (see, 
e.g., the dashed lines in Figure 2), they do not correctly match 
the observed κ . This produces a significantly worse total 2χ /dof 
(NGC 3379: 45/26; NGC 4374: 35/40; NGC 4494: 27/44) with 
respect to the best fit in Table 1, although it is still close to 

2χ /dof ∼1 mainly because of the large error bars. 
Finally, the best-fit M/L* in Table 1 are very similar to the 

values found for DM models (reported between brackets) in all 
cases, generally consistent with a Kroupa (2001) IMF.  

Looking at the f (R) parameters, in Figure 3 we show the 
marginalized confidence contours of the two main potential 
parameters for the three galaxies. As also reported in Table 1, 
the δ parameter has a mean value of δ = −0.81 ± 0.07 which 
is inconsistent with the one previously found for spiral galaxies 
(e.g., Sanders 1984, also shown in Figure 3). On the contrary, δ 
seems nicely correlated with the other potential parameter, L, as  
expected from Equation (5). In the same figure, the correlation 
is supported by the tentative fit into the δ–L plane (whether or 
not the spiral galaxy sample is included in the fit), although the 
sample is too small to drive any firm conclusion. 

Interestingly, there seems to be a possible increasing trend 
of δ with the orbital anisotropy: this is also shown in Figure 3 
where we have added the fiducial value obtained for the spiral 
sample (having assumed a reference β 1 for fiducial 
tangential anisotropy for late-type systems, 

= −
see, e.g., Battaglia 

et al. 2005). This evidence leaves room for an interpretation of δ 
and the physics of the galaxy collapse (e.g., the spherical infall 
model; Gunn & Gott 1972; Gunn 1977). 

In fact, as discussed in Section 2, δ is linked to δ1, which is 
an arbitrary function that comes out because the field equations 
in the post-Newtonian approximation depend only on the ra­
dial coordinate. From a physical point of view, such a function 
could be related to second-order effects related to anisotropies 
and non-homogeneities which could trigger the formation and 
the evolution of stellar systems. To take into account such a sit­
uation, one should perform the post-Newtonian limit of the the­
ory, not only in the simple hypothesis of homogeneous spherical 
symmetry (Schwarzschild solution), but also considering more 
realistic situations such as Lemaitre–Tolman–Bondi solutions 
(see, e.g., Herrera et al. 2010). 

ˆ

5. DISCUSSION AND CONCLUSIONS 

There is a growing attention to alternative models to the 
ΛCDM paradigm as the latter is still suffering from some 
discrepancies at the galaxy scales and, most importantly, is 

10 For NGC 4374 only to be nicely fitted at all radii we needed to include 
some radial anisotropy in the very central regions, following the β(r) 
distribution adopted in N+11 (see Equation (5), with best fit ra = 22.5 arcsec). 
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Figure 3. Top: 1σ and 2σ confidence levels in the δ − L space marginalized 
over M/L* and β (see also Table 1). Spiral galaxy results from Sanders (1984) 
are shown as an empty triangle with error bars. The solid (dashed) curve 
shows the tentative best fit to the data, including (excluding) the spiral galaxies √ 
and assuming an L ∝ δ/(1 + δ) correlation as expected from Equation (5). 
Bottom: the anisotropy and the δ parameters turn out to be correlated for 
the elliptical sample (full squares). This correlation seems to also include the 
spiral sample cumulatively shown as the empty triangle (here we have assumed 
β = −1.0 ± 0.5 as a fiducial value for spiral galaxies to draw a semi-quantitative 
trend across galaxy types). 

based on the assumption of the existence of two ingredients 
(DM and DE) whose nature is still unknown. 

Different attempts have tried to circumvent the problem by 
introducing modified dynamics, e.g., with the MOND theory 
(see Sanders & McGaugh 2002; Swaters et al. 2010; Cardone 
et al. 2011), but this still seems to be needing some DM, at least at 
cluster scales which might still be consistent with the primordial 
nucleosynthesis (e.g., via high energy neutrinos; Angus et al. 
2010) and does not provide an explanation for the DE. 

Lately, f (R)-gravity models have made their step out as a 
natural explanation for the two dark ingredients of the uni­
verse assuming that they are related to the fact that gravitational 
interaction could present further degrees of freedom whose dy­
namical effects emerge at large scales (Capozziello & Faraoni 
2011). In this paper, we have checked the Yukawa-like modifi­
cation to the Newtonian potential obtained as a post-Newtonian 
approximation of f (R)-gravity for which no particular choice 
of the Lagrangian has been provided, with the only assumption 
being that f (R) is an analytic function. 

We have used a combination of long-slit spectroscopy and 
PN kinematics out to ∼7 Reff in three systems (NGC 3379, 
NGC 4374, NGC 4494) for which ΛCDM models turned out to 
be fairly consistent with WMAP5 measurements (see N+11 for 
a discussion). 
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Due to the small galaxy sample, the spirit of this analysis has 
been to check whether (1) the modified potential introduced 
by the f (R)-gravity allowed a fit to the galaxy kinematics 
comparable to the DM models and (2) the three galaxies returned 
a parameter δ which is comparable with spiral galaxies (Sanders 
1984). 

We have found that the modified potentials allow us to nicely 
model the three galaxies with a distribution of the δ parameters 
which turned out to be inconsistent with the results found in 
spiral systems. We have shown some hints that δ might be 
correlated with the galaxy anisotropy, β, and the scale parameter, 
L, with elliptical and spiral galaxies following the same pattern. 

This evidence can have interesting implications about the 
ability of the theory to make predictions on the internal structure 
of the gravitating systems after their spherical collapse (e.g., 
Gunn 1977) which have to be confirmed on a larger galaxy 
sample which we expect to do in the near future. 

Despite some simplifications of the model adopted (e.g., 
constant M/L and anisotropy across the galaxy) and the 
degeneracies between the model parameters, the results are very 
encouraging. The fit to the data is very good in all cases and 
both the stellar M/L (with Kroupa IMF generally favored) and 
orbital anisotropy turn out to be similar to the one estimated if 
a dark halo is considered. 

Getting a modified gravity to work self-consistently for 
all gravitating systems in general, and all galaxy families in 
particular, is a very non-trivial challenge that has foiled other 
theories (e.g., MOND). 

We thank the anonymous referee for constructive com­
ments which allowed us to significantly improve the paper. 
A.J.R. was supported by National Science Foundation grants 
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