August 2016

Proximal effects in bimetallic catalysts for olefin polymerization, in cross metathesis of poly(3-R-cyclooctenes), and in multiblock polymers

Madalyn Radlauer
California Institute of Technology

Theodor Agapie
California Institute of Technology

Marc Hillmyer
University of Minnesota - Twin Cities

Follow this and additional works at: https://scholarworks.sjsu.edu/chem_pub

Recommended Citation

Madalyn Radlauer, Theodor Agapie, and Marc Hillmyer. "Proximal effects in bimetallic catalysts for olefin polymerization, in cross metathesis of poly(3-R-cyclooctenes), and in multiblock polymers" *American Chemical Society 252nd National Meeting* (2016).

This Presentation is brought to you for free and open access by the Chemistry at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications, Chemistry by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.
Tolerance and Incorporation of Amino Olefins by Dinickel Bisphenoxyiminato Polymerization Catalysts

In coordination insertion polymerization, strong binding of polar moieties hinders polymerization. When polar groups are present, chain walking steps can halt or terminate polymerizations.

We designed bimetallic complexes that could differentiate between proximal and electronic effects.

Dizirconium dif(amine bis(phenoolate)) Polymerization Catalysts for the Enhancement of Stereoregularity

We designed early transition metal bimetallic complexes to see if the strategy we developed with bimetallic Ni complexes could extend to group 4 complexes known for higher activity and incorporation of comonomers.

Regioselective Cross Metathesis for Block and Heteroterephaleic Polymer Synthesis

Ring-opening metathesis polymerization (ROMP) of 3-substituted COE monomers (BRCOE) is regio- and stereoselective: head-to-tail and trans.

We studied cross metathesis (CM), a secondary reaction during ROMP that occurs between chains and found that it also happens with high head-to-tail and trans selectivity.

Self Assembled Block Polymers: Morphology of Tri- and Triblock Terpolymers and Applications in Water Purification

We examined triblock polymers with high incompatibility of covalently attached blocks to study the effects of frustration.

Theory suggests exciting possible morphologies for ABC4 tetrablock terpolymers with high internal incompatibility.

We are developing new robust block polymer-derived charge mosaic membranes that will significantly advance water desalination technology by providing higher salt selectivity and throughput.

Collaborators, funding, and acknowledgements: Theodor Agapie (PI)