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Abstract: 

 

Progress in the Java language has been slow over the last few years. Scala is emerging as one of 

the probable successors for Java with features such as type inference, higher order functions, 

closure support and sequence comprehensions. This allows object-oriented yet concise code to 

be written using Scala. While Java based MVC frameworks are still prevalent, Scala based 

frameworks along with Ruby on Rails, Django and PHP are emerging as competitors.  Scala has 

a web framework called Lift which has made an attempt to borrow the advantages of other 

frameworks while keeping code concise.  

Since Sun’s MVC framework, Java Server Faces 2.0 and its future versions seem to be heading 

in a reasonably progressive direction; I have developed a framework which attempts to overcome 

its limitations. I call such a framework ―Scala Server Faces‖. This framework provides a way of 

writing Java EE applications in Scala yet borrow from the concept of ―convention over 

configuration‖ followed by rival web frameworks. Again, an Eclipse tool is provided to make the 

programmer's task of writing code on the popular Eclipse platform. Scala Server Faces, the 

framework and the tool allows the programmer to write enterprise web applications in Scala by 

providing features such as templating support, CRUD screen generation for database model 

objects, an Ant script to help deployment and integration with the Glassfish Application Server. 
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1. Introduction 

The Model-View-Controller (MVC) design pattern is considered to be the ideal architecture for 

developing interactive Enterprise web applications [11]. When such applications are written 

using Java based MVC based frameworks like Java Server Faces, Apache Struts or Spring; they 

seem to add a lot of overhead because they require the programmer to pay attention to 

unnecessary configuration protocols. Ruby on Rails demonstrated [2] that this was unnecessary 

by following the ―convention over configuration‖ approach and this allowed programmers to 

develop web applications in a short amount of time. 

Scala’s Lift web framework [11] has made an attempt to follow Ruby on Rails in following 

convention and simplifying the setting up of a basic web based CRUD (create-read-update-delete) 

application [2]. However, most enterprise scale web applications require much more than a 

simple CRUD application. As the database transactions get more complex, a transactional 

framework such as Java Persistence API (JPA) which offers features such as object/relational 

mapping [4], Java language metadata annotations and/or XML descriptors to define the mapping 

between Java objects and a database; becomes necessary. 

Again, a MVC framework like Sun’s Java Server Faces (JSF) 2.0 [24] offers advantages like 

separation of behavior and presentation, component-level control over statefulness and events 

easily tied to server-side code.  

However, other frameworks such as Ruby on Rails and Lift Web have attempted to provide the 

same advantages of JSF and JPA to an extent, by making decisions on the programmer’s behalf 

and following the ―convention over configuration‖ approach. Proponents of these frameworks 

believe that by following this approach, development happens at rapid rate compared to using 

Java based frameworks [18]. 

Since Java Server Faces 2.0 and future versions of the framework seem to be headed in the right 

direction [22], I have developed a framework which improves on JSF 2.0 using Scala as the 

programming language and following the ―convention over configuration‖ approach. I picked 

Scala as the language of implementation because of its various advantages and features outlined 

well by its founder Martin Odersky[1] and in Section 3. I call this framework ―Scala Server 

Faces‖ and it has the following features built on top of JSF 2.0: 

 An Eclipse Plugin tool 

 Scala Language support 

 JPA support 

 Command line support 

 Integrate with Glassfish as the application server 

 Generate CRUD screens for Entity classes 

 Mixed Java and Scala projects 

 

2. Related Work  

Other web frameworks which use Scala as the base programming language or are beginning to 

support Scala are: 

Lift is a web development framework which uses Scala as the programming language for writing 

web applications. Lift stresses the importance of security, maintainability, scalability and 

performance, while helping to improve developer productivity [12]. Lift borrows ideas from 
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many other web frameworks while also introducing new features of its own. Since Lift 

applications are written in Scala, all the Java libraries are available to be used as a part of the Lift 

application. 

Some of the notable features of Lift are: 

1. Follows the convention over configuration approach - minimal XML. 

2. Excellent support for Ajax and Comet (server pushes updates to the client). 

3. Templating system supports validated HTML - based on Apache wicket. 

4. Runs on the JVM. 

Lift attempts to separate presentation content and business logic by keeping logic out of the 

presentation layer. Lift provides a way to bind user-generated data into the presentation layer. 

This is possible because Lift’s templating is built on the XML processing capabilities of the 

Scala Language, and allows things such as nested templates, injection of user-generated content, 

and data binding capabilities.  

Every Lift application has a Boot.scala class which is responsible for the setup and 

configuration of the Lift framework. The Boot class is always located in the bootstrap.liftweb 

package and is shown here: 

class Boot {  
 def boot {  
   // where to search snippet  
   LiftRules.addToPackages("demo.helloworld")  
  
   // Build SiteMap  
   val entries = Menu(Loc("Home", "/", "Home")) :: Nil  
   LiftRules.setSiteMap(SiteMap(entries:_*))  
 }  
}  

Listing 1 – Lift’s Boot.scala class 

There are two basic configuration elements, placed in the boot method. The first is the 

LiftRules.addToPackages method which instructs Lift to base its searches in the 

demo.helloworld package. That would mean that snippets would be located in the 

demo.helloworld.snippets package, views would be located in the demo.helloworld.views 

package, etc. For multiple packages, addToPackages is called multiple times. The second item in 

the Boot class is for the creation of a navigation menu for the application.  

The Lift template is shown below: 

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:lift="http://liftweb.net/">  
 <head>  
   <meta http-equiv="content-type" content="text/html; charset=UTF-8" />  
   <meta name="description" content="" />  
   <meta name="keywords" content="" />  
  
   <title>Welcome to Lift </title>  
 </head>  
 <body>  
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   <lift:bind name="content" />  
   <lift:Menu.builder />  
   <lift:msgs/>  
 </body>  
</html> 

Listing 2 – Lift template 

 

In the template above, the Scala packages containing classes are bound to the template using 

Lift’s custom tag library. The <lift:Menu.builder /> will iterate through the Menu entries from 

the Boot.scala class and create a navigation menu for the page, and the <lift:bind 

name=”content”/> allows other XHTML snippets to be inserted in to the template. 

Due to the above features and more, Lift has a growing community of users [25]. However, Lift 

lacks a testing framework and support for Internationalization. It also lacks Editor Support which 

reduces the number of programmers willing to use Lift as a framework for developing web 

applications. 

Scalate is a template engine for generating text and markup based on the Scala language [28].  

It supports multiple template systems: 

 Scala Server Pages (SSP) which is like Java Server Pages (JSP). 

 SCaml which is a Scala dialect of the Haml (HTML Abstraction Markup Language). 

It also supports page templates which reduces redundancy in development. Scalate works well 

with other frameworks [26] and can be used in any web application or used in a standalone 

application to template things like emails. 

Like JSP, Scalate allows calling Scala functions from inside the template as shown below: 

object Cheese { 
  def foo(productId: Int) =  
    <a href={"/products/" + productId} title="Product link">Click here!</a> 
} 

Listing 3 – Scala class in a Scalate application 

 

The above function creates a hypertext link using Scala’s XML support. This can be invoked in 

the SSP template as shown below: 

<%@ var user: User %> 
<% import Cheese._ %> 
 
<p> 
  Hi ${user.name},${foo(123)} 
</p> 

Listing 4- Scalate’s Scala Server Pages  

 

However, Scalate suffers from the same problems as JSP and does not provide "separation of 

concerns", that is; it embeds calls to the business logic in the presentation layer. When these 

pages are handed to a designer, there is a chance bugs get introduced into the code.  
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Play is a Java Web development framework which has now extended its support to the Scala 

language [27]. It makes an attempt to follow the "convention over configuration" approach of 

Ruby on Rails by supporting features such as "hot deployment of code". Again, it tries to reduce 

"state" in its business logic and also provides a Groovy like expression syntax for the view pages. 

Play also provides a super class layer over the Java Persistence API taking care of the entity 

manager and other configurations. 

Every Play application written in Scala has an Application.scala class which is responsible for 

the setup and configuration of the application. This class is located inside the controllers 

package and is shown here: 

import play._ 
import play.mvc._ 
  
object Application extends Controller { 
  def index = render()   
} 

Listing 5- Play framework’s controller object 

 

The Play controller can use Scala ―Traits‖ to combine several interceptors as shown below: 

import play.__ 
import play.mvc.__  
  
trait Secure extends Controller { 
  
  @Before 
  def check { 
    session("user") match { 
    name: String => info("Logged as %s", name) 
  _ => Security.login 

} 
  } 
} 

 

After defining the trait Secure above, it can be used in the application controller from Listing 5. 
object Application extends Controller with Secure { 
  def index = "Hello world" 
} 

Listing 6- Play framework can combine interceptors 

 

However, Play framework for Scala is still in development mode and the framework developers 

currently discourage its use for developing a complete application [27]. 

3. Why Scala? 

Scala is a programming language designed to express common programming patterns in a 

concise and type-safe way. It unifies and generalizes object-oriented and functional 

programming, enabling Java and other programmers to be more productive. Code sizes are 

typically reduced [1] when compared with equivalent Java programs.  
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Eye-tracking experiments [30] show that for program comprehension, average time spent per 

word of source code is constant. So, roughly, half the code means half the time necessary to 

understand it. 

Due to these reasons and Scala’s features, companies who would depend on Java for business 

critical applications are turning to Scala to boost their development productivity, applications 

scalability and overall reliability. 

For example, at Twitter, the social networking service, decided to migrate from Ruby due to its 

performance problems. Robey Pointer moved Twitter’s core message queue from Ruby to Scala. 

They chose Scala over Java because although Java overcame Ruby on Rails’ performance 

limitations, it was too verbose. These concise 1500 lines of Scala code is now an open source 

project under the name project Kestrel [16]. 

 

Some of Scala's features which make it a potential successor for Java are: 

 

1. Scala is object-oriented - Scala is an object-oriented language in the sense that every 

value is an object. Types and behavior of objects are described by classes and traits. 

Classes are extended by sub-classing and a flexible mixin-based composition mechanism 

as a replacement for multiple inheritance. 

2. Scala is also a functional language – In Scala, every function is a value. Scala provides 

a lightweight syntax for defining anonymous functions, it supports higher-order functions, 

it allows functions to be nested, and supports currying. Scala's case classes and its built-in 

support for pattern matching are modeled on algebraic types used in many functional 

programming languages. Again, Scala's pattern matching ability naturally extends to the 

processing of XML data. In the same context, sequence comprehensions can be used to 

formulate queries. These features of Scala make it an ideal language for developing 

applications like web services. 

3. Scala is statically typed - Scala is equipped with a type system that enforces statically 

that abstractions are used in a safe and coherent manner. Scala’s type system supports the 

following: 

a. generic classes, 

b. variance annotations, 

c. upper and lower type bounds, 

d. inner classes and abstract types as object members, 

e. compound types, 

f. explicitly typed self references, and 

g. Polymorphic methods. 

4. Scala is extensible - Scala provides language mechanisms that make it easy to add new 

constructs to the language in form of libraries: 

a. any method can be used as an infix or postfix operator, and 

b. Closures are constructed automatically based on the expected type (target typing). 

Use of the above two features facilitates the definition of new statements without having 

to extend the syntax and without using macro-like facilities. 

5. Scala interoperates with Java and C# - Scala is designed to interoperate well with Java 

and C#. Scala has the same compilation model (separate compilation, dynamic class 
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loading) like Java and allows access to thousands of existing Java libraries. The 

Microsoft .NET Framework is also supported. 

 

To demonstrate an example of how Scala is compact and reduces boilerplate from Java 

code, consider the example below: 

 

class Person { 
     private String firstName; 
     private String lastName; 
     private int age; 
 
    public Person(String firstName, String lastName, int age) { 
      this.firstName = firstName; 
      this.lastName = lastName; 
      this.age = age; 
    } 
 
    public void setFirstName(String firstName) { this.firstName = firstName; } 
    public void String getFirstName() { return this.firstName; } 
    public void setLastName(String lastName) { this.lastName = lastName; } 
    public void String getLastName() { return this.lastName; } 
    public void setAge(int age) { this.age = age; } 
    public void int getAge() { return this.age; } 
  } 
 

    The above Java class can be written in Scala like this: 

  class Person(var firstName: String, var lastName: String, var age: Int) 
 

Listing 7 – Demonstration of the brevity of Scala code 

 

In the above Scala class, the constructor is the argument list to the class, where each 

parameter is declared as a variable (var keyword). It automatically generates the equivalent 

of getter and setter methods, like the attribute accessors in Ruby. The most important thing to 

note is the brevity of the code. 

 

4. Technical Background 

Java Platform, Enterprise Edition (Java EE) 6 is the latest industry standard for enterprise 

Java computing. These standards are developed through a community process [15] and built 

on top of the of Java Platform, Standard Edition (Java SE), Java EE adds libraries and system 

services that support the scalability, accessibility, security, integrity, and other requirements 

of enterprise applications. 

The goal of the Java EE platform is to reduce the complexity of developing enterprise 

applications. Towards this end, the platform provides a development model, APIs and a 

runtime environment allowing developers to focus on functionality alone. 

In a multi-tiered application, the functionality of the application is separated into isolated 

functional areas, called ―tiers‖. Typically, multi-tiered applications have a ―client tier‖, a 

―middle tier‖, and a ―data tier‖ (also called the ―enterprise information systems tier‖). The 
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client tier consists of the presentation layer that makes requests to the middle tier. The middle 

tier's business logic handles client requests and process data, storing it in the data tier. 

I will expand on the ―web tier‖ and the ―data tier‖ in the next two sections. 

4.1 Java EE web development 

The web tier of Java EE development consists of components that handle the interaction 

between clients and the business tier. Its primary tasks are the following:  

 Dynamically generate content in various formats for the client. 

 Collect input from users of the user interface and return results from the business tier 

components. 

 Control the order in which pages are displayed on the client. 

 Perform some validation logic and hold data temporarily in Java beans. 

 

The Java Server Faces 2.0 framework, which is developed under JSR – 314 establishes the 

standard for building server-side user interfaces.  The main components of Java Server Faces 

technology are as follows: 

 

 A "web bean" for representing user interface (UI) components and managing their 

state; handling events, server-side validation, and data conversion; defining page 

navigation; supporting internationalization and accessibility; and providing 

extensibility for all these features 

 

 Two Java Server Pages (JSP) custom tag libraries for expressing UI components 

within a JSP page and for wiring components to server-side objects 

 

Web beans are instantiated by using the concept of "dependency injection" and the mapping 

of the UI with the Java class is controlled using annotations. To define a web bean: 

@ManagedBean (name="webBeanName") 
@SessionScoped 
public class SomeWebBean { 
  //implementation of the web bean 
} 

Listing 8 – Java managed bean 

 

Using one of the following annotations: @javax.inject.Named("webBeanName) or 

@javax.annotation.ManagedBean(name="webBeanName"), the user can refer to the managed 

bean from the UI. For example: 
 

<p>Current Tasks:</p> 
<h:dataTable value="#{webBeanName.tasks}" var="row" border="1"> 
  <h:column> 
    <h:outputText value="#{row}"/> 
  </h:column> 
</h:dataTable> 

Listing 9 – Accessing the Managed Bean from the XTHML page 
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These beans can be stored within the request, session, or application scopes using the 

@SessionScoped, @RequestScoped or @ApplicationScoped annotations. Based on these 

annotations, the instances of the bean are made visible to other beans.  

 

Some of the other key features provided by the Java Server Faces 2.0 specification include: 

 

1. Bean Validation: Allows data from the user interface to be validated before it's used 

in the business logic of the application and when the data is stored in a database. This 

makes validation simple and avoids redundant validations. Consider a simple class 

which uses this feature: 

public class Address { 
  @NotNull @Size(max=30) 
  private String addressline1; 
 
  @Size(max=30) 
  private String addressline2; 
   .......... 
 } 

Listing 10 – Validator Bean 

In the above example, the @NotNull annotation specifies that the annotated element, 

addressline1, must not be null. The @Size annotation imposes the limit that the 

annotated strings, addressline1 and addressline2, should not be longer than the 

specified maximum of 30 characters. 

 

2. Template based system using Facelets: Facelets is a powerful but lightweight 

declaration language that the programmer can use to develop JSF pages and to build 

component trees. Facelets are written using XHTML markup language and provide 

several advantages over the traditional use of JSP. Facelets also enables code reuse 

and hence reduce the time to develop and deploy applications. Using templates, the 

programmer can avoid creating similarly constructed pages multiple times.  

 

Here is an example of a template page: 

  

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

 
   <html xmlns="http://www.w3.org/1999/xhtml" 

xmlns:ui=http://java.sun.com/jsf/facelets     
xmlns:h="http://java.sun.com/jsf/html"> 

 
   <head> 

        <title> 
          <ui:insert name="title">Page Title</ui:insert> 
        </title> 

</head> 
        <body> 
          <div> 

http://java.sun.com/jsf/facelets
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         <ui:insert name="Links"/> 
</div>       

</body> 
</html> 

Listing 11 – JSF 2.0 Facelets Template 

The Facelets tag library contains a templating tag, <ui:insert>. To implement 

templating, create a template page that includes the <ui:insert>  tag, then create a 

client page that uses the template. In the client page, use the <ui:composition> tag to 

point to the template and <ui:define>  tags to specify content to insert into the 

template.  

 

3. Ajax support: JSF 2.0 has built-in support for Ajax. With Ajax, web applications can 

retrieve data from the server asynchronously in the background without interfering 

with the user experience and behavior of the existing page.  

 

4. The most important feature provided by Java Server Faces is its component model. It 

provides a rich architecture for managing component state, processing component 

data, validating user input and handling events. 

 

Due to the above mentioned features and many others, Java Server Faces 2.0 is an excellent 

web development framework and will continue to be so over the next few years. 

 

4.2 Java OR Mapping Frameworks 

The Java Object Relational (OR) mapping frameworks usually form the ―data tier‖ of Java 

EE applications and are used to manage these three programming activities: 

   1. Connect to a data source, like a relational database 

   2. Send SQL queries to the database 

   3. Retrieve results from the database in response to the query  

The following code fragment written using the Java Database Connectivity (JDBC) API 

gives a simple example of these three steps: 

 

Connection con =  
DriverManager.getConnection("jdbc:Driver:driverName","username","password"); 
Statement stmt = con.createStatement(); 
ResultSet rs = stmt.executeQuery("SELECT * FROM Table1"); 
List<ClassName> list = new ArrayList<ClassName>(); 
while (rs.next()) { 
  //Process each result set item and add to list 
} 

Listing 12 – JDBC database code snippet 

 This short code fragment instantiates a DriverManager object to connect to a database driver 

and log into the database, instantiates a Statement object that queries the database; 

instantiates a ResultSet object that retrieves the results of the query, and executes a simple 

while loop, which retrieves and processes those results.  
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This can be done either using the JDBC API or more advanced OR mapping frameworks 

such as JPA or Hibernate. JPA has been well adopted and is recognized as one of the 

standard mechanisms for OR persistence [19], so I have used JPA as the OR mapping API 

through out my project.  

In a large enterprise application, OR frameworks like JPA and Hibernate are better because: 

1. JPA is not tightly tied with any underlying database, where as JDBC is tightly tied with 

the underlying database. "Write once, persist anywhere" using JPA can be achieved by 

changing the dialect in XML configuration file where as in JDBC, the code needs to be 

changed. 

2.  They help avoid low level JDBC and SQL code, instead they leverage object oriented 

programming and object model usage. 

3. JPA and Hibernate also provide high end performance features such as caching, lazy 

loading of results and query optimizations. 

 

The code snippet from listing 6 can be written in JPA can be as below: 

@PersistenceContext EntityManager em = null; 
Query query = em.createQuery(“SELECT x from Table1 x”); 
@SuppressWarnings(value = "unchecked") 
List<Question> result = (List<Question>) q.getResultList(); 
 

Listing 13 – JPA code snippet 

In the above example, the server handles the instantiation of the EntityManager and uses the 

XML configuration file to retrieve the database related parameters such as the underlying 

database name, type, credentials and the database driver to be used. 

Some of the key features of the Java Persistence API are: 

1. The JPA framework provides ―Java Persistence Query Language‖ (JPQL) to query 

entities and their persistence state. In the Java EE 6 edition, there have been a number of 

enhancements to the JPQL. 

2. Another feature introduced in JPA 2.0 is the Criteria API, an API for dynamically 

constructing object-based queries. In essence, the Criteria API is the type-safe equivalent 

of JPQL. With it, the Java compiler can verify for correctness at compile time. This was 

not possible with JPQL. 

3. JPA also supports ―pessimistic locking‖. Locking is a technique for handling transaction 

concurrency in the database. A Transaction is a unit of work in the database. The 

transaction manages what happens within that unit of work, and when an error occurs the 

transaction can roll back any changes performed. When two or more database 

transactions concurrently access the same data, locking is used to ensure that only a 

single transaction can change the data at a time.  There are two kinds of locking: 

optimistic and pessimistic. While JPA 1.0 only supported optimistic locking, JPA 2.0 

now also supports pessimistic locking. In pessimistic locking, a transaction that reads the 

data imposes a lock on it. Other transactions cannot change the data until the first 

transaction completes and commits. 
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4.3 Scala and Java EE 

Scala provides various ways of improving upon the existing Java EE platform. The Scala 

programming language can be used to write Java EE components such as web beans, stateful 

and stateless session beans and entity beans. The attributes of Scala as defined in Section 3 

are what make it suitable replacement.  

Consider a managed bean written in Java: 

 

@ManagedBean(name = "quiz") 
@SessionScoped 
public class QuizMB { 
  @EJB private QuizSB quizSB; 
 
  private int score; 
  private int currentQuestionIndex; 
  private List<Question> questions; 
  private Integer response; 
 
  public int getScore() { 
    return score; 
  } 
     
 public Question getCurrentQuestion() { 
   if (questions == null) questions = quizSB.getQuestions(); 
   return questions.get(currentQuestionIndex); 
 } 
     
 public Map<String, Integer> getCurrentChoices() { 
   Map<String, Integer> r = new LinkedHashMap<String, Integer>(); 
   for (Choice c : getCurrentQuestion().getChoices()) { 
     r.put(c.getText(), c.getId()); 
   } 
     return r; 
 } 
     
 public Integer getResponse() { 
   return response; 
 } 
     
 public void setResponse(Integer response) { 
   this.response = response; 
 } 
     
 public String submit() { 
   if (currentQuestionIndex == 0) score = 0; 
   if (getCurrentQuestion().getAnswer().getId() == response.intValue()) 
     score++; 
       if (currentQuestionIndex < questions.size() - 1) { 
         currentQuestionIndex++; 
         response = null; 
         return null; 
       } 
       else { 
         currentQuestionIndex = 0; 
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         return "done"; 
       } 
    } 
} 

Listing 14 – Java Quiz Managed Bean 

I have rewritten the above Java class in Scala in listing 20 while comparing JSF with Scala 

Server Faces. The Scala equivalent of the above class is 20 lines shorter. Scala accomplishes this 

by removing getter and setters, supporting Java annotations and allowing a functional approach 

to programming where relevant.  

Again, writing and maintaining JPA queries become much simpler because of Scala's terse 

syntax. Consider the Java method below for example: 

  

public List<A> findAll(EntityManager em, String queryName,  
    Map<String, Object> params) { 
  Query query = em.createNamedQuery(queryName); 
  Iterator it = mp.entrySet().iterator(); 
  while (it.hasNext()) { 
    Map.Entry pairs = (Map.Entry)it.next(); 
    query.setParameter(pairs.getKey(),pairs.getValue()); 
  } 
  List<Question> result = (List<Question>) q.getResultList(); 
  return result; 
} 

 Listing 15 – JPQL method to create a named query 

 

The above Java method creates a NamedQuery using an EntityManager object, iterates through a 

Map and sets the query parameters. Rewriting the same method in Scala: 
 
def findAll[A](em : EntityManager, queryName : String,  
  params : Pair[String,Any]*) : java.util.List[A] = {  
  val query = em.createNamedQuery(queryName) 
  params foreach { param => query.setParameter(param._1, param._2) } 
  val result = query.getResultList().asInstanceOf[java.util.List[A]] 
  result 
} 
    

Listing 16 – JPQL method rewritten in Scala 

 

The Java method when re-written in Scala becomes almost half its original size, yet easy to 

understand and debug. In the later sections, I will explain and provide examples of how 

components such as web beans, session beans and entity beans can be written in a simpler 

manner using Scala. 
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5. Implementation of Scala Server Faces 

5.1 What is Scala Server Faces? 

My definition of Scala Server Faces (SSF) refers to the writing of Java EE applications based on 

the ―convention over configuration‖ approach with Scala as the programming language and 

using JSF 2.0 as the web development framework.  

It also entails an Eclipse based plugin which makes this approach possible by providing JPA 

support, pre-configuring all the relevant XML files, an Ant build file which supports mixed Java 

and Scala projects and reduces development time by generating CRUD (Create-Read-Update-

Delete) screens for entity classes.  

Finally, Scala Server Faces also comes pre-integrated with the Glassfish application server. 

These features of SSF helps in improving programmer productivity while reducing bugs and 

application deployment time. 

 

5.2 The components of Scala Server Faces 

The components and technologies which are incorporated into Scala Server Faces are:  

1. Java Server Faces 2.0 - JSF is a request-driven MVC web framework based on 

component driven UI design model. A detailed explanation has been provided in Section 

4.1. 

2. Java Persistence API - The JPA framework allows the programmer to effectively 

manage object relational mapping in applications. A detailed explanation of its core 

features has been provided in Section 4.2. 

3. The Scala Programming Language - Scala is a programming language which fuses 

object-oriented and functional programming. It is aimed at the construction of 

components and component systems [1]. A detailed explanation of its core features has 

been provided in Section 3. 

4. Eclipse Plugin - Using a code editor for developing Enterprise level applications is not 

only the current industry standard, but also a necessity due to intertwined references in 

code and other aspects of programming. Among all the editors used for Java development, 

Eclipse is the most popular [15]. Scala Server Faces provides a plugin for the Eclipse 

platform thus giving the programmer a way of writing Java EE applications in Scala, on 

top of the Eclipse web tools platform.  

5. Integration with the Glassfish server - The GlassFish V3 application server implements 

the Java EE 6 platform specification. Features like fast startup time, redeploy-on-save, 

session state persistence and dynamic language support make it an ideal platform to 

deploy Enterprise web applications written in Scala.  

6. Ant build file – Scala Server Faces projects are pre configured with an Ant build file 

which allows not only for clean deployment of web applications to the server, but also for 

the possibility of having mixed Java and Scala projects which is unique. 

 

5.3 Features of Scala Server Faces 

The Scala Server Faces framework currently provides the following set of features: 

1. Follows the ―convention over configuration‖ approach. 
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2. Ability to create a ―Scala Server Faces project‖ which creates a project in the workspace 

with the proper package structure and pre-set classpath.  

3. A configurable build.xml ant deployment file. 

4. The ability to mix Java and Scala code in the same project. 

5. A sample session bean with appropriate Scala annotations 

6. Pre configured to run on the Glassfish server. 

7. Uses XHTML as the standard templating engine instead of JSP. 

8. CRUD (create-read-update-delete) screen generation for Entity Classes. 

9. Preconfigured Java Persistence framework with a persistence.xml file. 

 

5.4 The Scala Server Faces Eclipse Plugin 

I developed the Scala Server Faces plugin for Eclipse using the Eclipse Plug-in Development 

Environment (PDE), which is an integrated development environment for developing extensions 

to the Eclipse platform. Using the PDE is like using Eclipse to develop Eclipse. This allows 

developers to use the existing tools to extend the platform itself. 

The Scala Server Faces (SSF) plugin is built on top of the ―Eclipse Web Tools‖ Plugin and the 

―Scala IDE‖ plugin for Eclipse.  

The Scala IDE plugin provides important features such as syntax highlighting, inferred type and 

scaladoc hovers, hyper linking to definitions, code completion, error and warning markers, 

indentation, brace matching and debugger support [7].  

The Web Tools Plugin provides features such as Server tools, HTML, CSS and JavaScript tools, 

XML and DTD tools and so on. Thus, building the SSF plugin on top of these plugins allowed 

me enhance the pre-existing useful feature set. 

I will elaborate below on how the plugin was implemented. 

 

1. Create a new Scala Server Faces project wizard- Extend the new project wizard by adding 

the following XML to the plugin.xml file. 

<extension point="org.eclipse.ui.newWizards"> 
  <category 
    id="customplugin.category.wizards" 
    name="Scala Server Faces Wizard"> 
  </category> 
  <wizard 
    id = "customplugin.wizard.new.custom" 
    name = "Dynamic Scala Server Faces Project"  
    class="customplugin.CustomProjectNewWizard" 
    category="customplugin.category.wizards"> 
    <description>Create a Scala Server Faces project</description> 
  </wizard> 
</extension> 

Listing 17 – Extending the new project wizard 

 

This extends the "New Project Wizard" as shown in the image below. 
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Figure 1 – New Project Wizard 

2. Create the Project structure and its components on the file system - Define a class 

which extends the Wizard class and implements the INewWizard and IExecutableExtension 

interfaces. In the class below, when the user clicks the ―Finish‖ button, the performFinish() 

method is invoked which checks the current configuration and user input parameters and 

starts creating the appropriate files, folders and settings. It also adds ―Scala nature‖ to the 

project. 

 

public class ScalaServerFacesWizard extends Wizard implements 
INewWizard,IExecutableExtension { 

............... 

/** 

 * Read project name,location from user input and create the project   

 * structure on the File system. 

 * Also update the user perspective to be Java EE. 

 */ 

public boolean performFinish() { 

  String name = page.getProjectName(); 

  URI location = null; 

  if (!page.useDefaults()) { 

    location = page.getLocationURI(); 
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  }  

  //create project on the file system 

  createProject(name, location); 

  BasicNewProjectResourceWizard.updatePerspective(config); 

  return true; 

} 

/** 

 * Based on the project name and location, create the appropriate folder  

 * structure, set the context path for the sun-web.xml file. 

 * Also set the project nature, classpath and preferences. 

 * @param projectName 

 * @param location 

 * @return IProject 

 */ 

public IProject createProject(String projectName, URI location) { 

  project = createBaseProject(projectName, location); 

  try { 

 addNature(project); 

String[] paths = {"src", "WebContent/WEB-INF",  

"WebContent/WEB-INF/lib","src/META-INF","build",".settings" };  

 addToProjectStructure(project, paths); 

String[] files = {"WebContent/index.xhtml","WebContent/WEB-INF/web.xml", 

       "WebContent/WEB-INF/faces-config.xml","persistence.xml", 

 "build.properties", "build.xml","WebContent/WEB-INF/beans.xml", 

              "WebContent/WEB-INF/sun-web.xml"}; 

 createFiles(project, files); 

   setContextPath(project, projectName); // for the sun-web.xml file. 

 setProjectPreferences(project, projectName); 

  } catch (Exception e) { 

   e.printStackTrace(); 

   project = null; 

  } 

 

  return project; 

} 

...................... 

} 

Listing 18 – Plugin code to extend the new project wizard 

 

3. Display the new project in the Eclipse project explorer tab - When the user clicks the 

"Finish" button, the project is created and its structure looks like in figure 2 below. This 

structure is created as a result of the files generated along with the project. The project 

structure is specified two fields: paths and files. These arrays contain the structure of the 

project. 
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Figure 2 – Scala Server Faces Project Structure 

 

4. Add a menu option to generate CRUD screen for Entity classes - To do this, extend the 

new project wizard by adding the following XML to the plugin.xml file. 

 

<extension point="org.eclipse.ui.popupMenus">  

  <objectContribution  

    id="org.eclipse.ui.articles.action.contribution.popup.object" 

    objectClass="org.eclipse.core.resources.IFile" 

    adaptable="true" 

    nameFilter="*.scala"> 

      <action 

        id="customplugin.generateCrud"  

        label="Create CRUD screens" 

        menubarPath="additions"  

        class="customplugin.ObjectAction1Delegate">  

      </action>  

  </objectContribution>  

</extension> 

Listing 19 – XML to provide CRUD screen generation menu 
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This allows the user to right click on any file with an extension ―.scala‖ or ―.java‖ to ―right 

click -> create CRUD screens‖ as shown below. 

 

 
 

 

Figure 3 – Create CRUD screens option 

 

5. Create the Scala controller class and CRUD files inside the project: Define a class 

which extends the Wizard class and implements the IObjectActionDelegate interface. In the 

ObjectAction1Delegate class below, the setActivePart() method initializes the IFile on 

which the CRUD screens are to be generated. When the option is clicked, if the class is 
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annotated with @Entity and there exists a persistence.xml file with the appropriate database 

parameters, I create a controller for that class along with the CRUD screen files. 

public class ObjectAction1Delegate implements IObjectActionDelegate { 
  private IFile type = null; 
 
  public void setActivePart(IAction arg0, IWorkbenchPart arg1) {} 
  public void run(IAction action) { 
    if (this.type != null) { 
      createCrudScreens(); 
    } 
 
  private void createCrudScreens() { 
    try { 
      IFile persistenceFile =  

type.getProject().getFile( "src/META-INF/persistence.xml" ); 
 if(persistenceFile.exists()){ 
   //get database credentials 
 } 

 
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(type); 
IType[] types = cu.getAllTypes(); 
for(IType t : types) { 
String annotation = t.getAnnotation("Entity").getElementName(); 
if(annotation != null) { 
String path = "src/managed"; 
createFolder(type.getProject().getFolder(path)); 

 
String code = CRUDUtil.getManagedBeanCode(t.getElementName(), 
t.getPackageFragment().getElementName(), "managed"); 
IFile file = type.getProject().getFile( 

"src/managed/"+t.getElementName()+"Controller"+".scala"); 
createFile(file,code); 
IField[] fields = t.getFields(); 

 
String viewPath = "WebContent/pages/"+t.getElementName(); 
createFolder(type.getProject().getFolder(viewPath)); 
. . . 
createFile(createListFile,listPage); 
createFile(createCreatePage,createPage); 
createFile(createEditFile,editPage); 

  } 
 
public void selectionChanged(IAction action, ISelection selection) { 
  this.type = null; 
  if (selection instanceof IStructuredSelection) { 
    IStructuredSelection iss = (IStructuredSelection) selection; 
    Object selected = iss.getFirstElement(); 
    if (selected instanceof IFile) { 

   this.type = (IFile) selected; 
    } 
  } 
} 
 

Listing 20 –Creating SSF controller class and CRUD screens 
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List.xhtml, Edit.xhtml and Create.xhtml files are created under a folder named after the 

class. The generated controller class handles the business logic and functions as both the 

stateful session bean and the managed bean and is written in Scala. The created screen to list 

entities looks like below: 

 

 

Figure 4 – Generated CRUD screen 

 

5.5 Developing Java EE applications using Scala Server Faces 

In the next three subsections, I will demonstrate how one can write Java EE applications 

using Scala Server Faces. 

5.5.1 Writing Managed Beans using SSF 

Writing managed beans in Scala provides all the advantages of Scala in the context of a Java 

based web application framework. This allows us to write managed beans in Scala and point 

to them from the faces-config.xml file or through annotations. Scala supports Java based 

annotations which allows us to annotate a class as a managed bean. We can also specify the 

scope under which the managed bean is available.  Let us look at the sample implementation 

of a managed bean written in Scala: 

 

import javax.faces.bean.ManagedBean 
import javax.faces.bean.SessionScoped 
import scala.reflect._ 
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@ManagedBean{val name = "scalaSB"} 
@SessionScoped 
class ScalaMB { 
     
  @BeanProperty var response : String = "" 
  def submit() : String = { 
    response = //do something 
    null   //returns null 
  } 
} 
 

The above class written in Java is shown below: 
 

import javax.faces.bean.ManagedBean; 
import javax.faces.bean.SessionScoped; 
 
@ManagedBean 
@SessionScoped 
public class ScalaMB { 
 
  private String response = ""; 
     
  public String getResponse() { 
    return response; 
  } 
   
  public void String setResponse(String response) { 
    this.response = response; 
  } 
     
  public String submit() { 
    response = //do something 
    return null; 
  } 
} 
 

Listing 21 –Comparing  Managed Beans in Java and Scala 
 

The above class can replace the Scala managed bean because of Scala’s support for Java 

annotations such as @ManagedBean and @SessionScoped. Scala introduces a @BeanProperty 

annotation which generates getter and setter methods for the variables annotated with it. This 

allows the web server to access values to and from the user interface. Also, the Scala class 

requires almost half the number of lines of code as the Java managed bean.  
 

5.5.2 Entity Beans, Session Beans and JPA using SSF 

Java EE 5 introduced annotation support for applications which enables the control of 

injecting dependencies, resources, services, and life-cycle notifications using annotations 

instead of XML. Annotations associate meta-information with definitions. Scala supports 

Java annotations. The upcoming Scala 2.8 release will support nested annotations which 

increases its support for JPA.  
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Scala annotations follow the syntax:  @C or @C(a1, .., an). Here, C is a constructor of a 

class C, which must conform to the class scala.Annotation[29]. All given constructor 

arguments a1, .., an must be constant expressions (i.e., expressions on numeral literals, 

strings, class literals, Java enumerations and one-dimensional arrays of them). 

It is this support for annotations which makes Scala very interoperable with Java EE 

applications. Consider the Scala managed bean from listing 21: 

 

import javax.ejb.EJB 
import javax.faces.bean.ManagedBean 
import javax.faces.bean.SessionScoped 
import scala.reflect._ 
import session._ 
 
@ManagedBean{val name = "test"} 
@SessionScoped 
class ScalaMB { 
  @EJB private[this] var slsb : ScalaSB = _ 
  @BeanProperty var response : String = "" 
  def submit() : String = { 
    response = slsb.getLanguage() 
    null 
  } 
} 

 

Listing 22 –Scala session bean instantiation 

 

Notice the addition of the line: @EJB private[this] var slsb : ScalaSB = _  

The Scala session bean gets instantiated using "dependency injection". This is managed by 

the Application Server and the JSF framework. Dependency injection (DI) is a technique for 

supplying an external dependency to a software component.  By using private[this], the 

object’s access is limited to the instantiated class without which dependency injection does 

not work for the Scala class. The benefit of using the dependency injection approach is the 

reduction of boilerplate code in the application objects since all work to initialize or setup 

dependencies is handled by a provider component. 

The Scala implementation of the Session Bean is as below: 

 

import java.util.ArrayList; 
import java.util.{List => JList} 
import javax.ejb.Stateless; 
import javax.ejb.Remote; 
import javax.persistence._ 
import edu.sjsu.simplequiz.entity.Choice; 
import edu.sjsu.simplequiz.entity.Question; 
 
@Stateless  
class QuizSB {    
   
  @PersistenceContext private[this] var em: EntityManager = _ 
  def getQuestions():JList[Question]= { 
    val q:Query = em.createQuery("SELECT x FROM Question x"); 
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  @SuppressWarnings(Array("unchecked"))  
    val result = q.getResultList().asInstanceOf[JList[Question]] 
  return result; 
   }   
} 

 

Listing 23 –Scala Session Bean using Dependency Injection for EJB 

 

Again, in the above session bean class, dependency injection handles the instantiation of the 

entity manager: 

@PersistenceContext private[this] var em: EntityManager = _ 

 

Using this injected EntityManager object, JPQL queries can be written: 

 

val q:Query = em.createQuery("SELECT x FROM Question x"); 

 

The entity bean Question looks like below: 

@Entity class Question { 
 
  @Id @GeneratedValue @BeanProperty var id:Int = 0; 
  @BeanProperty var text:String = _; 
  @OneToMany{val cascade = Array(CascadeType.ALL),val fetch = FetchType.EAGER} 
  var choices: java.util.List[Choice] = new java.util.ArrayList[Choice](); 
  @OneToOne @BeanProperty var answer:Choice = _; 
     
  def setChoices(newvalue : java.util.ArrayList[Choice]){ 
      choices = newvalue; 
  } 
 
  def getChoices():java.util.List[Choice]=choices 
} 

 

Listing 24 –Scala Entity Bean 
 

Finally, another major advantage of writing JPA code using Scala is in dealing with 

composite primary keys.  

Using composite primary keys can be quite tedious in Java, because of having to implement 

an @IdClass for the key that is serializable and overrides equals and hashCode. In java this 

amounts to approximately a whole page of boilerplate code for every composite key. 

However, the requirements for an @IdClass is similar to the properties of a scala case class. 

This is because Scala auto-generates toString, equals and hashCode methods to the case class. 

So in Scala, all this boilerplate can be simplified as below: 

 

case class CompositeKey(var some_id: Int, var other_id: Int) 

 

Listing 25 – CompositeKey in Scala 
 

5.5.3 Facelets, Web Beans, Stateful Session beans and JPA in a SSF application 
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In this section, I will demonstrate how a Java EE application composed of Facelets templates, 

named web beans, stateful session beans and JPA can be built using Scala Server Faces. This 

application queries the database for values of a table and renders it using a JSF data table. 

Scala Server Faces provides the default template as in Listing 11. Using this, all pages which 

use the same template can inherit that template using the <ui:composition> tag to point to 

the template and <ui:define>  tags to specify content to insert into the template. So, using 

the default template.xhtml, the view page can be defined as below: 

 

<ui:composition template="/template.xhtml"> 
  <ui:define name="title"> 
    <h:outputText value="#{bundle.title}"/> 
  </ui:define> 
  <ui:define name="body"> 
    <h:form> 
    <h:dataTable value="#{userController.items}" var="item" border="0"  
      cellpadding="2" rules="all" style="border:solid 1px"> 
      <h:column> 
        <f:facet name="header"> 
       <h:outputText value="id"/> 
        </f:facet> 
    <h:outputText value="#{item.id}"/> 
      </h:column> 
      <h:column> 
  <f:facet name="header"> 
    <h:outputText value="username"/> 
        </f:facet> 
    <h:outputText value="#{item.username}"/> 
      </h:column> 
      <h:column> 
        <f:facet name="header"> 
    <h:outputText value="password"/> 
   </f:facet> 
    <h:outputText value="#{item.password}"/> 
      </h:column> 
     </h:dataTable> 
     </h:form> 
  </h:body> 
  </ui:define> 
</ui:composition> 

Listing 26 – Login screen using Facelets template 
 

Another thing to note is that I use a #{bundle} for all our text displayed on the UI. This 

enables Scala Server Faces to support ―Internationalization‖ and develop applications for any 

language of choice. This feature is enabled in the faces-config.xml file as shown below: 

 
<resource-bundle> 
    <base-name>/Bundle.properties</base-name> 
    <var>bundle</var> 
</resource-bundle> 

Listing 27 – JSF resource bundle to support internationalization 
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For this application, I combine the stateful session bean and web bean into one as shown 

below: 

import scala.reflect._ 
import java.util.ArrayList; 
import java.util.{List => JList} 
import javax.inject.Named 
import javax.enterprise.context.SessionScoped 
import javax.ejb.Stateful; 
import javax.persistence._ 
import entities.User 
 
@Named (val value = "userController") 
@SessionScoped  
@Stateful 
@LocalBean 
class UserController  { 
   
  @BeanProperty var items: JList[User] = _ 
  @PersistenceContext private[this] var em: EntityManager = _ 
   
  @SuppressWarnings(Array("unchecked")) def load:JList[User]= { 
    val q:Query = em.createQuery("SELECT x FROM User x"); 
  items = q.getResultList().asInstanceOf[JList[User]] 
  return items; 
  } 
} 

Listing 28– Scala managed bean and stateful session bean 
 

Notice the brevity of code yet the functionality provided. The above code functions both as 

the interaction between the user interface and the web bean, while functioning as a session 

bean which uses an entity manager to query the underlying database. This is possible due to 

the new @Named annotation introduced in Java EE 6. 

The @Named annotation is a new feature implemented in Java specification request (JSR) 299 

which deals with context and dependency injection. In the case of a web application, JSR-

299 allows the use of any Java EE component (entity beans and session beans in this example) 

in conjunction with JSF managed beans. Entity Java beans are by nature transactional, while 

the JSF managed beans are not. JSR-299 solves this transactional gap in a Java EE 

application by allowing the developer to replace the JSF managed bean with an entity java 

bean.  One addition to the configuration due to the use of named web beans is an empty 

XML file called beans.xml under the WEB-INF folder.  

 

The above application was easier to develop using Scala Server Faces because it provided: 

1. A default template. 

2. All the configuration files: faces-config.xml, sun-web.xml, beans.xml and web.xml 

preconfigured. 

3. A resource bundle to support internationalization.  

4. A pre-existing session bean which could be extended.  

 

6. Comparison of Scala Server Faces with other Web Frameworks 



 33 

 
6.1 Comparing Scala Server Faces and Java Server Faces 

 

Although Scala Server Faces is built on Java Server Faces, the SSF framework’s features 

make it a better solution to develop enterprise web applications with. The primary argument 

against using Java based MVC frameworks has always been that they are too hard to 

configure and get the application running for the first time [18]. In contrast, Scala Server 

Faces comes with all the benefits of using both a framework such as JSF, but tools to 

improve programmer productivity along with functional Scala as the programming language.  

To compare the two frameworks, I chose the Java Quiz example application from the Core 

Java Server Faces [20] book. 

 

Developing a simple JSF 2.0 based quiz application. 

 

1. Create a ―New Dynamic Web Application‖ in Eclipse with the name of SQuiz.  

2. Create two XHTML files called index.xhtml and done.xhtml. 

3. Add the glassfish module library to the project’s ―classpath‖. 

4. Create a managed bean called QuizMB under the src/managed folder.  

5. Create a session bean called QuizSB under the src/session folder. 

6. Create two entities, Question and Choice under the src/entities folder. 

7. Create a persistence.xml file under the src/META-INF/ folder. 

8. Create a faces-config.xml file. 

9. Create an empty beans.xml file under the WEB-INF folder. 

10. Right click on the project and choose "Run as -> Run on Server". Select the application 

server and you should see from the Console view that the Glassfish server starts and then 

the executing index page appears in the web browser. 

 

Developing a simple SSF based quiz application 

 

1. Create a ―New Scala Server Faces project‖ using Eclipse with the name of SQuiz. 

2. Create two XHTML files called index.xhtml and done.xhtml. 

3. Create a managed bean called QuizMB under the src/managed folder.  

4. Create a session bean called QuizSB under the src/session folder. 

5. Create two entities, Question and Choice under the src/entities folder. 

6. Right click on the project and choose "Run as -> Run on Server". Select the application 

server and you should see from the Console view that the Glassfish server starts and then 

executing index page appears in the web browser. 

 

The SSF project comes pre-configured with JPA, JSF 2.0 and the ―classpath‖ pre-set so steps 

3, 7, 8 and 9 are not necessary.  

 

While the XHTML pages are the same, I compare the business logic (Java and Scala code) 

used by the two applications below: 

 

Java code: 
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@ManagedBean(name = "quiz") 
@SessionScoped 
public class QuizMB { 
  @EJB 
  private QuizSB quizSB; 
 
  private int score; 
  private int currentQuestionIndex; 
  private List<Question> questions; 
  private Integer response; 
 
  public int getScore() { 
    return score; 
  } 
     
  public Question getCurrentQuestion() { 
    if (questions == null) questions = quizSB.getQuestions(); 
    return questions.get(currentQuestionIndex); 
  } 
     
  public Map<String, Integer> getCurrentChoices() { 
    Map<String, Integer> r = new LinkedHashMap<String, Integer>(); 
    for (Choice c : getCurrentQuestion().getChoices()) { 
      r.put(c.getText(), c.getId()); 
    } 
    return r; 
  } 
     
  public Integer getResponse() { 
    return response; 
  } 
     
  public void setResponse(Integer response) { 
    this.response = response; 
  } 
     
  public String submit() { 
    if (currentQuestionIndex == 0) score = 0; 
    if (getCurrentQuestion().getAnswer().getId() == response.intValue()) 
    score++; 
    if (currentQuestionIndex < questions.size() - 1) { 
      currentQuestionIndex++; 
      response = null; 
      return null; 
    } 
    else { 
      currentQuestionIndex = 0; 
      return "done"; 
    } 
  } 
} 
 
@Stateless 
public class QuizSB { 
  @PersistenceContext 
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 private EntityManager em; 
 
 public List<Question> getQuestions() { 
   Query q = em.createQuery("SELECT x FROM Question x"); 
   @SuppressWarnings(value = "unchecked") 
   List<Question> result = (List<Question>) q.getResultList(); 
   return result; 
 } 
} 

  

Rewriting the above Java code in Scala below: 

 
@ManagedBean{val name="quiz"} @SessionScoped class QuizMB {     
  @EJB private[this] var quizSB: QuizSB = _ 
  @BeanProperty var score:Int = 0 
  var currentQuestionIndex:Int = 0 
  var questions: JList[Question] = _ 
  @BeanProperty var response = "" 
  
  def getCurrentQuestion() = { 
    if (questions eq null)  questions = quizSB.getQuestions(); 
    questions.get(currentQuestionIndex); 
  } 
 
  def getCurrentChoices() : Map= { 
    var r = new LinkedHashMap[String,Int](); 
    var choices = Conversions.convertList(getCurrentQuestion().choices)  
    choices.foreach{c => r.put(c.text, c.id)} 
    r 
  } 
 
  def submit():String = { 
    if (questions == null) return null; 
    if (currentQuestionIndex == 0) score = 0; 
    if (getCurrentQuestion().answer.id == response.asInstanceOf[Int]) score+=1; 
    if (currentQuestionIndex < questions.size() - 1) {       
      currentQuestionIndex+=1; 
      return "next"; 
    } 
    else {       
      currentQuestionIndex = 0; 
      return "done"; 
    } 
  } 
} 
 
@Stateless class QuizSB {    
  @PersistenceContext private[this] var em: EntityManager = _ 
  def getQuestions():JList[Question]= { 
    val q:Query = em.createQuery("SELECT x FROM Question x"); 
  @SuppressWarnings(Array("unchecked"))  
    val result = q.getResultList().asInstanceOf[JList[Question]] 
  result 
   }   
} 
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Listing 29 – Java Quiz business logic written in Java and Scala 
 

The above Scala code is significantly shorter than Java yet provides the same functionality. 

Including the Entity classes, the Scala code is shorter by about 40 %. Again, configuration 

files of the faces-config.xml, build.xml, persistence.xml files are created with the SSF 

project while JSF requires the user to configure all of it increasing startup time and chances 

of making a mistake. The Ant build file provided by SSF also helps combine Java and Scala 

classes into the same project, which helps the use of pre-existing Java code to be used as a 

part of the SSF project.  

 

Comparing JSF and Scala Server Faces 

 

 Parameter SSF JSF 

1 Number of classes 4 4 

2 Lines of Code 105 178 

3 Steps to get started 6 10 

4 Testing Framework Yes Yes 

5 Editor support Yes Yes 

6  CRUD screen generation Yes No 

7 Internationalization support Yes Yes 

8 Deployment Help Yes No 

9 JPA Setup support Yes No 
 

Listing 30 – comparing JSF and Scala Server Faces 
 

6.2 Comparing Scala Server Faces and the Lift Web Framework 

I introduced Lift in section 3 as a web framework built which uses a Model-View-Controller 

architecture to develop applications using the Scala programming language.  

I compare the projects which Lift and Scala Server Faces auto-generate below. 

To develop a sample Lift application 

The following steps are required to create, configure and deploy a Lift application: 

1. To create a Lift application, execute this command on the terminal: 

mvn org.apache.maven.plugins:maven-archetype-plugin:1.0-alpha-7:create  

-DarchetypeGroupId=net.liftweb  

-DarchetypeArtifactId=ift-archetype-blank  

-DarchetypeVersion=1.0      

-DremoteRepositories=http://scala-tools.org/repo-releases 

-DgroupId=PROJECTNAME -DartifactId=LiftLogin 

 

Listing 31 –Maven command to generate Lift Project 

 

This creates "LiftLogin" directory. 

 

2. The above project generated is not ready to be imported into Eclipse for development. 

To make it suitable for Eclipse from the project folder, run the command: 
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mvn eclipse:eclipse 

 

To import this project up in Eclipse: 

Import -> General -> Existing Projects into workspace -> Project 

This creates a LiftLogin project in the Eclipse workspace. The folder structure created is 

as follows: 

src/main/scala directory contains the Scala source code. 

src/main/webapp directory contains HTML, JavaScript, CSS, and the WEB-INF folder. 

 

3. The application generated comes with template screens for a Login application 

(implementation provided by Lift) 

 

4. To build and run the generated application: mvn install. 

 

5. Run the application on the server using:  mvn jetty:run 

 

The code generated for the user authentication looks like below with the 

MetaMegaProtoUser class providing most of the implementation out of the box. 

 

/** 
 * The singleton that has methods for accessing the database 
 */ 
object User extends User with MetaMegaProtoUser[User] { 
  override def dbTableName = "users"  
  override def screenWrap =  

Full(<lift:surround with="default" at="content"> 
          <lift:bind /></lift:surround>) 
  // define the order fields will appear in forms and output 
  override def fieldOrder = List(id, userName, password, textArea) 
 
  } 
 
/** 
 * An O-R mapped "User" class that includes first name, last name, password and 
we add a "Personal Essay" to it 
 */ 
class User extends MegaProtoUser[User] { 
  def getSingleton = User  
   
  // define an additional field for a personal essay 
  object textArea extends MappedTextarea(this, 2048) { 
    override def textareaRows  = 10 
    override def textareaCols = 50 
    override def displayName = "Personal Essay" 
  } 
  
} 

Listing 32 –Lift User authentication 
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Developing a sample Scala Server Faces application 

1. Create a ―New Scala Server Faces project‖ using Eclipse with the name of SSFLogin. 

2. The application generated comes with template screens for a Login application.  

3. Right click on the project and choose "Run as -> Run on Server".  

Since Lift and SSF applications are both written using Scala, the business logic code for both 

are similar except that SSF uses Java Server Faces components and follows the Java EE 6 

specification for application development. However, Lift has its disadvantages such as the 

lack of a testing framework, no editor support and no support for internationalization. Again, 

Lift’s CRUD (Create-Read-Update-Delete) screen generation using the Mapper functionality 

is still basic yet complicated to use. Lift also lacks editor support.  

Finally, SSF allows continuous development without needing a server restart by providing 

―hot deployment‖ of code while Lift requires a build and install for the changes to be 

reflected on the server. 

 

Comparing Lift and SSF 

 

 Parameter SSF Lift Web 

1 Number of classes 1 2 

3 Steps to get started 3 4 

4 Testing Framework Yes No 

5 Editor support Yes No 

6  CRUD generation Yes Yes(basic) 

7 Internationalization support Yes No 

8 Hot Deployment Yes No 

9 Deployment Help Ant Maven 

 

Listing 33 –Comparing Lift and Scala Server Faces    

 

6.3 Comparing Scala Server Faces with Ruby on Rails  

I introduced Ruby on Rails in section three as a MVC web framework built for the Ruby 

programming language. Assuming the Ruby programming language is already installed; the 

following steps are required to create a Ruby on Rails (Rails) application: 

1. Create a Rails application using the command: rails -d mysql ProjectName>. 

―ProjectName‖ will be the name of the sub-directory the app is created in. 

2. In the created application’s directory, execute the command: ruby script/server. The 

welcome screen is accessible at: http://localhost:3000. 

3. Create the UserController class (shown below). 

4. Create the Login view page. 

5. Point the browser to: http://myserver.dev:3000/user/login to see the login screen. 
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The Ruby code for the UserController class looks like below: 

 

class UserController < ApplicationController 
def authenticate 
  @user = User.new(params[:userform]) 
  valid_user = User.find(:first,:conditions =>  

["user_name = ? and password = ?",@user.user_name, @user.password]) 
 if valid_user 
       session[:user_id]=valid_user.user_name 
   redirect_to :action => 'private' 
 else 
   flash[:notice] = "Invalid User/Password" 
   redirect_to :action=> 'login' 
 end 
end 
def login 
  end 
 
  def private 
  if !session[:user_id] 
    redirect_to :action=> 'login' 
    end 
  end 
end 

Listing 34 –Ruby on Rails User Authentication    

 

I have already explained the steps to create a SSF application in the prior two sections. To write 

the above Ruby controller in Scala: 

 
@Named {val value="loginBean"} @SessionScoped @Stateful @LocalBean 
class LoginBean  { 
   @BeanProperty var username:String = _ 
   @BeanProperty var password:String = _ 
   @PersistenceContext private[this] var em: EntityManager = _ 
   
   @SuppressWarnings(Array("unchecked")) def authenticate:Boolean= { 
     val q:Query = em.createQuery("SELECT p FROM Person p WHERE p.username=:username  

AND p.firstName = :password"); 
     q.setParameter("username", username); 
     q.setParameter("password", password"); 
     val user = q.getSingleResult(); 
     (user eq null) 
   } 
} 

Listing 35 –Scala Server Faces User Authentication    

 

Comparing SSF and Ruby on Rails 

 Parameter SSF Ruby on Rails 

1 Number of classes 2 2 
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2 Lines of Code 15 29 

3 Steps to get started 3 6 

4 Testing Framework Yes Yes 

5 Editor support Yes Yes 

6  CRUD generation Yes Yes 

7 Internationalization support Yes Yes 

8 Hot Deployment Yes  Yes 

9 Deployment Help Yes Yes 

 

Listing 36 –Comparing SSF and Ruby on Rails 

 

Although Ruby on Rails has the advantages of being concise and easy to set up, it has a few 

disadvantages: 

1. Tests [17] have shown that Ruby on Rails is consistently slower than Lift and Java web 

applications. 

2. Its security features are not provided out of the box and require a plugin. 

3. Active Record, the OR Mapping framework followed by Rails does not scale as expected 

for complex applications and database queries in comparison with Java OR frameworks 

like Hibernate and JPA [21]. 

 

5.4 Results of the comparison 

Summarizing the comparisons from the last three sections, we notice that Java Server Faces 

required the most number of steps to get started of all the web frameworks. 

 Lift web, although it is compact and follows the convention over configuration approach, misses 

some of the key features to make it a successful Scala based web framework. In terms of 

performance, Ruby on Rails is consistently slower [17].  

Finally, the most important thing to note is that Scala Server Faces compares well and does 

better in some cases with all the web frameworks. 

 

 Parameter Java Server Faces Scala Server Faces Ruby on Rails Lift 

1 Number of classes Same Same Same Same 

3 Steps to get started 10 4 6 5 

4 Testing Framework Yes Yes Yes No 

5 Editor support Yes Yes Yes No 

6  CRUD generation No Yes Yes Yes 

7 Internationalization  Yes Yes Yes No 

8 Hot Deployment Yes Yes  Yes No 

9 Deployment Help Yes Yes Yes Yes 
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Listing 37 –Summary of the Web Framework comparison 

 

7. Conclusion 

While the Java language has been progressing slowly over the last few years, frameworks such 

as Ruby on Rails, PHP, Django and other light weight frameworks are emerging as competitors 

to the Java based frameworks. Although the advantages of Java and the Java virtual machine are 

well acknowledged in a production environment, opponents to its use point to the slow 

development time, redundant code and the overuse of XML configuration files as reasons not to 

use the Java based frameworks. At the same time, the Scala programming language, with its 

ability to run on the JVM and yet having features like type inference, higher order functions, 

closure support and sequence comprehensions is a promising replacement to Java. Again, the 

state of Java EE 6 and its components are headed in the right direction from features such as 

reduced configuration using annotations, context and dependency injection and EJB 3.1 [22]. 

In this project, I have used Scala to develop Java EE applications and also provide a tool which 

tries to provide the same features as some of its rival frameworks such as Ruby and Lift. By 

following the "convention over configuration" approach and demonstrating best practices using 

Scala, I have shown that there is a reduction in the number of steps to get applications deployed 

and running, reducing errors by pre-configuring the development environment for the 

programmer and at the same time increasing programmer productivity. Also, by doing redundant 

tasks such as creating CRUD screens along with the related business logic, providing an Ant 

build tool to combine Java and Scala code in the same project, support development on the 

Eclipse platform and JSF 2.0 support, this framework is immediately useful for any Java EE 

programmer who wishes to develop Enterprise applications using the Scala programming and 

Eclipse. 
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