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Abstract 
 
Over the past decade, algorithm visualization tools have been researched and developed 
to be used by Computer Science instructors to ease students’ learning curve for new con-
cepts. However, limitations such as rigid animation frameworks, lack of user interaction 
with the visualization created, and learning a new language and environment, have se-
verely reduced instructors’ desire to use such a tool. The purpose of this project is to cre-
ate a tool that overcomes these limitations. Instructors do not have to get familiar with a 
new framework and learn another language. The API used to create algorithm animation 
for this project is through Java, a programming language familiar to many instructors. 
Moreover, not only do the instructors have control over planning the animation, students 
using the animation will also have the ability to interact with it.  
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1. Introduction 
 
Aside from the existing mundane textbook memorization, instructors have adopted tools 
such as Microsoft PowerPoint to create lecture slides with supplemental course materials 
for students to grasp. However static text book and power point slides tend to miss key 
points in explaining the algorithm.  Over the decades, hundreds of visualization tools 
have been developed intended to help Computer Science instructors to illustrate how ba-
sic algorithms and data structures work. However, with the hundreds of visualization 
tools created, none have been widely utilized [2]. In fact, Shaffer et al [2] collected over 
350 visualizations and tools from the internet and studied each. They stated that most of 
the visualization created are of poor quality or tend towards simple problems that serve 
no useful pedagogical purpose. The goal of this project is to create a tool that overcomes 
the limitations of existing visualization tools. The tool should let instructors be in control 
and create the animations they would like to use. The resulting animations should also be 
user interactive, allowing students to be participants rather than “passive observers”.  
 
In the second section of the report, I will talk about the existing frameworks that were 
studied, and their advantages versus their disadvantages. In the third section, I will dis-
cuss the animation framework architecture. The fourth section will focus on the compo-
nents of the animation system and its usage. User evaluation will be discussed in the fifth 
section. Future work and conclusions will be discussed in the final section.  
 

2. Prior Work 
 
Older visualization tools comprised of simple figure movement, musical notes, and narra-
tion, do serve the purpose of explaining a certain algorithm. However, there is no user 
interactions involved, so the user will lose interest after watching the animation for a pe-
riod of time. In addition, simple actions such as revisiting a certain algorithm in the mid-
dle of the animation can be extremely difficult. With these limitations in mind, anima-
tions created later tried to avoid these deficiencies by creating animation with high reso-
lution graphics, and incorporated user interactions. The AlgoViz Wiki set up by Shaffer 
et al contains a list of algorithm visualization tools created in the past decade. However, 
to their disappointment, most of the visualization tools created was still severely handi-
capped [2]. Despite the different ways the animations tried to grab a user's attention, the 
user still played a role of “passive observer” rather than an interactive participant. Below 
I will discuss several existing algorithm visualization tools. 

2.1 Sorting Out Sorting 
 
“Sorting Out Sorting” created by Ronald Baeker in 1981, is one of the first algorithms 
visualization ever created [2]. The animation is designed to make different sorting tech-
niques such as insertion sort, binary sort, exchange sort and others easy to understand. 
The animation is composed of simple figures and letters, effects such as highlight, mov-
ing, sliding are then applied onto the objects. Throughout the animation, mono-toned mu-
sical notes are played indicating the processing stage or completion of the animation. A 
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narrator explains what each stage of the animation is doing. Figure 1 displays a screen-
shot of the animation in action.  
 

 
Figure 1 Sorting out sorting screenshot [9]. 

 
In this screenshot, the performances for each of the three different sorting algorithms are 
being compared side-by-side in real time. This algorithm visualization is simple, detailed 
and easily understood. However, due to time constraints, only one problem instance can 
be explained for each sorting algorithm. So users can still be easily confused if the prob-
lem is modified in some degree. Moreover, there is no user interaction at all with this 
visualization.  
 

2.2 Algorithms in Action 
 
Algorithms in Action, created by Stern et al [13], explained a number of algorithms using 
“step-wise refinement”. The visualization tool is composed of four sections: explanations, 
help, algorithm and the main visualization window. The explanation window gives a gen-
eral overview of the algorithm as well as explanations to each individual pseudo-code 
line that the user might be interested in. The algorithm window displays the code for the 
algorithm, and its corresponding pseudo-code. Finally, the main visualization window 
displays the visualization of the algorithm. Figure 2 is a screenshot of the visualization 
during execution.  
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Figure 2 Algorithms in Action screen shot. [13] 

In this visualization, the user can either manually step through the animation, or let the 
animation run to completion on its own. For every stage of the animation execution, the 
main visualization window will display the tree structure with some comments labeled on 
the side. The algorithm window highlights the current line of code that is been executed. 
By selecting a line of code in the algorithm window, an explanation of the line’s purpose 
will be displayed in the explanation window. Aside from the default set of data values 
used for this animation, user can also enter a desired set of data values they are interested 
in or let the data values be randomly generated. Though user interaction is included into 
the animation, it is still severely limited. Since the tool only deals with pre-determined 
algorithms, instructors have no way of adding in their own content. Students do not have 
the opportunity to solve the problem on their own without the temptation of viewing the 
answers. In this example, the data values for the problem instance is modifiable, however 
the way the animation is presented to the user is fixed. This can be a serious problem 
when there are certain sections of the animation which needs more explanations than the 
other.  
 

2.3 LaTex and Prefuse PDF Slides Creation Tool 
 
Erkan et al [6] designed a data structure visualization utilizing LaTeX and Prefuse. Their 
project focused on algorithm visualization with no animation involved. They argue that 
since most instructors use presentation slides to show how an algorithm works and find it 
effective, it would be good to develop a tool that can generate detailed slides automati-
cally. Their hypothesis was, if the slides were detailed enough, students should be able to 
review the material ahead of class and reverse engineer it to understand the material be-
forehand. This will significantly reduce instructors’ efforts in teaching a new algorithm or 
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data structure, and maximize students' productivity. Figure 3 displays the general idea for 
their project.  
 

 
Figure 3 Process of generating PDF slides utilizing LaTeX [6]. 

The list of slides in the image represents the complete output that will be generated. The 
gray slides represent the “well defined” stages of the data structure/algorithm, such as the 
before and after of a particular algorithm function call. Any intermediate modifications to 
the algorithm or any object for a data structure object during the execution of the function 
are represented on the white colored slides. To generate a customizable PDF PowerPoint 
slide for particular data structure/algorithm visualization, a set of API functions can be 
called. The Java Reflection API can also be used to get information regarding the status 
of an object for the data structure/algorithm during execution. A major advantage of this 
project is that instructors now have the flexibility of deciding which parts of the algo-
rithm deserves more attention, and provide appropriate information for it. A concern 
might be, with algorithms that are complicated and cumbersome in detail, the number of 
slides created will be too large to be of any real practical use.  
 

2.4 Animal 
 
Animal is a tool similar to the one discussed above. However, instead of automatically 
generating a large number of PDF presentation slides, Animal is a Java applet that ani-
mates the objects used to illustrate a particular algorithm or data structure. Figure 4 dis-
plays the application screenshot during execution.  
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Figure 4 Animal screenshot. 

Animal contains several windows. Two windows opened on default are the Control and 
Animation windows. The control window contains tools and options to control an exist-
ing animation or create a new animation. The animation window displays the actual ani-
mation that's been created. Animations are created either through the drawing window or 
scripting using AnimalScripts. Compared to the previous two algorithm visualization 
tools, a major advantage of this tool is that it gives instructors control in creating the an-
imations they want. However, creating animation using this tool requires learning the 
new API for AnimationScripts or learning how to draw animation objects with the draw-
ing window. Due to the lack of user interaction with the animation being generated, [2] 
claims that it is simply another tool that is equivalent to Microsoft PowerPoint.  
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2.5 Jeliot 
 
One of the high-end algorithm visualization tool created is Jeliot [10]. This tool takes in a 
working program and visually displays the execution sequence. It is divided into two 
stages, after the user enters the working program. It is required to compile the program 
with the built-in compiler for the tool to understand what the program is doing. Then the 
user can select “Play” to visually see the execution of the program. Figure 5 shows a 
screen shot of Jeliot during execution.  
 

 
Figure 5 Jeliot screen shot. 

Each line of code will be highlighted upon execution. The animation panel is then sepa-
rated into several sections. The method area displays the program stack during execution. 
Expression evaluation is the scratch paper for the current executing statement. The con-
stants and static area is the virtual box that creates constants needed during execution. 
The instance and array area shows behavior of arrays or objects for the program during 
execution. The tool is designed and implemented with usability in mind. Apart from the 
existing visualization tools, Jeliot requires very little effort in learning the tool. Instruc-
tors can simply pass in the program they would like to visualize and the tool will take 
care of the rest. This tool is user friendly and results are self explanatory. Arguable dis-
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advantages might be lack of user interaction; as well as the resulting animation might not 
be as effective for programs with complicated structure.  

2.6 TRAKLA2 
 
TRAKLA2 [11] incorporated user interaction and a grading system with the animations. 
For each of the built-in algorithm, TRAKLA2 is able to take in user inputs and provide 
feed-back depending on the number of correct and incorrect moves made. The applica-
tion is divided into several sections: instruction section and general working area. Figure 
6 shows a screen shot of TRAKLA2 during execution.  
 

 
Figure 6 TRAKLA2 screen shot. 

By following the given instructions, the user is asked to predict the next move that will be 
performed by the algorithm. Major advantages of TRAKLA2 are its visualization and 
ability to grade student’s understanding for an algorithm through hands-on exercises and 
a large library of problems. Disadvantages for the application might include insufficient 
control for instructors to create animations that will be a better fit for their teaching style, 
as well as a rigid grading framework. 
 

3. Framework Architecture  
 
For this project, I implemented an algorithm visualization tool that can interact with us-
ers. It also gives control to instructors, allowing them to create their own custom anima-
tions, without the requirement of re-learning a new language, or becoming familiar with a 
new environment. 

3.1 Sharma’s Framework 
 
Sharma [5] from San Jose State University created an animation framework targeting in-
structors teaching first year computer science students. This framework is designed to 
allow instructors to create animations through a set of simple Java API function calls. His 
API is able to create animations without requiring the instructors to learn another new 
tool or language. The animator UI contains four major components; label, animation 
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panel, button panel and direction panel. Instructors can specify the problem instance that 
is currently been displayed in the label panel. The animation panel is where the animation 
takes place. The button panel contains the actions that students need for interaction with 
the animation. The blue area underneath the buttons gives a brief description for the but-
ton selected. The direction panel gives detailed explanations regarding the animation’s 
progress and hints for students regarding the next move. Figure 3.1 shows a screenshot of 
the animator during animation:  
 

 
Figure 7 Sharma's algorithm visualization screenshot. [5] 

In this example, the framework displays an interactive animation for the insertion sort 
algorithm. Upon execution, the framework generates an array of eight randomly selected 
integers. Students are expected to perform a series of actions to correctly sort the given 
array. The actions are done by selecting the buttons displayed in the button panel. At 
every stage of the algorithm execution, the animation halts to wait for the student’s but-
ton selection. Each selection will then be validated, and with the correct selection, the 
animation will proceed to the next stage.  
 
In the above image, the first three yellow-colored nodes indicate they have been correctly 
sorted. The student’s next task would be to sort the next element in the array. The correct 
moves would be selecting the button “Swap Values” and the node 8. Again indicated by 
the color in the image above, both “Swap Values” button and node 8 are colored green, 
indicating they are currently selected. At this point, the animation halts and waits for the 
student’s next move to indicate the correct location for the node to be inserted to. If the 
student is lost through the process, and unsure what the next step should be, the direction 
panel displays the detailed explanations of how this animation should be used. If the stu-
dent is unsure which button to select, an explanation for each button is also displayed 
within the button panel. The explanation will appear upon selection of a button from the 
panel.  
 
The main focus for this framework’s architectural design is to create a simple set of API 
calls that can be used to easily create animations for any algorithm [5]. It should also be 
flexible enough for future tool extensions. This framework is built with Java, the JUNG 
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framework, and the Timing framework. JUNG stands for Java Universal Network/Graph 
Framework. It is a Java library which can perform analysis and visualization of data 
structures in the form of a graph or a network [3]. The JUNG framework provides a lay-
out for graph representations.  
 
The Timing framework helps make all the animations possible. The Timing framework 
library is divided into three basic components, the basics, interpolation and triggers. Two 
of the three compositions have been utilized in Sharma’s animator framework. They are 
the basic and the trigger compositions. The basic composition is the logic which makes 
all dynamic effects, animations or time-based events on a Java application possible.  
 
To demonstrate the level of simplicity of this framework, below is a set of code shown on 
the Timing framework website to compare the difference. First, let’s consider the code 
for the original animation creation:  
 
class MyActionListener extends ActionListener { 

    public void actionPerformed(ActionEvent e){ 

        // Here's where all the logic goes:  check the event time and 

        // see whether to reverse or end the animation based on the 

        // time elapsed 

    } 

} 

  

resolution = 30;          // update every 30 ms 

begin = 50;               // wait for 50 ms before starting 

ActionListener myActionListener = new MyActionListener(); 

Timer timer = new Timer(resolution, myActionListener); 

timer.setInitialDelay(begin); 

Listing 1 Original animation code [7]. 

In the above example, the user would like to create an animation, where an image is 
screened ten times, for a duration of 500 milliseconds each time. The image will also be 
updated on the screen every 30 milliseconds. In the above code, the user creates this ani-
mation using the original javax.swing.Timer package. As shown, the Timer class takes an 
integer for update intervals, and an ActionListener object to perform the animation ac-
tions. Thus, every time the user would like to create an animation, he/she would have to 
create a new ActionListener for each action the animation will perform. Now let’s con-
sider the following code which utilizes the new Timing framework.  
 
repeatCount = 10;         // do the animation 10 times 

duration = 500;           // each animation lasts 500 ms 

resolution = 30;          // update very 30 ms 

begin = 50;               // wait for 50 ms before starting 

repeatBehavior = Reverse; // reverse at the end of each animation 

endBehavior = Hold;       // hold final position 

Animation anim = new Animation(repeatCount, duration, resolution, begin, repeatBehav-

ior, endBehavior);  

Listing 2 Animation code with Timing Framework. [7] 
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In this case, the user only has to create an Animation object with the desired parameter 
values. There is no need to create additional and individual ActionListener objects for 
each Timer object as described above. Another major advantage of the Timing frame-
work is that the original animation implements its speed according to specific machines 
at that time [7]. This is a problem because with the advancement in technology, old an-
imations created will not behave in the same way the new machines compared to the 
original intended machine. The Timing framework solves this problem by basing the 
animation’s speed on general elapsed time instead of environment depended timing 
event’s frequency [7]. 
 
The Triggers composition is the feature that starts and stops the animation, so instead of 
the user implementing separate listeners for each animation type and manually keeping 
track of the starting and stopping of that animation. The Triggers composition wraps 
around various types of listeners and does the listening and starting and stopping of the 
animation for the user.  
 
Sharma’s framework itself is composed of several packages: algorithm, effects, engine, 
graph, and tools. The algorithm package contains Java animation files that will be created 
by instructors for each algorithm problem. The effects package contains all the animating 
effects that can be used on object nodes, edges or any other animation objects. The en-
gine package ties together all the core components and framework to create animations. 
The graph package contains files for each animation object, such as nodes and edges. The 
tools package contains a list of button that can be used to allow student interaction with 
the animation. 
 
Sharma also implemented a feature that will block the animation and wait for user input. 
Each of the buttons will be represented by a SelectTool object and the user interaction 
will be done by the InteractionControl class. During the animation execution, the cor-
rect tool will be expected by the function call selectTool. This function does several 
things such as displaying the tool tips in the direction panel and blocks all animation 
thread by setting the interaction flag to be true. Once the correct tool has been selected, 
the animation will continue to be blocked to wait for the correct parameter selection. The 
code displayed in Listing 3 shows the implementation of the blockage.  
 
setWaitingInteraction(true); 

while (r == null) { 

    if ((mode & (AUTO | SHOW_STEP)) != 0) { 

        Object tmp = null; 

        if ((step & FIRST_STEP)!=0) { 

            toolSelectAnimation(expTool); 

            … 

        if (tmp != null) { 

            r = new PickedItemInfo(true,expTool,tmp); 

        }  

        else { 

            hideCursor(); 

            synchronized(sync) { 

                try { 
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                    sync.wait(); 

                } catch (InterruptedException e) {      } 

            } 

            if (isInteractive()) { 

                r = new PickedItemInfo(false,expTool,lastSelectedItem); 

            … 

for(InteractionListener l : tmp) { 

l.itemSelected(r); 

Listing 3 Animation blockage implementation. 

In the above code, the execution will not exit the while loop if the item picked is null. 
Once an item has been selected, the function itemSelected will check for correctness. 
The algorithm will exit when the correct item has been selected, else the blockage will 
continue.  

3.2 This Framework 
 
Despite the advantages of Sharma's animation framework, there are still several concerns. 
First of all, the main purpose for this animation framework is to let instructors create 
animation without requiring them to learn a new language or a new tool. Sharma’s 
framework is implemented in pure Java which is known to most computer science in-
structors. However, its dependency on the JUNG framework still creates a learning curve 
for instructors. This might even hinder the instructor’s willingness to try creating any an-
imations.  Secondly, despite the fact that Sharma's animation framework is flexible 
enough to create animation for different problem instances, it is still rigid in showing dif-
ferent solutions to a particular problem. Computer science algorithms such as linked list 
do have a certain restrictive order of how the pointers should connect to each other 
among a list of nodes. However the order of a student selecting a node first or action but-
ton first should not be fixed.  
 
Sharma’s framework is based on the “student is the director” metaphor. The students us-
ing the animation created by instructors have the power to choose what will happen next 
in the animation for a certain algorithm. The students can direct the animation’s execu-
tion through the usage of buttons. However this does not work so well. Deciding which 
button or action to select next is not always directly related to understanding a particular 
algorithm. For this project, button/action selection has been eliminated. This framework 
relies on the instructor to prompt for feedback when it is pedagogically beneficial.  
 
Both Sharma’s framework and this framework do not support multiple solution anima-
tion. Currently the purpose of this project is to create a framework that produces API to 
create an animation to be closely related to the natural code for the algorithm, with just a 
few expect and doTogether function calls intermingled. To accomplish multi-solutions 
for an algorithm can be a cumbersome task for the instructors. 
 
For this animation framework, the Timing framework is kept for animation implementa-
tion, but it is transparent to animation implementers. The JUNG framework has been re-
moved. Instead the animation objects were implemented with Java Graphics2D objects. 
In Sharma’s framework, limited and restricted animation building blocks are created such 
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as Vertex, Edge, Graph, Network, List and Tree. In order to create a desired algorithm 
animation, instructors would have to first find out which structures (Graph, Network, List 
or Tree), that is a best fit for the problem. For this animation framework, all animation 
objects are stand alone entities. They are not bound to a list of rigid structures. Thus to 
create any algorithm animation, instructors can choose the animation objects that will 
best serve the purpose. For a complete list of objects available please refer to the follow-
ing section.  
 

4. How to Use The Animation Package  
 
I created an API for producing structures that are common in CS education; see Figure 8. 
 

 
Figure 8 Screenshot of the animation framework. 

Each of the components is explained in the components sub-section. More detailed ex-
amples will be introduced in the sub-section that follows. 
 

4.1 Components 
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4.1.1 Node 
 
A node object is extended to several different node objects: package node, object node, 
linked list node, label node, note node and variable node. Each node has its own charac-
teristics and functionality. Below I will provide a detailed description for each.  
 

4.1.1.1 Package Node 
 
The package node is used to group all other objects together to be displayed in an orderly 
fashion. It takes several parameters such as x and y coordinates, width and height, as well 
as color. Four methods a package node uses to group all the other objects together are: 
addNodeList, addCode, addText, and addLine. The package node can be both invisible 
and visible as desired.  
 
Color color = Color.BLACK; 

PackageNode pn = new PackageNode(10,10,820,220,color); 

pn.addCode(code); 

pn.addNodeList(labelList1); 

pn.addNodeList(labelList2); 

pn.addTable(table); 

Listing 4 Creating Package Node. 

4.1.1.2 Object Node 
 

 
Figure 9 Object Node. 

The object node is used to represent an object with a list of parameters. Each object node 
takes a string for the name of the node, as well as its desired coordinates to be displayed 
on screen. A user can then add a field node to the object node to represent the parameters 
of that object. The field node is composed of the name of the parameter and its string 
value. The string value can also be an empty string. Adding the field node can be done 
through the method call addFieldNode. An unlimited number of field nodes can be 
added to the object node. A sample of creating the object node is show below, 
 
ObjectNode obj = new ObjectNode(label,50,50); 

obj.setCoverNodeColor(176, 224, 230); 

obj1.addFieldNode("balance = ", ""); 

obj1.addFieldNode("interestRate = ",""); 

Listing 5 Creating Object Node. 

4.1.1.3 Linked list Node 
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Figure 10 List Node. 

The linked list node is used in the creation of a linked list. Currently, only a single linked 
list is supported. The linked list node is composed of two field nodes, one for the string 
data that is stored in this list node, the other is for the edge used to connect to the next list 
node in the list. The constructor for the linked list node is shown below. It requires two 
parameters, the name of the node, and the string data value for the data that is stored in 
the node.  
 
ListNode node1 = new ListNode("Node<String>","0"); 

Listing 6 Creating List Node. 

4.1.1.4 Label Node 
 

 
Figure 11 Label Node. 

The label node is used to create labels in the animation. They are one of the simplest 
forms of a node type. To create a label node, the user needs to provide the string value for 
the label that will be displayed on screen, as well as its desired x and y coordinates. If the 
user passes in 0 for x, then it will automatically be mapped to the middle of the package 
node. The user can also change the font of the label to be displayed, and the color for the 
label node itself. An example of the creation of the label node is displayed below.  
 
LabelNode label1 = new LabelNode("Program Code",0,50); 

Listing 7 Creating Label Node. 

4.1.1.5 Note Node 
 
The note node is used to display notification in the animation. For example, if there is a 
section of the animation that the user would like to put emphasis on by pointing it out and 
displaying a description line, then the note node will be the ideal choice. The difference 
between the note node and a label node is that the note node can display a sentence in-
stead of a phrase.  
 
note = new NoteNode("Insert header",30,40); 

Listing 8 Creating Note Node. 

4.1.1.6 Variable Node 
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Figure 12 Variable Node. 

The variable node is used to represent a single entity. For example, it can represent a 
variable with edge pointing to another node or code. It can also be used to represent a 
variable with a string data value. Two constructors are available to create a variable node. 
Both constructors take a string value for the node’s variable name, its desired x and y co-
ordinates, a string width limit and an alignment side. A user can align the variable node 
either on their left side or right side by simply passing in the string “left” or “right”. The 
difference between the two constructors is that for the variable node that has a string 
value for its variable, an extra parameter is needed for its string content. The string width 
is needed to indicate the maximum width allowed for the string content of the variable 
node. Sample code is displayed below: 
 
VariableNode funcInfo = new VariableNode(“harrysChecking”,”1000”,x,y,50, 

“right”); 

VariableNode funcInfo = new VariableNode(“balance”, x, y, 50,”right”); 

Listing 9 Creating Variable Node. 

4.1.2 Code 
 
The purpose of this animation system is to help first year students learn the basics of 
computer science. Thus it is critical that the animation system is able to display the code 
that is being studied. To display code, a code object can be used. The code object will 
align itself in the package node it is assigned to. However, the user will need to specify 
how wide they would like to display the code. The code object takes in lines of code as 
an array list of strings. Some special features can be applied to the code object such as 
highlight a line or a phrase. Sample code is displayed below. 
 
Code code = new Code(width); 

ArrayList<String> c = new ArrayList<String>(); 

c.add("int i = 1;"); 

c.add("int s = 0;"); 

c.add("while (i <= 10) {"); 

c.add("    s = s + i;"); 

c.add("    i++;"); 

c.add("}"); 

code.addCodes(c); 

/* code is displayed automatically */ 

Listing 10 Creating Code Object. 

4.1.3 Text 
 
Besides the code display, it is also crucial to display text values during the animation. 
One simple example would be to display the values of a variable throughout the iterations 
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of a while or for loop. Displaying regular text is easy; simply create a text object and pass 
in a string value, and the desired text coordinates. The user can also set the desired font 
and color for the text. Sample code is displayed below. 
 
Font font = new Font("Dialog",Font.ITALIC,20); 

Text it = new Text("i",ix,y,x2-x1); 

it.setFontColor(font,Color.RED,BGBOX2C); 

doInOrder(drawText(textl,i)); 

Listing 11 Creating Text Object. 

4.1.4 Line 
 
To create a line object, the user needs to define the desired x and y coordinates and the 
width and height of the line to be displayed. Sample code is displayed below. 
 
Line line1 = new Line(x,y,height,width); 

line1.setColor(Color.BLACK); 

doInOrder(drawLine(line1)); 

Listing 12 Creating Line Object. 

4.1.5 Table 
 

 
Figure 13 Table Object. 

Despite the fact that users can use line and text objects to display a table, the coordinate’s 
alignment for each text element in the table can be a tedious task. Thus for the conven-
ience of the instructors, a table object is implemented. To create a table in an animation, 
the user will first need to call the table constructor and then pass in the table elements in 
columns. Each column of the table will be represented as a string array. Users can add-in 
as many columns as they desire. By default, the table’s coordinates are set to the center of 
the package node they are assigned to. But the user can also assign desired coordinates 
for the table created. Below is a sample code used to create a table object.  
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String[] column1 = {"i","1","2","3","4","5","6","7","8","9","10"}; 

String[] column2 = {"s","0","1","3","6","10","15","21","28","45","55"}; 

private Table table = new Table();  

table.addColumn(c1); 

table.addColumn(c2); 

table.setTableFont(table_f); 

Listing 13 Creating Table Object. 

To create an algorithm animation, the user should first select the objects they would like 
to use. Then they can apply desired effects to each of the objects to create the animation. 
Detailed examples will be given in the following section.  

4.2 Concrete Examples 
 
To create a desired animation, the user will first need to decide which components are 
needed to represent the problem at hand. Attributes for each of the components will then 
need to be considered and set. The animation is created by deciding the order in which 
components are displayed. Other special effects can be applied to each object to make the 
animation attractive. User interaction can also be inserted into the animation with simple 
function calls. In the following sub-sections, four different animations will be discussed 
to show how to build an animation in detail.  
 

4.2.1 Linked List Demo 
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Figure 14 Linked-list Animation. 

In this example, I will demonstrate how to create an animation that displays inserting a 
node into a linked list. Figure 12 displays a screen shot of the animation created. 
 
Inserting a node in the beginning or end of a linked list is not complicated. Inserting a 
node in the middle is where things get tricky. This example shows the user how a link list 
node should be properly inserted into the linked-list.  
 
Before creating the animation, the user need to first decides what and how many compo-
nents will be needed to create this animation. In this example, linked list nodes will be 
needed to create a linked list demo. For the basics of creating a linked list node object, 
please refer to sub-section 4.1.1.3. To create a linked list node, user would have to decide 
on the nodes’ data values as well as their coordinates. Once the node has been created, 
they were grouped together into a package node for printing. Code is displayed in Listing 
4.2.1.1.  
 
PackageNode pn1 = new PackageNode(0,0,0,0,BGBOXC); 

ListNode node1 = new ListNode("Node<String>","0"); 

ListNode node2 = new ListNode("Node<String>","1"); 

node1.init(xloc, yloc); 

lnode.add(node1); 

pn1.addNodeList(lnode); 

packNodel.add(pn1); 

VisualizationPanel.getMe().setPackageNode(packNodel); 
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Listing 14 Create list node and group it to the appropriate package node. 

To create the animation, the user needs to decide the order for the node to be displayed on 
screen for the animation. This example started with displaying the first original three 
linked list nodes on screen. To display a node, the user can call displayNode method, 
which takes the node to be displayed as a parameter. The user can display the node to-
gether or in order, using the two functions doInOrder and doTogether. The code is 
shown below. 
 
doTogether(displayNode(node3),glow(node3)); 

Listing 15 Display animate effects to the node just created. 

After creating two list nodes, the next thing to do is connect them. First two of the exist-
ing three nodes on screen will be connected. To connect two nodes through an edge, the 
user needs to create the edge for the two nodes first. Then the animation function 
linkNodeNode will be called to draw the edge on screen. 
 
ListNodeEdge node1edge1 = node1.connectNode(node2); 

doInOrder(linkNodeNode(node1edge1,node1,node2)); 

Listing 16 Connecting two list node. 

After connecting all three existing nodes on screen, a fourth node is created to be inserted 
in-between the first and second node. Inserting a new node into the list requires knowl-
edge on how to reference the nodes to be connected. This is where instructors would like 
students to perform the task to check their understandability toward the problem. To enter 
user interaction, an action needs to be created and selected. The instructor should also 
pass in the correct objects that the tool is expecting. Listing 16 displays the tool creation 
and usage.  
 
TwoNodeTool select = new TwoNodeTool(); 

addTool(select); 

selectThisTool(select); 

select.expectSelectTwo(node1,node4); 

Listing 17 Interaction tool creation. 

In this case, node1 and node4 are expected. If the student fails to do this, two options are 
available. First they can try to select two nodes to be connected again, or give up and the 
animation will automatically display the correct move.  
 
After correctly inserting the new node, it has to be moved into the list. Moving the node 
will require shifting the other two nodes to the right. To do that, the user can call the 
moveNode method. This function takes in three parameters: first the node to be moved. 
Second, the original coordinates of the node to be moved. And lastly the x and y differ-
ence for the node to be moved.  
 
doInOrder(moveNode(node4,node4.getNodeLoc(),difx,dify)); 

Listing 18 Moving a node. 
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To display the caption, the user needs to prepare a story.txt file. This file should consist 
of a list of captions that will be used. Each line of the caption needs to be numbered from 
1 to n for easy access. The StatusPanel object will load the file and display one line at a 
time as desired. Below is a simple example of how to load and display a line of caption 
into the animation.  
 
StatuPanel.getMe().loadCaption(capF,capC,captionfilename); 

doInOrder(drawCaption(1,2)); 

Listing 19 Loading caption into the animation. 

4.2.2 Inheritance Demo 
 

 
Figure 15 Inheritance demo screen shot. 

Components that are needed to create this animation are: code, line, label node, object 
node, caption and package node. In this example, different objects are needed in compari-
son to the previous example. To better organize the objects to be displayed, package 
nodes are utilized.  
 
First the caption is loaded into the animation through the loadCaption method as de-
scribed below. This is done in the same fashion as in the previous example.  
 
StatusPanel.getMe().loadCaption(capF,capC,captionfilename); 

doInOrder(drawCaption(1,2)); 
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Listing 20 Loading caption into the animation. 

Creating the label nodes can be done through calling its constructors. Label nodes are 
grouped together for better organization.  
 
NodeList list = new NodeList(); 

double x = 420-250/2; 

LabelNode label1 = new LabelNode("BankAccount",x,240); 

list.add(label1); 

x = 410-250; 

LabelNode label2 = new LabelNode("SavingsAccount",x,300); 

list.add(label2); 

LabelNode label3 = new LabelNode("CheckingAccount",420,300); 

list.add(label3); 

Listing 21 Creating three label nodes. 

In this example, three package nodes are used. Each of the package nodes in this example 
will have their own code object. One advantage of the package node is that, it can also 
display an object which does not strictly belong to its area. So the three label nodes and 
the two object nodes in this example can be assigned to any of the package nodes. Code 
shown below: 
 
/* creating three package nodes */ 

PackageNode pn1 = new PackageNode(10,10,820,220,BGBOXC); 

PackageNode pn2 = new PackageNode(10,350,400,200,BGBOXC); 

PackageNode pn3 = new PackageNode(420,350,400,200,BGBOXC); 

/* assigning each package node with objects */ 

pn1.addCode(code1,10,10); 

pn1.addNodeList(list); 

pn2.addCode(code2,10,350); 

pn2.addNodeList(funcList); 

pn3.addCode(code3,420,350); 

/* group the package node together */ 

packNodel.add(pn1); 

packNodel.add(pn2); 

packNodel.add(pn3); 

/* pass to visualization panel for printing */ 

VisualizationPanel.getMe().setPackageNode(packNodel); 

Listing 22 Package node and its usage. 

Code objects that are created by calling its constructor as shown in subsection 4.1.2. In 
this example, two animation effects are introduced: highlighting a code phrase and con-
necting a node edge to a line of code. Highlighting a phrase within a line of code can be 
done through a code object’s addPhraseBox method. For this method, the user would 
pass in the occurrences of the phrase that appeared in the code. For example, if there are 
two “this” strings in a line of code, and the user would like to highlight the first “this”, 
then 1 should be entered as the first argument. The second parameter is the line number 
for the line of code that has the phrase to be highlighted. The third parameter is the string 
of phrase to be highlighted. To move the highlight box, the updatePhraseBox method 
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should be called. The same arguments are needed, with one extra parameter for the code 
object that contains the phrase which needs to be highlighted. The code is shown below: 
 
code1.addPhraseBox(1,4,"public void deposit(double amount) { . . . }"); 

code1.addPhraseBox(1,5,"public void withdraw(double amount) { . . . }"); 

code1.addPhraseBox(1,6,"public double getBalance() { . . . }"); 

code2.addPhraseBox(1,1,"extends BankAccount"); 

doTogether(updatePhraseBox(code2,1,1,"extends BankAccount"), 

                updatePhraseBox(code3,1,1,"extends BankAccount")); 

Listing 23 Highlighting a phrase within a line of code. 

Connecting a node object with a code object can be done in similar fashion as connecting 
two node objects together. First the user needs to create a ListNodeEdge object, by call-
ing the node’s connectCode method. The user can use this method to specify the source 
node and the target node that will be connected. The first parameter this method takes is 
the source node. The second parameter specifies the target node. To display the anima-
tion, the function linkNodeCode can be used. Parameters needed are the object node that 
will initiate the connection, the string name of the field node of the object node, the code 
object to be connected to and its line number.  
 
ListNodeEdge obj1edge1 = obj1.connectCode("balance = ", code1); 

ListNodeEdge obj1edge2 = obj1.connectCode("interestRate = ", code2); 

ListNodeEdge obj2edge1 = obj2.connectCode("balance = ", code1); 

ListNodeEdge obj2edge2 = obj2.connectCode("transactionCount = ", code3); 

doInOrder(linkNodeCode(obj1edge1,obj1,"balance = ",code1,7), 

                  linkNodeCode(obj1edge2,obj1,"interestRate = ",code2,4)); 

Listing 24 Connecting between a node object and a line within a code object. 

4.2.3 Run Time Stack Demo 
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Figure 16 Run time stack screen shot. 

This animation is created to demonstrate how a variable’s value changes throughout the 
program execution. Components that are needed for this animation are code object, line 
object, variable node and object node. For details on loading captions please refer to the 
previous two examples. For details on the Code object creation, please refer to sub-
section 4.1.2.   
 
Three new features worth mentioning here are: the code phrase arrow, the coloring of the 
variable node and the field node of the object node. It is also possible to change the value 
of a field node for an object node. Usually, besides highlighting a certain variable or a 
line of code, it is also convenient to have an indicator to show the execution sequence of 
a program. The phrase arrow is used for instructors to point at the beginning of a line of 
the code object. By moving the arrow up and down, the instructor can show the execution 
sequence of a program or simply put emphasis on a particular line of code. To add an ar-
row to the code object, the method addPhraseArrow can be called. One parameter is 
needed to indicate which line the arrow will stop at. Once the arrow is added to a particu-
lar line of code, it does not matter which order the arrow moves. The sample code is 
shown below.  
 
code.addPhraseArrow(4); 

doInOrder(updateArrow(code,4)); 

Listing 25 Add phrase arrow to the beginning of a line of code. 
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Changing the background color of a variable node or a field node of the object node can 
be done through two effects function call, highLightField and highLightNode. The 
highLightField method takes an object node and the field string name as arguments. It 
needs to know which field node of which object node will be highlighted. The high-
LightNode method takes the variable node that will be highlighted as an argument. The 
sample code is shown below: 
 
doInOrder(highLightField(obj,"balance = "), highLightNode(var1), 

                changeFieldNodeValue(obj,"balance = ","2000")); 

Listing 26 Highlighting a field node, and change a field node's value. 

4.2.4 Tracing a Loop Demo 
 

 
Figure 17 Tracing a loop screen shot. 

Animations can also be created with text objects. The purpose of this animation is to 
show the value change for a variable through out a while loop. Several objects are 
needed, label node, code, text and line. For each of the objects’ creation please refer to 
the components section.  
 
The variable i will be incremented from 0 to 10 and the variable s will be incremented 
by value i in every iteration. The code is displayed first on the left hand side of the panel, 
then moving the arrow and highlight box to indicate the execution process of the pro-
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gram. On the right hand side of the panel, two lines are drawn to create a table for both 
variable i and s. For each iteration, values for variable i and s need to be updated. In this 
animation, variable i is updated automatically, while variable s requires the user's inter-
action.  
 
Initially, creation of the table for this animation is done through text and line objects. 
However, due to the complication of coordinates of each table element, table objects 
were created. For details regarding the creation of the table object, please refer to sub-
section 4.1.5. Two features worth mentioning are drawing the line to cross a text, and in-
corporating user interaction for the next correct value for variable s. Displaying a text 
object can be done through the simple function call drawTableText. Drawing a line over 
the text to cross out the value can be done through the function call drawTableTextLine. 
Sample code is shown below.  
 
doInOrder(drawTableText(table,"s",es),drawTableTextLine(table,"s",old_es)); 

Listing 27 Display table element and draw line across the table element. 

After displaying the objects required for the animation and the initial value for variable i 
and s, the animation halts and waits for the user to select the correct tool. A window pop-
up will prompt the user for the next correct value for variable s. If the correct value is 
entered, the animation will move onto the next iteration and prompt the user for the ani-
mation tool and value again, until the end of execution. Sample code can be seen below.  
 
enterValue(select,es); 

Listing 28 User interaction for string value. 

5. Evaluation 
 
Due to the different teaching styles and personal preferences many algorithm visualiza-
tion tools developed have not been widely utilized [1]. Reasons for the under utilization 
of the tools are many. In order to develop a good algorithm visualization tool, three 
things should take into consideration: teacher empowerment, student interaction and fa-
miliar framework. 
 

5.1 Teacher Empowerment 
 
Ben-Ari et al [1] did a study on what are instructors looking for within a software tool 
that is designed to help them in making learning experiences better and easier. As a re-
sult, they came up with two important factors. First, an instructor's interest in utilizing a 
tool relies heavily on the “integrating the tools with other learning materials”. Second, it 
also depends on “addressing the role of the teacher in the use of software by the stu-
dents”.  
 
From their year-long study, it was shown that students using the visualization tool per-
form better compare to the students who do not. Thus it is the instructor's responsibility 
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to expose students to any new tools that might help them in achieving an academic 
course. However, they found that the number of instructors that are open for innovative 
ideas is inconsistent to the number of instructors who are actually doing it. Ben-Ari et al 
believe that the major reason for this inconsistency is due to the inability for instructors to 
accept changes in their routine procedures. They called such behavior “centrality of the 
teacher”, where experienced instructors refused to accept any changes that might jeopard-
ize their role of authority in teaching the subject that they are most familiar to. 
 
Developers devoted tremendous amount of time on the “technical capabilities” of the 
tool, while ignoring how it will integrate with the rest of the learning materials [1]. Nu-
merous visualization tools such as Jeliot did not get widely utilized because they are 
standalone applications. They take an existing problem instance and solve it in a way that 
tool developers see it, without thinking how the instructor might like it to be done. Be-
cause of this, “centrality of the teacher” is being taken away, and instructors will mostly 
likely avoid a tool that will replace them in a classroom. The application created for this 
project solved this problem by leaving instructors in charge. A list of available APIs is 
created and instructors are able to create the animations that best fit their needs. 
 

5.2 User Interface 
 
Taylor et al [19] did research comparing two different types of user interactions in anima-
tion learning tools. Their study shows that algorithm visualization with user interaction 
incorporated produce better results compared to pure animation. The first type of interac-
tion they talked about is “passive” interaction. This type of tool allows user to interact 
with the animation in its control level. The user is able to adjust the animation speed, stop 
or restart the animation or rearranging the animation objects/data values as desired. This 
type of user interaction usually does not involve intelligent interaction with its user. The 
second type of interaction they defined is “predictive” interaction. Different from the first 
type of user interaction, “predictive” interaction allows the user to predict the next move 
for a particular algorithm in its execution. With the appropriate feedback, this achieves 
the “in-class effect”.  
 
For their study, with the selected group of the students, they let them use both types of 
interactive animation tools but each with a different order. For example, group A will try 
“passive” interaction first then “predictive” interaction next, while group B will try “pre-
dictive” interaction first and “passive” interaction next. The result is pretty clear that stu-
dents who have seen “predictive” interaction first perform much better than students who 
used “passive” interaction tool first. More importantly, they argue that students who have 
seen animation with some type of interaction out performs students who does not use 
animation at all or use animation without any types of interaction. 
 
For this project, instructors have control over creating the animation they would like to 
use. They can also incorporate user interaction at desired locations throughout the anima-
tion. Freedbacks is also given to students after each move.  

5.3 Optimized to Task 
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In researching for the language to use to create the animation API, two well known dy-
namic animation generation tools, JavaFX [20] and Flash are studied. Flash is yet another 
popular tool for creating fancy animation with minimal effort. However a domain spe-
cific language such as JavaFX is not sufficient enough to create sophisticated and reus-
able animation quickly. Figure 17 is the code that displays an animation which draws 
node objects and connects edges between them.  
 
def newnode = Rectangle { 

                effect: DropShadow {}; 

                translateX: 400, 

                translateY: 120 

                width: 50, 

                height: 50 

                arcHeight: 20 

                arcWidth: 20 

                fill: Color.BEIGE 

            }; 

def path = Path { 

    elements: [ 

        MoveTo{x: 130          y: 420 }, 

        CubicCurveTo { controlX1: 220  controlY1: 390 

                           controlX2: 220  controlY2: 456 

                                   x: 310          y: 420 }, 

        CubicCurveTo { controlX1: 400  controlY1: 390 

                           controlX2: 460  controlY2: 490 

                                   x: 525          y: 420 }, 

         CubicCurveTo { controlX1: 590  controlY1: 355 

                           controlX2: 640  controlY2: 455 

                                   x: 730          y: 420 }, 

    ] 

}; 

def anim = PathTransition { 

        path: AnimationPath.createFromPath(path) 

        orientation: OrientationType.ORTHOGONAL_TO_TANGENT 

        node: newnode 

        interpolate: Interpolator.LINEAR 

        duration: 8s 

        repeatCount: Timeline.INDEFINITE 

}; 

Listing 29 JavaFX Code Sample. 

In the above code, a user would have to define each component that will be used for the 
animation. This severely limits reusability of the code and causes the resulting code to be 
bulky and hard to manage. The same animation can be accomplished with eight lines of 
code by using my APIs created for this project. 
 
To do an animation in Flash that moves and glows objects, redirects arrows or crosses out 
text can be a tedious and repetitive task. Though creating animation can be done through 
buttons and tools, users would need to learn scripting and programming using Flash to 
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effectively produce these animations. Moreover, creating animation with Flash requires 
some level of design skill and creativity. Instructors usually do not have and do not wish 
to spend too much time in designing the visual effects of the animation they are creating. 
For this project, instructors can use the readily made animation objects without worrying 
about the animation’s visual effects. 
 
From the research, listing 27 displays the overall levels of usability between this frame-
work, JavaFX and Flash. 
 
 Algorithm Learning 

Framework 
JavaFX Flash 

Reusability High Medium Low 
Tool requirement Low Medium High 
Language frame-
work 

Low High High 

Lines of code Low High High 
Visual Effects Medium High-Medium High 

 Listing 30 Summary of tool comparison. 

The visual effects created by this application might not be as good as animation created 
by domain specific tools such as JavaFX and Flash, but I believe advantages such as high 
reusability, low tool requirements, no need to learn a new language and fewer lines of 
code are needed, will make this tool more attractive to instructors.  
 
This project is designed with instructors in mind and how to better address their needs. It 
is not a stand alone application. Instructors are able to create the visualization they desire, 
they can also choose to incorporate student interaction if they like. Creating animation 
with this API can be done with a language that is familiar to most instructors. However, 
depending on the personal preference and requirements, this project will not satisfy all 
instructors need. For example, instructors who prefer minimum effort to create the anima-
tion, writing code to create the animation may still be discouraged. 

6. Conclusions  
 
Over the past decade, hundreds of visualizations have been researched and developed. 
Only a few instructors are actually using these tools in their daily routines. Reasons are 
many; some believe that the visualizations have bad quality; while others argue that visu-
alizations created are for problems that are too simple to provide any real value. Recent 
studies shown that many tools either ignore instructor’s needs or incorporate limited user 
interactions.  
 
The purpose of this project is to avoid these limitations and create a framework that will 
be user friendly to most instructors. Three factors that are important when creating an ac-
tive learning framework involves: teacher empowerment, user interaction and optimized 
to task. Sharma’s framework incorporated these three factors in some form. For this pro-
ject, I have rewritten majority of the framework structure to better achieve the effectives 
based on these three requirements. First of all, this framework continued to use Java and 
eliminated the existing JUNG framework. This has significantly reduced instructor’s ef-
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fort and time in learning this tool that might be new to them. Secondly, by rewriting 
Sharma’s framework, creating an animation is now much more flexible and more time 
can be spent on the actual design of the animation. Lastly, by eliminating the usage of 
buttons, student interaction is simplified.  
 
Though limitations of existing tools have been addressed in this project, there are some 
features that have been sacrificed, for example, features such as automatically generating 
algorithm animation from pseudo-code. This is inevitable due to different instructors 
have different needs and preferences. It is almost impossible to cover all of them. How-
ever, the framework is sufficiently general that it can be enhanced to provide for anima-
tions that will be of interest to other instructors.  
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