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Abstract 
 

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature 
cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak 
(ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced 
in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic 
field at the temperature Т<Тс with subsequent slow warming up to room temperature with 
invariance of the applied field. The attenuation peak height depended on the preliminary 
orientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On 
the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at 
the temperatures close to the critical temperature Тс, the attenuation peak associated with 
“melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in 
monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized 
using solar energy and superfast quenching of the melt, the attenuation peak with the maximum 
at Т≈200 К was observed.  

Depending on the conditions of synthesis, the attenuation peak could be two-humped and 
could be located in the temperature range much wider than Тс of the major superconducting 
phase. We assume that this is due to the existence of frozen magnetic fluxes (after FC) in 
superconducting “dropping” regions, which gradually (with increasing temperature) transfer into 
the normal state and release pinned vortex threads. This fact could be a cause of observed 
dissipative processes, so as also the evidence of the existence of superconductivity at Т ≥240 К.  

 
 

1. Introduction  
 

Despite a lot of data have been accumulated since discovery of cuprate high-temperature 
superconductors in 1986, there have been few attempts to perform microscopic studies of how a 
superconducting state emerges in such materials. The question of why some substances become 
superconducting at relatively high temperature led to the investigation of various properties and 
characteristics of high-temperature superconductors (HTS) both in superconducting and normal 
states. Based on firmly established experimental facts, Nobel Prize Laureate A.J. Leggett [1] 
formulated the following requirement (along with other ones) to the modern theory of 
superconductivity: to explain why just in cuprates (CuO2) high-temperature superconductivity is 
observed. Moreover, the theory must define what the room-temperature superconductor (RTS) 
is. For today, a multielectron theory of superconductivity satisfying these requirements has been 
elaborated using an artificial intellect [2].  

About 50 years ago, N. Mott introduced the term “pseudogap” [3]. He used it to indicate a 
minimum in the density of electron states at the Fermi level resulting from Coulomb repulsion 
between electrons at lattice nodes or being a precursor of formation of a forbidden gap in 
disordered systems, or either being a consequence of a combination of these two factors. Later it 
was noticed that the pseudogap could be a sign of the existence of noncoherent-in-phase Cooper 
pairs in the superconductor at T>Tc. After the discovery of the pseudogap in cuprate HTS, many 
considered exactly this mechanism of its formation to be the most probable, which was indirectly 
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confirmed by fluctuation superconductivity observed in HTS at temperatures much higher than 
Tc. The region of superconducting fluctuations is quite large and experimentally can reach 
several tens degrees [4]. At the same time, for antiferromagnetic (AFM) fluctuations 
characterized by an order of greater energy, the existence of a critical area hundreds degrees 
wide does not seem so incredible. There was a point of view that the pseudogap phase did not 
precede the superconducting phase, but competed with it. Though, in essence the question 
remained open.  

In work [5], discussing the causes of emergence of the pseudogap at relatively high 
temperature of about 100-150 K, a big group of scientists arrived to a conclusion that it was a 
completely special state of substance having no relation to superconductivity. While not giving 
the answer to the question on the pseudogap origin, the authors nevertheless used three methods 
to investigate HTS Bi/Pb (2201). The first one was the most widely used method of detection of 
the pseudogap – angle-resolved photoemission spectroscopy (ARPES), which undoubtedly is an 
effective technique for a certain range of problems, however it gives only a superficial (in the 
literal sense) idea of a substance. The second method was time-resolved spectroscopy. The third 
one involved the measurement of the magneto-optic Kerr effect, which allowed detecting a 
change in the magnetic order inside the crystal at Т*=132 К and identifying it as a phase 
transition. Hence, according to the authors, for the HTS crystal to begin to superconduct, it was 
necessary that it underwent two phase transitions as the temperature decreased, first the 
emergence of the pseudogap and then of superconductivity. On the other hand, it was assumed 
that the origin of the pseudogap and superconductivity could have common features. This fact 
explains a great number of reviews, e.g. [6], and articles devoted to this issue [7-9].  

At the same time, in [10] a survey of theoretical and experimental data pointing out the 
possibility of spontaneous phase separation in a number of HTS systems (especially in the area 
of underdoped compositions) is given. This separation occurs on a microscopic scale so that the 
system divides into metallic (superconducting) and dielectric (antiferromagnetic) domains. In 
[11] it was shown that the existence of superconducting “drops” in many cases explains 
anomalous diamagnetism over the temperature range higher than Tc. On the other hand, 
depending on external effects, phase transitions and variations in phase stability can be observed. 
For instance, a phase stable under certain temperature conditions becomes instable when the 
temperature increases or decreases.  

The results obtained in [12] indicate that maybe both are right and that two different states 
coexist in the pseudogap phase: in one of them (at Tc<T<Tpair) there are noncoherent Cooper 
pairs, while the other is realized over a wider temperature range (at Tc<T<T*, where T*>Tpair – 
the temperature of emergence of the pseudogap) and is of a nonsuperconducting nature. The 
authors [12] arrived to this conclusion when studying the ARPES-spectra of single crystals Bi-
2212 and Bi-2201 with different levels of doping and analyzing temperature dependences of the 
shapes of spectral lines measured in the anti-node direction of the Brillouin zone. This served as 
a basis for the authors to make a hypothesis about the formation of another pseudogap state at 
T=Tpair, which at T<Tpair coexisted with the one formed at Tpair<T<T* and which was supposedly 
caused by formation of noncoherent Cooper pairs.  

For today it is considered established [6,7,9,13] that the electron-phonon coupling in cuprate 
superconductors is quite strong. Under such conditions, any change in the electron structure must 
inevitably lead to the changes in phonon characteristics and other physical properties. Thus, for 
instance, when studying the ultrasonic velocity [14] in superconductor GdBaSrCu3O7-x (Тс = 82 
К), there was observed a step-like anomaly at Tg=245 K (Tg≈3Tc) clearly indicating a change in 
lattice rigidity. It is well known that HTS manifest anomalous behavior over the temperature 
range 150-250 К. Thus, in works [15,16] it was shown that, in systems Bi-2201 and Вi-2212 at 
Т≈240 К, the coefficient of thermal expansion (CTE) changed the sign with cooling and became 
negative. The values of lattice parameters increase, i.e. the effect is volumetric.  

The authors of works [17,18] believe that the emergence of superconductivity in cuprate 
superconductors (R)Ba2Cu3O6+x (R =Y, Gd, Tm, Ho) at relatively high temperature is expressed 
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in the form of a temperature “echo”. Such an echo is characteristic of superconductors with 
strong coupling, and determined by anomalies of the heat capacity [18]. The mechanism of such 
nucleation is assumed to be related to the occurrence of the order parameter amplitude with the 
absence of phase coherence of paired current carriers [19]. In works [20,21] they introduced the 
notion of emergence of two pseudogaps, the first of which was associated with the crossover 
phenomenon unrelated to superconductivity and another – with the phenomenon of phase 
transition caused by superconductivity. Due to currently unidentified causes, the density of 
quasiparticle states at the Fermi level begins to decrease [22-24].  

We are most impressed by the point of view and the experimental data of the authors of 
works [17,18] who presented the results of the analysis of the experimental heat capacity over a 
wide range of normal and superconducting states. An anomaly Th steadily manifested in the 
interval 250–290 K was observed for all samples. The anomaly Th in appearance resembles the 
phenomenon related to the phase transition. The interconnection between the Th and Tc processes 
prompts that the phenomena at Tc and Th are affiliated and, according to the authors, they both 
are related to the superconductivity.  

Another example are the results of measurements of the coefficient of heat expansion α(T) of 
single-crystals YBa2Cu3O6.95 and YBa2Cu3O7  carried out over the temperature range 5-500K for 
three orthorhombic axes [25]. Depending on α(T), for the sample YBa2Cu3O6.95, the anomalies 
are observed as at the temperature of the superconducting transition Тс=93 K, so also at Tg=280 
K (Tg≈3Tс).  

Practically in all abovementioned works, HTS with a single major superconducting phase 
were studied. In this work multiphase cuprate semiconductors synthesized using the solar energy 
are considered, and the results of the investigation of superconducting phases of the samples 
Bi/Pb (2:2:2:3), (2:2:4:5), (2:2:19:20) and (2:2:29:30), which, along with low-temperature phases 
with Тc≈107 К, contain other higher-temperature superconducting phases, are presented. In our 
investigation, percentage of these phases varied from 1% to 98% depending on the task set when 
searching for optimal thermodynamic conditions of synthesis of HTS at specified temperature 
and time with the aim of obtaining the superconducting phases with maximum Tc.  

 
2. Multiphase samples under study 

 
Using the recently developed technology Solar Fast Alloys Quenching-T (SFAQ-Т) [26,27], 

based on glass-crystal and X-ray amorphous precursors, we obtained decomposition-resistant 
textured superconducting systems Bi1.7Pb0.3Sr2Ca(n-1)CunO10-y (n=2-30) with critical temperature 
of the superconducting transitions up to Тс ≥ 181 К [28]. We synthesized the precursors by 
quenching of the melt which was produced by heating with solar radiation. The samples under 
study were axially symmetric pressed tablets. The appearance of precursors is shown in Fig. 
1a,b,c and nanosize nuclei on the precursor-plate surface are presented in Fig. 1d.  

 
Fig. 1. Precursors of nominal compositions Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), obtained 
by quenching of the melt under concentrated solar  radiation: a – spherulites; b – plates 
and pieces; c – needles; d – nanosize nuclei in glass-crystal precursors.  

 
The investigation of the phase composition of precursors showed the following. On the 

diffractograms of precursors with n=3-12 the halo and separate reflexes on its background 
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indicated their glass-crystal state. An increase in n≥12 and the corresponding increase in the 
concentration of CаO and CuO, led to destabilization of the glass phase. Initiation of precursor 
reflexes of nominal n=3-12 showed that, with quenching of the melt, the nuclei with 
crystallographic planes were frozen for the superconducting phase (2201) - [113, 115, 019, 024, 
028, 0113], phase (2212) – [017, 0111, 0210, 0010], and phase (2223) - [115, 119, 0015], 
respectively. These planes could be the nuclei on which it is possible at thermal treatment the 
completion of crystal lattice of that superconducting phase for which the thermodynamic 
conditions of formation were optimal at specified temperature and time. In compositions with 
n=5-20, 25, 30, at 100-700°C, new phase Х1 with the structure differing from superconducting 
phases (2201), (2212), (2223), (2234) was formed. Another new phase Х2 was formed when the 
temperature increased up to 846°C. The time of heat treatment (3, 24 and 48 hours) did not affect 
the stability and changes of the crystal structure of Х1 and Х2 phases. According to 
diffractograms, the intensity of the reflexes of superconducting phase Х2 increased in a series 
with increasing n. The parameters of a unit cell of phase Х2 were а=3.9015Å; b=3.8185Å; 
c=135.5947Å.  

 
3. Methods of investigation  

 
In this work, to determine the critical temperature of the superconducting transition Tc, we 

used a magnetomechanical method of torsion oscillations realized using an automated 
multipurpose device [29], having the sensitivity comparable with that of a SQUID magnetometer 
[30], designed at E.Andronikashvili Institute of Physics (Tbilisi, Georgia). The investigation was 
carried out at low-frequency axially-torsion oscillations (0.1÷1 Hz) in a permanent magnetic 
field with strength H and showed a significant effect of the background of the experiment, the 
value of H, initial orientation of the sample and the direction of variation in the temperature of 
the sample (cooling or warming) on the obtained results.  

The torsion instrumentation used is especially sensitive to reorientation of magnetic moments 
of the materials under study in external magnetic fields. As all studied HTS possess own 
magnetic moments, the experiments of this kind are quite informative when studying structural 
transitions, especially when such transitions are accompanied by reorientation of magnetic 
moments including the normal state at Т>Тс.  

The method of torsion oscillations was first used for investigation of energy loss (dissipation) 
in the mixed state of hard superconductors in works [31,32], where quite high sensitivity of the 
torsion system (10-17W) was shown. The use of these possibilities allowed determining the 
critical parameters such as Tc or the first critical field Hc1 [33-36], studying the anisotropy of 
pinning force Fp in high-temperature oxide superconductors [37,38], and also the intrinsic 
magnetic characteristics of HTS samples [29,39-42]. The studies of this kind allow investigating 
the issue of order parameter symmetry, judging about the mechanism of pairing and hence about 
the mechanism of high-temperature superconductivity. Besides, studying the dissipative 
processes in the vicinity of Tc, we can observe and investigate the effects of melting of the 
Abrikosov magnetic vortex lattice in HTS [43-45].  

The phase transition temperature Tc was determined not only by the frequency ω=2π/t of the 
superconductor oscillating in a permanent magnetic field H, but also by the character of the 
dependence of the dissipative process δ(Т), where δ  is the logarithmic decrement of attenuation 
of oscillations. These two characteristics t(Т) and δ(Т), being measured in parallel and 
complementing each other, provide information on the presence or absence of magnetic vortex 
threads in the sample under study, which allows judging the state of the sample.  

In case there are no magnetic moments in the sample, dissipation and frequency of 
oscillations do not depend on the external magnetic field. For instance, the superconducting 
sample oscillates in magnetic fields H<Hc, or the internal moments are zero or either are 
disoriented or unfixed. The presence of pinned magnetic dipoles generates a nonzero magnetic 
moment M in the sample even at room temperature. The interaction between M and H generates 
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the moment τ = М х Н sinα, where α is the angle between M and H. This additional moment τ 
affects both the immobile and oscillating systems, making the dissipation and frequency of 
oscillations dependent on the external magnetic field, especially with the presence of vortex 
threads in the mixed (Н > Нс1) state of separate areas of HTS under study.  

As was shown in work [46], for the superconductors in the mixed state, the interaction 
between pinned and unpinned (free) Abrikosov vortices plays an important role in the dynamic 
oscillating processes affecting both the frequency ω and the dissipation δ of the energy of 
oscillations. It is well known that the pinning force also depends much on the temperature, e.g. it 
tends to zero approaching Тс. At the same time, the concentration of free vortices increases, 
while the value of ω sharply decreases. The results of corresponding investigation of the 
monophase sample Bi/Pb (2-2-2-3), synthesized by a standard solid-state reaction, shown in Fig, 
2, can be compared with the results of investigation of multiphase samples. It is evident that, as 
the temperature increases approaching Тс a sharp attenuation maximum appears in the δ(Т) 
dependence. This maximum is related to the decrease in the pinning force and gradual liberation 
of Abrikosov vortices from pinning centers and their viscous motion in the sample matrix with 
oscillations. Approaching Тс, this process is replaced with the process of melting of the 
Abrikosov vortex lattice with its gradual disappearance at Т=Тс, which leads to an abrupt 
increase in the value of t and an similar abrupt reduction of attenuation of δ(Т) in the immediate 
vicinity of Т~Тс. 

 
Fig. 2. a) – Temperature dependence of the logarithmic decrement of attenuation δ and 
the oscillation period t for the monophase sample Bi/Pb (2-2-2-3), synthesized by a 
standard solid-state reaction and studied after abrupt cooling to T=77K in the magnetic 
field  Н=25mT; b) – magnetic susceptibility.  

 
In most cases, the investigations were accompanied by testing of the samples by measuring 

the electric resistance (4-contact method) and magnetic susceptibility. The characters of 
dependences χ(Т) and t(Т) coincide, which is evident from Fig. 2a,b (Тс=107 К). Measurements 
were carried out with increasing temperature from Т=77 К.  

It should be noted that, in all monophase Bi/Pb samples with temperature above Тс, there 
were not observed other superconducting phases with higher temperature. At the same time, in 
the majority of samples of multiphase bismuth HTS, synthesized using solar energy and 
superfast quenching of the melt, we detected an attenuation peak or peaks with a maximum at Т 
≥ 200 К, which is in the significantly larger region than Тс of the major superconducting phase. 

Figure 3 shows the results of investigation of one of the samples Bi/Pb (2245) fabricated 
under the conditions of the technological process close to nominal. There are shown the 
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temperature dependences of period t and the decrement of attenuation of oscillations δ under 
field cooling (FC) conditions in magnetic field Н=150mT.  In the figure, the critical temperatures 
for phases (2212) with Тс≈80К and (2223) with Тс≈100К are taken in a circle. Especially notable 
is the transition from Т1=150 К to Т2=236 К. This transition is accompanied by a wide 
attenuation peak of δ at Т≈200 К. 

 
Fig. 3. Temperature dependence of the period t and the decrement of attenuation of 
oscillations δ of the sample Bi/Pb (2:2:4:5) after abrupt FC in the magnetic field 
Н=150mT to Т=77 К. 

 
As in the case of a monophase superconductor shown in Fig. 2, here the attenuation peak 

indicates that it accompanies a wide superconducting transition up to Т ≈ 240 К. It is obvious 
that this peak is related to the Abrikosov vortices frozen after the FC procedure and pinned 
throughout the volume of the multiphase superconductor. These vortices liberate with increasing 
temperature and decreasing pinning force, respectively, and hence, with their viscous motion in a 
sample gradually increase the value of δ up to Т≈200 К. A further increase in T leads to a 
decrease in δ due to a gradual approach to Тn. As it takes place, the vortex lattice melts [43, 44] 
and disappears altogether when the sample transfers into a normal state. In some cases, Тn ≈ 240-
255 K. 

The character of dependences δ(Т) and t(Т), and, respectively the values of Тс of the 
superconducting phases of the studied multiphase sample essentially depend on the parameters 
of the technological process. For example, in Fig. 4 it is shown the results for two 
superconducting systems Bi/Pb (2:2:19:20), identical in composition but with different 
temperature and duration of annealing.  
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Fig. 4. Temperature dependences of the period of oscillations t of the samples Bi/Pb 
(2:2:19:20) after abrupt FC to T=77K in the magnetic field Н=150mT. The temperature 
and time of annealing are given in the corresponding curves.  

 
Fig. 4 shows purely subjective estimates of the contribution (in percentage) of 

superconducting phases to the measured dependence t(Т) of both samples. As we see, the high 
temperature of annealing (851°С) led to the dependence with ТС =119 К, which in character is 
practically identical to that for the monophase HTS (98.14% of the major superconducting 
phase). As in the case of really monophase superconductors, this transition is also accompanied 
by a characteristic dependence δ(Т) with the attenuation peak, which is shown in curve 2 in Fig. 
5 (compare with Fig. 2a). 

The annealing at 846°С essentially changed both dependences t(Т) and δ(Т). As we see (Fig. 
4), critical temperatures ТС1=100 К (22%) and ТС2 =201 К (contribution 45.3%).are particularly 
clearly manifested in the dependence t(Т). It is noteworthy that the dependence δ(Т) is  two-
humped (two attenuation peaks) in the temperature region Т ≥ 200 К. As     the attenuation peaks 
are associated with the Abrikosov vortices and their viscous motion along the matrix of the 
sample, the existence of the second peak allowed us to assume that there was a superconducting 
transition of another phase with temperature higher than ТС2 =201 К (curve 1 in Fig. 5). If the 
attenuation peak (maximum) related to ТС2 is located at Т=201 К, then the second peak located at 
Т=220 К (higher than ТС2) justifies this assumption. We managed to detect this high-temperature 
phase in the experiments with modified conditions of the FC procedure. Particularly, longer 
exposure of the HTS under study at Т=77 К after its abrupt cooling in the magnetic field H 
allowed the critical temperature ТС3 ≈ 240 К to manifest itself. It should be noted that we 
observed the two-humped nature of the dependence t(Т) earlier with the sample Bi/Pb (2:2:4:5) 
with ТС =181 К, where the second attenuation peak also indicated the superconducting transition 
with  Тn ≈ 230 K [28]. 
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Fig. 5. Temperature dependences of the decrement of the attenuation of oscillations δ 
measured simultaneously with the dependences shown in Fig. 4 for multiphase samples 
Bi/Pb (2:2:19:20) after abrupt cooling to Т=77 К in the magnetic field:  
1) – after annealing at T= 851°С for 108 hours; 
2) - after annealing at Т=846°С for 47 hours.  
 
Thus, complementing each other, the experimental results for dependences t(Т) и δ(Т), 

shown in Figs. 4 and 5, allow us to make a conclusion about the existence of the frozen 
Abrikosov magnetic vortex structure in multiphase HTS after the FC procedure and hence about 
the existence of superconductivity at relatively high temperature Т ≥240 К. 

 
Fig. 6. Temperature dependences of the period of oscillations t of the sample Bi/Pb 
(2:2:19:20) after annealing at Т= 851°С for 108 hours. Field cooling to T=77K in the 
magnetic field Н=150 mT.  

 
Special attention should be paid to that, for the sample with Тc=119 К (annealing at 851°С 

for 108 hours) shown in Fig. 4, the variation of the period of oscillations over the temperature 
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range from 77K to 300K makes up a few seconds, while, for the sample with annealing at 846°С 
for 47 hours, this variation is much less – tenths of a second. It is noteworthy that that the 
variation of the period t in seconds is inherent in hard superconductors with quite strong pinning 
of the Abrikosov vortices. In other words, the stronger is the pinning, the harder is the oscillating 
system with the sample, and hence the smaller is the value of t (in seconds). As mentioned 
above, the methods used in this work have the sensitivity comparable with that of the SQUID 
magnetometer [30]. Thus, for example, the period of oscillations is determined with the accuracy 
to the fourth sign after the comma (10-4 s). Thus, the dependence t(T) (Fig. 4) for the sample with 
Тc=119 К on the second scale, where the contribution of the major superconducting phase to the 
variation of the period from 77K to 280K makes up 98.14%, does not give visually complete 
information about the processes proceeding in the HTS under study at the temperature above 
Тc=119 К. In this connection, in Fig. 6 it is shown the dependence t(T) in the interval from the 
critical temperature Тc of main phase up to T=260-270 К, at  which the sample transfers to the n-
state. This state is determined by the period of oscillations having reached the value that the HTS 
under study had in the given magnetic field before cooling.  

In the dependence shown in Fig. 6, we can see the specific features at temperatures 130, 146, 
182, 205 and 240 К, which is surely related to the presence of a set of superconducting phases in 
the given multiphase sample Bi/Pb (2:2:19:20) after annealing at Т= 8510С for 108 часов, 
although their contribution to the dependence t(T) makes up only 1.7%.  

We should emphasize the fact that, in this region, the value of the variation of the period of 
oscillations makes up hundredths of a second (10-2 s). This fact indicates not only the weaker 
pinning in comparison with the sample after annealing at Т=8460С for 47 hours (Fig. 4), but also 
the high sensitivity of the torsion system even to slight variations in the frozen Abrikosov 
vortices associated with high-temperature superconducting phases.  

Besides, the experimental result (Fig. 6) shows that homologous nuclei formed during 
annealing of the sample, which are the crystallization centers for HTS phases, are preserved even 
at high temperature of annealing (8510C), although their contribution to the measurements is 
small.  

 
Conclusion 

 
In the low-frequency dynamic experiments in the course of investigation of the magnetic 

properties of multiphase cuprate superconductors Bi1,7Pb0,3Sr2Can-1CunOy (n=2-30), synthesized 
using solar energy and superfast quenching of the melt, a wide peak (ΔT~100 К)  with the 
maximum at Т≈200 К was detected. In some cases, there were detected two attenuation peaks 
associated with the processes in the vicinity of the superconducting phases with higher 
temperature. The analysis of the nature of obtained dependences and their comparison with other 
available results associated with the processes in the vicinity of critical temperature Тс, allows us 
to infer that, up to Т≈245-250 К, there exists a magnetic vortex structure frozen after the FC 
cooling and hence about the existence of superconductivity in the multiphase cuprates under 
study.  
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