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ABSTRACT 
Quantitative dynamical models of galaxies require deprojection of the observed surface 
brightness to determine the luminosity density of the galaxy. Existing deprojection methods 
for axisymmetric galaxies assume that a unique deprojection exists for any given inclination, 
even though the projected density is known to be degenerate to the addition of 'konus 
densities' that are invisible in projection. We develop a deprojection method based on linear 
regularization that can explore the range of luminosity densities that are statistically consistent 
with an observed surface brightness distribution. The luminosity density is poorly constrained 
at modest inclinations (i ~ 30°), even in the limit of vanishing observational errors. In constant 
mass-to-light ratio, axisymmetric, two-integral dynamical models, the uncertainties in the 
luminosity density result in large uncertainties in the meridional plane velocities. However, the 
projected line-of-sight velocities show variations comparable to current typical observational 
uncertainties. 

Key words: galaxies: elliptical and lenticular, cD - galaxies: individual: NGC 1439 -
galaxies: individual: NGC 7619 -galaxies: kinematics and dynamics- galaxies: structure. 

1 INTRODUCTION 

Models of elliptical galaxies seek to understand the spatial distribution of their stars (e.g. Franx, lllingworth & de Zeeuw 1991; Statler 1995), 

and the structure of their orbits (Dehnen & Gerhard 1993, 1994; Arnold, Robijn & de Zeeuw 1995), and to secure evidence for the presence of 

dark haloes (Saglia et al. 1993; Carollo et al. 1995) or black holes (van der Marel et al. 1994; Dehnen 1995). These problems can be probed 
using the observed velocities of the stars (van der Marel 1991; Carollo & Danziger 1994 ), X -ray emission (Fabbiano 1989, 1995), gaseous 

discs and rings (Schweizer, Whitmore & Rubin 1983; Whitmore, McElroy & Schweizer 1987; Bertola et al. 1991; Franx, van Gorkom & de 

Zeeuw 1994) and gravitational lenses (Maoz & Rix 1993; Kochanek 1995, 1996). Most modern dynamical models employ axisymmetric, two­

integral models in which the distribution function depends only on the energy and the angular momentum about the symmetry axis (e.g. 

Binney, Davies & lllingworth 1990; Hunter & Qian 1993). Such models have simple solutions to the Jeans equations (Satoh 1980; see also 
Binney & Tremaine 1987, section 4.2), and in some cases the distribution function can be determined (Dehnen & Gerhard 1993, 1994; Qian et 

al. 1995). Quantitative application of the two-integral models to a real galaxy relies on the deprojection of the observed surface brightness of 

the galaxy to determine its three-dimensional luminosity density. 

The uniqueness of the deprojection of a galaxy depends on the symmetries of the density. Spherical galaxies always have unique 

deprojections, and ellipsoidal galaxies with fixed axes have unique deprojections for known inclinations (e.g. Binney 1985). General 
axisymmetric galaxies do not have unique deprojections, except when the symmetry axis is in the plane of the sky (inclination i = 90°: Rybicki 

1987). The projection operation destroys information about all the Fourier components of the density which lie in a 'cone of ignorance' of 

opening angle 90°- i about the symmetry axis. A 'konus density' (Gerhard & Binney 1996), whose Fourier transform is non-zero only inside 

the cone of ignorance, can be added to the luminosity density without changing the projected surface brightness. Kochanek & Rybicki (1996) 

developed methods to produce families of konus densities with arbitrary equatorial density distributions. Simple konus densities generally 
look like 'discs' because of the conical symmetry of the model in Fourier space; this is consistent with Rix & White's (1990) observation that 

discs would be nearly invisible in ellipticals, unless they are close to edge-on. 

We need to explore two issues to understand the effects of the deprojection degeneracy on axisymmetric models of ellipticals. The first 

issue is the existence of smooth konus densities. A real galaxy must have a smooth, monotonic, positive-definite density profile. These physical 
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restrictions limit the allowed range of konus densities. For example, none of the analytic konus densities of Gerhard & Binney (1996) or 
Kochanek & Rybicki (1996) is physical because they have unacceptable angular profiles at large radii due to the conditions imposed to find 
analytic solutions. The second issue is that even if the luminosity density is underconstrained, the degeneracy is dynamically interesting only if 
the inferred velocity dispersions or velocity dispersion profiles are uncertain by more than the observational errors. 

The projection operator P is a linear operator I= Pv between the luminosity density v and the surface brightness I. Deprojection 
corresponds to inverting the linear operator v = p-I/. Methods to invert P must cope with three generic problems: true degeneracies, limited 
sampling and amplification of noise. True degeneracies, such as the konus densities, correspond to eigenvalues of P that are zero, and they can 
be handled only by adding additional constraints on the inversion such as smoothness, positivity or monotonicity. The surface brightness is 
always discretely sampled, but we want to determine the continuous luminosity density. If we try to determine the luminosity density at more 
points than are sampled in the surface brightness, the luminosity density is underconstrained by the data and additional constraints are required 
to perform the inversion. Most inversions are also ill-conditioned, because some of the eigenvalues of Pare nearly zero. Small eigenvalues of P 
are large eigenvalues of p-I, and they amplify small fluctuations of I into large fluctuations in v. The inversion method must suppress these 
oscillations. 

Previous approaches to deprojection produce 'unique' inversions because they have additional, hidden constraints. Lucy's (1974) method 
is the standard deprojection algorithm used in stellar dynamical models (e.g. Newton & Binney 1987; Binney et al. 1990; van der Marel, 
Binney & Davies 1990; Gerhard 1991; van der Marell991; Dehnen 1995). It is a simple, iterative scheme that converges toward a density 
distribution that exactly fits the data; a 'unique' solution results because of an implicit, non-parametric bias. Lucy's method also introduces 
numerical instabilities into the solution, so the iterations are manually halted at some point when the density still 'looks good'. Bendinelli's 
(1991) method expands the surface brightness in terms of Gaussian profiles, and then numerically fits the density to these terms. Palmer's 
(1994) method finds a finite angular polynomial series for the density whose projection fits the observed surface brightness to arbitrary 
accuracy. Functional fitting methods are fast, and frequently easy to program, but they are limited to a subset of the possible solutions. 

None of these existing methods provides a way of studying the true degeneracies of deprojection and their effects on dynamical models of 
axisymmetric galaxies. In Section 2, we develop a deprojection method based on linear regularization that allows us to explore the 
degeneracies of the inversion while keeping the density well-defined and physical. In Section 3, we test the algorithm on artificial galaxy 
images. In Section 4, we give results for two galaxies (NGC 1439 and 7619), and in Section 5 we summarize our conclusions. Two appendices 
add some details of the numerical algorithms. 

2 METHODS 

2.1 Projection geometry and algorithm 

An axisymmetric galaxy has density distribution v(X, Y,Z), where the Z-axis is the symmetry axis of the galaxy. The surface brightness is 
I(x,y), where (x,y) are the coordinates in the plane of the sky, and the z-axis lies along the line of sight. The X- and x-axes coincide, and 
correspond to the line of nodes at the intersection of the plane of the sky and the equatorial plane of the galaxy (thus, for an oblate axisymmetric 
galaxy, the x-axis corresponds to the observed major axis of the galaxy). Because the galaxy is axisymmetric, its density distribution is 
completely specified by v(R, Z), where R = y'x2 + Y2 • For simplicity, we assume that the galaxy has a reflection symmetry about the 
equatorial plane, v(Z) = v( -Z). The surface density is related to the luminosity density by the projection operation, 

+~ 

I(x,y) = I-~ v(R,Z)dz. (1) 

The transformation between the coordinates of the galaxy and the observer's coordinates is 

Y = y cos i - z sin i 

Z=ysini+zcosi 

rz = Rz + z2 = w2 + i' (2) 

where w 2 == x2 + l, and the inclination i = 90° corresponds to an 'edge-on' galaxy with no cone of ignorance. 
The density of the galaxy v(R,Z) is divided into zones, Pjk == v(8j, rk), where one quadrant of the meridional plane (R, Z) is divided into N, 

radial zones and into N. angular zones. The radial zones are logarithmically spaced in r from inside wmin to outside 1D"max, where wmin and wmax 

are the radii of the inner and outer surface density measurements. The angle 8 is the standard spherical polar angle with 8 = 0 on the symmetry 
axis; the angular zones are equally spaced in(} (8j = j/18, wherej = [0 ··· N.- 1] and 118 = Tri2N.). Reflection symmetry about the equatorial 
plane is implicit in the model, although the symmetry could be trivially removed. 

Although the zones vjk represent the real density, the projection algorithm considers the galaxy to be made of 'stacked blocks' in order to 
force the density to vary monotonically in angle. 1 For an oblate galaxy, the total density of each successive zone increases with its angle 8j, and 

1 A general two-dimensional density distribution that is monotonic in both angle and radius cannot be constructed in this way. 
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each additional contribution can be thought of as a block of density 'Pjk = PA stacked on top of the previous blocks, with total density 

(3) 

By construction, a density model expressed in terms of Pjk is positive definite, oblate2 and monotonic in angle. 

The projected intensity is sampled at discrete points 11m = I(x1m, Yzm), where l, m are arbitrary indices (e.g. corresponding to polar 

coordinates w 1, 1/lm). The contribution to 11m from density block Pjk is found by integrating along the line of sight through the block 

(4) 

where (z , 1 r ), 1 (z2, r ) 2 are the coordinates of the intersection points of the line of sight from (Xzm,Yzm) with the edges of zone Uk}, and 

lzm = L dljklm · (5) 
jk 

We use a first-order projection scheme that linearly interpolates the density between radially adjacent zones with 

(6) 

giving the first-order approximation 

(7) 

(see Appendix A). Beyond the outermost density zones, the density is assumed to decrease as a power law, normalized to the density of the 

outermost zone at a given angle 0/ vex: PjO(r2 + s~)-"b12 , where the core radius sb and exponent ab are fitted bias parameters (see next section). 

The (small) contribution to the projection from this density 'tail' is found by numerical integration of equation (4). 

2.2 Smoothing and regularization 

Given the projection, lzm, of the current model density distribution, and the observed surface brightness, Ij,, we define a i statistic for the 
goodness of fit, 

(8) 

where a 1m is the noise associated with the measurement Ij, (we neglect any correlation function of the noise). If there are N datli points 11m, then a 

good fit should have i = Ndatli with a one standard deviation error of 11i == i - Nctatll = ± .J2Ndatli (for Ndatli » 1) if we neglect the number 
of degrees of freedom in the source model. The algorithm used to minimize the function requires the input of the first and second derivatives of 

the i with respect to the density kernels Pzm; these derivatives are given in Appendix B. 
Linear regularization is used to combat the problems that occur in unregularized solutions of integral equations such as equation (1 ). The 

primary problem is the tendency for the density to oscillate between the radial sampling points when there are more model density points than 
surface sampling points. The simplest solution is to find a good fit to the data while simultaneously minimizing a smoothing function 

HI= l:(hjk+JPjk+l- hjkPjk)2. (9) 
jk hjkPjk 

defined by the fractional variation in the radial density profile, weighted by the bias function hjk == h(rb Oj). The bias function is used to weight 
the smoothness equally over all points, and to provide a bias slope at large radii where sky-level uncertainties poorly constrain the radial profile. 

The density should also vary smoothly with angle, so we add a second smoothing function, 

H2 = L (hj+JkPj+lk- hjkPjk) 2 (10) 
jk hjkPjk 

to prevent unrealistically sharp angular density variations. Ideally, h(r, 0) would be given self-consistently by the deprojected radial profile 

v -\r, 0). In practice, we fit a simple analytic model, e.g. the power-law model 

(11) 

2For a prolate galaxy, the density decreases with angle (J/ vjk = z=:;;j-I 'Pik. 
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to the surface data points along the major axis, and analytically deproject it to give h(r); then we assume a constant axis ratio qb b/a to give 

the angular variation h(rko 8j), e.g., 

2 

h 2 
k 1 = [ s + rk(sm 2·2 1 8 2 ]"'

1 + q~ cos 8) (12) 

Such radial surface brightness models qualitatively cover much of the observed range of galactic morphologies (Binney & Tremaine 1987). In 
addition to enforcing smoothness, the function h(r, 8) allows us to explicitly bias the profile to some arbitrary morphology. 

We then minimize the function F = i + lli, where H = H1 + Kll2 . The weighting factor K is somewhat arbitrary, but must be small 
enough to keep the radial profile acceptably smooth. For each image/* and bias function h, K is set by trial-and-error to be as large as is possible 

before significant radial fluctuations appear in the solution. The Lagrange multiplier A. must be adjusted so that when F is minimized, the i is 

found to have a value in therangeNcfuUi ± y'2Nctal1i• whereNcfuUi is the number of surface density sampling points (we used solutions with i in 
the range N cfut1i ± ..jN;;;;). The Lagrangian multiplier A. is found iteratively: an initial A. is chosen, the function is minimized and the resulting 

i value is linearly interpolated to i = Ncfut;J. to predict the correct A.; then the function is again minimized with the new A, and so on, until the 

value of the x2 falls within the proper range. The minimization is performed using the Polak-Ribiere conjugate gradient method (Press et al. 

1992). The expressions for the gradients of i, H1 and H2 are given in Appendix B. 

= 

2.3 Velocity calculations 

To examine the dynamical effects of the projection degeneracies we assume a constant mass-to-light ratio, axisymmetric, two-integral 

dynamical model (e.g. Binney & Tremaine 1987; van der Marel1991). Following Binney et al. (1990), we calculate the potential <I> from the 

mass density p = T0 v by first expanding the density in Legendre polynomials, 

Pt(r
1 1

) =To 1 v(r ,8)Pt(cos8)sin8d8, (13) 

and then by finding the potential produced by the Legendre expansion of the density 

_ ""' [ 1 ~ P 1 1(/+2) 1 [ 1 drl ] <l>(r, 8) - -2'ITG 1(cos 8) ,-(I+ I) 
Jr Pt(r )r dr + r 1= 

r Pt(r) r'(l-1) . (14) 
0 

The solutions to the Jeans equations for the two-integral model are 

2 = J= I iJ<I>(R, 2
1

va (R,Z) v(R,Z) iJZ
) I 

1 dZ, (15) 
2 

and 

(16) 

where the galaxy is assumed axisymmetric, steady-state ((v2 ) = (vR) = 0), and isotropic in the meridional direction (aR = a2 =a) (see 
Binney & Tremaine 1987, section 4.2). The projected line-of-sight velocity dispersion is 

I(vf0 ,)(x,y) = [= dz[va2(R, Z)(cos2 i + sin2 cp sin2 i) + v(v~) cos2 cp sin2 i] (17) 

J
2

= = 2 + . 2 [ 2 [ iJ<I> + i1(va )] 
-= va (R,Z)dz sm i -= Rcos cp v iJR ~ dz. (18) 

We numerically integrate equations (15) and (16) to find the velocity components a2 and (v~) in the galaxy's meridional plane, and then we 

numerically integrate equation (17) to find (vf ,) 0 (we do not separate out its components (vf ,) 0 = afos + (VJ 2
,)0 ). The accuracy of the numerical 

integration algorithm was verified with the analytic solution of Satoh (1980: equations 8 and 13) and other more ad hoc analytic solutions. 

3 TEST PROBLEMS 

We test the method in four stages. First we confirm that if we bias the solution toward the true density, the method converges to the correct 

result. Next we demonstrate that the deprojection is degenerate by examining the range of solutions we can produce by altering the bias 

function. To show that the degeneracy is not a numerical artefact, we next investigate the effects of the numerical resolution, observational 

errors and numerical errors. Finally we examine the dynamical effects of the degeneracy on the two-integral models. 

3.1 Deprojection with correct bias 

Before examining real galaxies, we studied the deprojection algorithm and the effects of degeneracy with artificial images of known density 
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Figure 1. Effects of the bias function on deprojections of an artificial galaxy image. Each column represents a different choice for the bias function. The top row shows the normalized residuals of the solution, 
(I - 1*)/u, where the horizontal dotted lines are the one standard deviation errors. The dashed lines are the residuals of the projection of the 'correct' density (i.e. they show the added 'noise'), and the curves are offset 
for visibility with the major axis on top. The second row shows the deprojected density profiles on fixed azimuths. The third row shows contour plots of the density .solution (solid contours) and the 'correct' density 
(dotted contours). There are 26 contour levels shown, logarithmically spaced from v = 0.25 to 2.5 x 1 o-6

. The bottom row shows contour plots of the konus density, or the difference between the final solution and the 
'correct' density; dotted contours represent negative values. There are 42 contour levels shown (positive and negative),logarithmically spaced from v = 10-2 to 10-6
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distributions. We used the axisymmetric, oblate (q0 < 1) density distribution, 

R2 z2 l ) -aol2 

v(R,Z) = v0 , (19) 
( 1 +--z+z-2 sa sa qo 

which has the analytically calculable surface brightness 

v2r(~) ( 2 2 1 ) (1-aaJ/2 
l(x ) _ 'TT 2 voqoso 1 + ~ + y (20) • Y - r(~) 1 2 2 2 . 2 . 2 . 

2 V q6 sin2 i + cos2 i sa sa qo srn l + cos l 

In the test image, the surface brightness points/1m = /(w1, 1/lm) are logarithmically spaced in radius w (46points from w/s0 = 0.53 to 38.2), and 
equally spaced in angle 1/; (7 points from 1/; = 0 to TI/2). 

The errors and uncertainties in the image of a bright galaxy are dominated by systematic effects rather than by photon counting noise. 

Imperfect fiat-fielding produces a fractional error which varies over large scales in an image, and the sky background level is uncertain to 

within some constant value. For a set of image points Ii,, we adopted an error model with a 1m = a0Ii, +/b. To simulate a real image, we added 

artificial errors to our 'data'. A constant background offset, /b, simulated an error in determining the sky background level, and a Gaussian 

distribution of fractional errors (with rms amplitude a , 0 and Fourier width corresponding to fluctuation wavelengths of about 5 per cent the 
full-frame width of the image) was added to simulate fiat-fielding errors. These model errors qualitatively resemble the residuals from fitting 

real images. 

We deprojected simulated images for various values of the model parameters (o: , 0 s , 0 q , 0 i), the biasing parameters (o:b, sb, qb) and error 

levels ( a , 0 /b). The results of some of these deprojections are shown in Fig. 1, where the image has the analytic form specified by equation (20), 

with o:0 = 3.0, s0 = 1.7, q0 = 0.6, a0 = 0.01 (corresponding to a O.Dl magnitude error), /b = 0.0004~ (sky level underestimated) and 
i = 30° (recall that i = oo is pole-on), with simulated errors added as described above. The first colunm of Fig. 1 shows the case in which we set 

the bias function equal to the 'correct' density: h = v;,~ (i.e., o:b = o:0 , sb = s , qb = q ). 0 0 In this test case, the final solution almost exactly 

matches the input model, with rms fractional errors of {(v- Vcorr)lvcorr)rms = 0.009. Similar deprojections were performed over a wide range of 
model parameters, with similar results: when given the proper bias functions, the algorithm reconstructed the original density function. Large 
changes in the artificial error parameters had negligible effects. 

3.2 The existence of degeneracies 

Our real interest, however, is in how the results can differ from the input density model given the degeneracies in the projection operator. Fig. 1 
also shows three other deprojections of the same image, where each colunm shows a solution with a different bias function h. We deliberately 

chose extreme biases and a low inclination angle (i = 30°) to highlight the range of possible solutions. In the second column, the bias function 

is more elliptical than is the 'correct' solution (o:b = 3.0, sb = 1.7, qb = 0.3); in the third colunm it decreases more rapidly with radius 

(o:b = 1 3.5, sb = 2.0, qb = 0.6); and in the fourth colunm we have added an exponential disc (h- = vcorr + kd exp( -R/Rb)sech(Z/Zb), with kd = 
0.25, Rb/s0 = 5.2 and '4,/s0 = 0.9). Each model is converged until it is a statistically acceptable fit to the data <i = Ndata). The rrns fractional 

differences in the density for the solutions are {(v- Vcorr)lvcorr)rms = 0.58, 0.35 and 0.22, for colunms 2, 3 and 4, respectively, demonstrating 
that the konus densities can have large amplitudes. These densities qualitatively resemble the discs examined by Rix & White (1990) and the 

analytic solutions of Gerhard & Binney (1996) and Kochanek & Rybicki (1996), without the discontinuity problems exhibited by those 

solutions at large radii. Although some of the solutions show systematic deviations in the outer regions of the galaxy at the 2a level, and the 
density structure of the disc-biased solution has some unphysical features, it should be remembered that we deliberately chose the bias 

functions to find extreme examples. 

3.3 Searching for 'true' konus densities 

We next checked the effects on the solutions of varying the numerical resolution. A true projection degeneracy should exist independently of 

the sampling of either the image or the density distribution, except in the limit that the data overconstrain the density. Our standard NT x Na 

density grid has NT = 100 radial and Na = 25 angular zones. There are numerical errors in the projection, and if we compute the errors for the 

test problem in Section 3.1, the contributions to lIN data from numerical errors are =0.003, 0.01 and 0.07 fori = 30°, 60° and 90° respectively, 

given our standard error model. Although these numerical errors are much smaller than the observational errors <itNdata = 1), we must 
examine whether the magnitude of the degeneracies is influenced by the resolution. 

We performed a series of tests comparing the numerical projection of the test model to the analytic projection of the test model, gradually 

reducing the density zone resolution. Reduced resolution increases the numerical projection errors and reduces the range of possible solutions 

because the number of degrees of freedom in the density model (NT X Na) approaches the number of data points (Ndata = 322). The inclination 

was fixed at i = 30°. For zone resolutions of NT x Na = 2500, 1600, 400, 196 and 100, the resulting numerical errors were X~rr/Ndata = 0.003, 
0.008, 0.2, 1.2 and 6.0, respectively. The i from numerical errors became unacceptable only in the two lowest resolution simulations, where 

the density distribution was overconstrained (Nzones =NT X Na < Ndata). 

Next we deprojected the test model (q0 = 0.6) using substantially rounder (qb = 0.9) or flatter (qb = 0.3) bias densities. As we reduced 
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Figure 2. The effects of numerical resolution on deprojections of artificial galaxy images. The inclination is fixed at i = 30°. The major-to-minor axis ratio is 
plotted for each solution as a function of radius. The 'correct' solution is the central dashed line with q0 = 0.6; the upper and lower sets of curves are the solutions 
when biased toward qb = 0.9 and 0.3. The solid, dashed, dot-short-dashed, dotted and dot-long-dashed curves show the solutions when the density zone 
resolution is Nr x N. = 100 x 25, 80 x 20, 40 x 10, 28 x 7 and 20 x 5, respectively. Note that the image resolution is Nx x Ny = 46 x 7, so the density is 
overconstrained by the data in the last two cases. 

the resolution, the allowed degeneracy towards low-ellipticity models was little affected, but the degeneracy towards high-ellipticity models 
was substantially reduced (see Fig. 2). The amplitude of the degeneracy did not change between our standard resolution and the next lowest 
resolution. The inability to produce high-ellipticity models at low numerical resolutions is due to the decreasing angular resolution. Note, 
however, that the degeneracies still exist even when the data overconstrain the density, a clear sign that the degeneracies are not due to the 
numerical resolution of the calculation. 

A true degeneracy should also exist independently of the observational errors. The amplitude of the degeneracy may increase with the 
amount of noise in the observations, but it should not vanish in the limit of no noise. We made a sequence of deprojections of a single image 
while gradually reducing the observational error levels, <~o and /b, until the numerical errors become significant (x;r/Ncfura ~ 0.1); /b was 
reduced in proportion to <1 • 0 Fig. 3 shows the deprojections of the same image used in Fig. 1 (o:0 = 3.0, s0 = 1.7, q0 = 0.6), biased to either 
% = 0.9 or 0.3 as a function of the inclination (90°, 60° or 30°), with varying errors. The permitted range of the solutions depends strongly on 
the inclination and weakly on the errors. At i = 90° the solution is unique, with any uncertainty in the axis ratio due to the noise; the rrns 

fractional density variation between the extreme solutions (qb = 0.9, 0.3) at 'normal' noise levels (<10 = 0.01) is ((v03 - v0.9)/v0.9)rrns = 0.26. 
At i = 60° the axis ratio can be biased upwards and downwards by l:lq ~ 0.1 about the true axis ratio; for <~o = 0.01, the allowed rms variation is 
((v _0 3 - v _0 9)/v _0 9)rrns = 0.53. At i = 30° the axis ratio can be biased by l:lq ~ 0.2 about the true axis ratio. For <~o = 0.01, the allowed rms 
variation is ((v0_3 - v0_9)/v0.9)rrns = 0.82; even when the errors are at the level of 0.002 magnitudes, the allowed rms variation is 

((vo.3 - vo_g)/vo.9)rrns = 0.67. 
In all previous tests, we fit our projections to the analytic surface brightness model, so numerical projection errors limited how far we 

could reduce the noise. For our final test we 'removed' these errors by using the numerical projection of the density model as the image, so that 
as the model observational noise approaches zero there is a numerical solution with l!Ncfura = 0. Fig. 4 shows a sequence of deprojections of 
the same q0 = 0.6 model, with i = 30°, in which the solution was biased to qb = 0.3 and 0.9, and the stated error level was gradually decreased 
from <~o = 0.01 to 10-4 (no artificial noise was added); for speed, a coarser density grid was used (N, x N. =52 x 13). The allowed ellipticity 
range in the density decreased as <~o decreased, but at a much slower rate than the residuals in the image (Fig. 5). For a true konus solution we 
should see the rms variation of the density become constant and finite at zero noise, but the presence of any noise always allows the variations to 
be larger. Gerhard & Binney (1996) refer to such additional degeneracies as 'truncated konus densities', whose projections are never exactly 
zero but have large rrns density variations for very small projected surface densities. The continued presence of a coherent 46 per cent rms 
density variation, even in the limit that the errors are 100 times smaller than typical observational data, means that for all practical purposes we 
have found true degeneracies of the projection operator rather than any numerical effect. 
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Figure 3. Deprojections of an artificial galaxy image as a function of noise level and inclination. Each column represents a different assumed inclination i, with i = 90°, 60° and 30°, from left to right. In the two top 
rows, the solid, dotted and dot-dashed lines show solutions with decreasing fractional noise a • 0 The highest noise level is set to a realistic value; the lowest is the level at which numerical errors become significant. The 
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Figure 4. Deprojection of an artificial galaxy image with numerical errors removed (see text), as a function of the noise level u . 0 The inclination is fixed at 
i = 30°. The axis ratio is plotted for each solution. The 'correct' solution is the central dotted line with q0 = 0.6; the upper and lower sets of curves are the 
solutions when biased toward qb = 0.9 and 0.3. The solid curves show a sequence of solutions with noise level u0 lowered. 

3.4 Dynamical consequences 

The existence of a deprojection degeneracy is only of academic importance unless it has dynamical consequences. The fundamental question is 
whether the dynamical uncertainties introduced by the deprojection uncertainties can alter the conclusions of constant mass-to-light ratio, 

axisymmetric, two-integral dynamical models (e.g. van der Marel 1991). For a fixed mass-to-light ratio, we calculated the velocities (as 

described in Section 2.3) in the meridional plane, u2 and (v~), and the projected mean square line-of-sight velocity (vf ,) 0 for solutions to the 

analytic galaxy image (q0 = 0.6); these velocity profiles are shown in Fig. 6 as a function of inclination and bias function. The total luminosity 
(and thus the total mass) of J2uthe solutions is fixed, and the average radial distribution of the luminosity cannot vary a great deal, so the total 

meridional plane velocities 2 +(~)(and thus the kinetic energy) remain essentially constant, with variations typically :S20 per cent at 

30° and :S3 per cent at 90°; this is a consequence of the virial theorem. However, the velocity anisotropy (v~) 112/u varies considerably, with 

larger variations at lower inclinations ( :S60 per cent at 30° versus :S25 per cent at 90°). Projection of these velocities results in weak variations 

in the line-of-sight velocities, taking the form of alterations in the ratio between the major and minor axis profiles. Typical variations in (vf 112 
,)0

at i = 90° are :S10 per cent, at i = 60° are :S20 per cent, and at i = 30° are :S30 per cent. Such variations are roughly comparable to typical 
measurement errors in line-of-sight velocities. 

4 REAL EXAMPLES: NGC 7619 AND 1439 

For our final experiment we selected for deprojection two galaxies from van der Marel ( 1991 ), NGC 7 619 and 1439; these galaxies were chosen 
for their small isophote twists. The photometric profiles were taken from Franx, lllingworth & Heckman (1989a, hereafter Filla), where the 
R-band photometry is parametrized by an 'intermediate' axis (m == .;;;b) profile for each galaxy, along with the ellipticity, isophote twist and 
higher order isophote corrections at each radial point. We converted the data into a series of radial profiles and their errors at seven evenly 
spaced angles beginning on the major axis and ending on the minor axis. We incorporated the isophote twist and cos 41/; terms into our data, but 
none of the other higher order terms (strictly speaking, the isophote twist, which is an indicator of triaxiality, violates our density symmetry 

requirements, but in practice its presence was of little consequence for the final solutions). We made no corrections for the seeing, so the density 
profiles inside -5 arcsec will be unreliable. The photometric uncertainties are dominated by flat-fielding errors (at the 1 per cent level) except 
at the outer radii, where there is a sky level uncertainty of 1-3 per cent. Both galaxies were deprojected for a variety of inclinations and biasing 

parameters. 

The kinematic data were taken from Jedrzejewski & Schechter (1989, hereafter JS) and from Franx, lllingworth & Heckman (1989b, 
hereafter Fllib ), where the velocity dispersion and rotation velocity are given along the major and minor axes. The line-of-sight velocities were 
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Figure 5. Effects of observational errors on deprojection. The rms fractional variation in the density solution and the rms fractional error in its projected image 
are shown as a function of error level. The dotted line solutions were biased toward qb 0.3, and the solid line solutions were biased toward qb 0.9. = = 

then derived from the density solution as in Section 3.4, and fitted to the kinematic data (by minimizing the between them) to find the R-band 
mass-to-light ratio TR; to minimize the effects of seeing on the results, and to allow for direct comparison with van der Marel (1991), any 
velocity data point inside 4 arc sec is not used in the fit. Several of these solutions are shown in Figs 7 and 8. 

NGC 7619 is an E2/E3 elliptical with a small(< 13°) isophote twist; van der Marel (1991) was not able to fit an acceptable axisymmetric 
two-integral dynamical model for this galaxy (possibly due to the extra constraints imposed on the solution by the biases implicit in Lucy's 
method). The projected ellipticity varies from 0.16 to 0.28, with small ( < 0.7 per cent) higher order corrections. As is evident from the residuals 
in Fig. 7, there is a radial 'kink' in the outer regions of the galaxy (r~ 50 arcsec) which cannot be well fitted by a single power law. The 
deprojections can be made modestly more or less elliptical, with some solutions showing boxy and 'SO-like' structures. The range of the 
solutions is not as large as found for the test galaxies (compare Fig. 7 with Fig. 3), probably because much of the 'smoothness' was taken up in 
trying to fit to a single radial power law. The rms fractional density variations between the extreme solutions (qb = 0.9 and 0.5) for inclinations 
of 90°, 60° and 40° are ((11 _ -0 5 v _0 9)/v _0 9)rrru; = 0.07, 0.15 and 0.34, respectively (i = 40° was used because a convergence difficulty caused 
minimization time to be prohibitive for i = 30°). Fori= 90°, the solutions (with different biases qb) had R-band mass-to-light ratios of 
(T/T )R= 0 (3.9±0.2)h50 and itN~ 2.8 for the kinematic fit, where H0 = 50h50 km s-1 Mpc-1

; the error bars represent the range of solutions 
with ai = ±4 (where the poor fits of these solutions were renormalized to set i = N). Fori= 60°, the range of solutions had (T/T0 )R= 

(3.8-3.9±0.3)h50 and itN~ 3.2-4.3. Fori= 40°, the solutions had (T/T0 )R= (4.1±0.3)-(4.1±0.4)h50 and ltN~ 3.4-5.8. Given the 
uncertainties and the fact that neither we nor van der Marel found an acceptable Ci IN - 1) solution for the velocities, our mass-to-light ratios 
TR are consistent with van der Marel's (T/T0 )R = (4.0 ± 0.1)h50 at 90° and (T/T0 )R = (4.1 ± 0.1)h50 at 60°. 

The second galaxy, NGC 1439, is an E1 elliptical with a small twist angle< 9° and an indication of a disc-like distortion in the inner parts 
(Fllia). The projected ellipticity varies from 0.07 to 0.11, with higher order corrections< 0.8 per cent. It has a counter-rotating core (Fllib ). As 
can be seen in the residuals in Fig. 8, the projected galaxy has a strong variation in ellipticity with radius which is not well fitted by a constant 
ellipticity. Solutions biased toward high ellipticities again develop disc-like structures that sometimes show a feature along a line at the 
inclination angle from the symmetry axis. The rms fractional density variations between the extreme solutions (qb = 1.0, qb = 0.6) for 
inclinations of 90°, 60° and 30° are ((11 _ - PJ.o)IPJ.o)rms )R= 0 6 = 0.05, 0.11 and 0.33, respectively. For i = 90°, the solutions had (T/T0

(2.3±0.3)h50 and itN- 1.7. Fori= 60°, the solutions had (T/T0 )R= (2.3±0.3)h50 and itN- 1.7-1.8. Fori= 30°, the solutions had 
(T/T0 )R= (2.4-2.5±0.3)h50 and itN- 1.6-1.8. Given the uncertainties, our mass-to-light ratios are consistent with van der Marel's 
(T/T0)R = (2.2 ± O.l)h . 50

Both galaxies show similar variations of the line-of-sight velocities. The velocities in the meridional plane show large variations ( :s20 per 
cent for NGC 1439 at i = 30°), creating differences in the projected velocities that are smaller ( :S7 per cent) than typical measurement errors. 
The same geometric effects which create the konus densities appear also to create 'konus velocities' whose large amplitudes in the meridional 
plane practically vanish in projection; thus, considerable refinement of spectroscopic techniques would be needed to rule out any deprojection 

i 
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Figure 6. Velocity dispersions for an analytic test galaxy (q0 = 0.6), assuming a constant mass-to-light ratio. The left column shows the velocities in the 
meridional plane, along the major axis (the variations along the minor axis were inconsequential). The right column shows the projected velocities along the 
major (upper profiles) and minor (lower profiles) axes. The top box shows solutions fori= 90°, the middle for 60° and the bottom for 30°. At each inclination, 
solutions are shown with biases of qb = 0.9, 0.6 and 0.3. The vertical axis has arbitrary units. 

degeneracies with velocity measurements. It is possible that higher order velocity moments are not as strongly affected by the konus 

degeneracy, but an analysis of this question was outside the scope of this paper. Note that none of the solutions actually fits the velocity data 

well. While this does not alter our conclusions about the degeneracy of a real deprojection solution, an accurate model would need to account 
for seeing effects, a varying mass-to-light ratio, anisotropies and triaxiality, in order to fit the data acceptably. Note also that only two-integral 

models were used, and it is possible that three-integral axisymmetric models would show larger kinematic variation in projection. 

5 CONCLUSIONS 

The deprojection of an axisymmetric galaxy is uniquely specified only if i = 90° and the symmetry axis is in the plane of the sky. At all other 
inclinations there is a gradually increasing degeneracy in the projection operator corresponding to an unconstrained 'cone of ignorance' with 

opening angle 90°- i in the Fourier transform of the density (Rybicki 1987). Recent analytic studies by Gerhard & Binney (1996) and 

Kochanek & Rybicki (1996) have found simple density functions, called konus densities, that are invisible in projection because their Fourier 

transforms are non-zero only in the cone of ignorance. 

We have developed a new deprojection method based on linear regularization and explored the effects of the deprojection degeneracy on 

the inferred structure and dynamics of axisymmetric elliptical galaxies. The advantages of our approach over earlier methods are that it is non­
parametric, that it performs a well-defined statistical fit to the surface brightness data, that it strictly enforces the positivity and monotonicity of 

the solution, and that it allows us to explore the degeneracies of the projection operator. The standard method of Lucy (1974) is non-parametric 

but does not have a well-defined convergence criterion, and functional fitting methods such as Palmer's ( 1994) and Bendinelli' s ( 1991) depend 

on parametric forms. No previous method has been able to explore the degeneracies of the projection operator, or to impose monotonicity or 
any analytic requirement on the models. 
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Figure 7. Deprojection solutions and resultant projected velocities for NGC 7619, for varying inclination and bias function. Each column represents a different assumed inclination i. The top row shows the normalized 
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. The solid lines indicate a solution with a qb = 0.7 bias function; the dotted lines,%= 0.9; the dashed lines, qb = 0.5. The vertical dot-dashed line indicates the cut-off 
radius (4 arcsec) below which the velocity data are not used. 

-+::--
01 

?:-­
~ 

~ 

I 
0 

! 
~ 
::= 
~ 

0 
~ 

~ 
~ 
;::=-­
~ 
::= 
(I) 
<";-< 

1997MNRAS.287...35R



http://adsabs.harvard.edu/abs/1997MNRAS.287...35R


© 
:D 
\0 
--.) 

~ 
5I' 

@ ~ r.n 
~ ~ 0 .-..~ 
~ w 
!. Ul 

I 

> U\ 
0 

'JJ ..... .., 
0 = 0 
9 .... 
~ 
~ -rJ'l 
0 
~ .... 
("C ..... 
~ 

• 
"'tl .., 
0 
< .... 
Q. 
("C 
Q. 

0" 
~ ..... 
=-("C 

z 
> 
rJ'l 
> 
> 
'JJ ..... .., 
0 

"0 
=-~ 
'JJ .... 
~ 
'JJ 

t; 
~ ..... 
~ 

rJ'l 
~ 
'JJ ..... 
("C 

9 

-3 

150 

~ 

'., 

!too 

~ 
,_J 
~ 50 

0 

I 

' 

0.5 

q.=0.99 

q•=O.B 

q.=0.6 

>< major axis 
• minor axis 

1.5 

f 
i=9o· 

NGC 1439 
0 0.5 

·'v ~ 

~-~- -
I 

' 
q.=0.99 

q•=O.B 

q.=0.6 

>< major axis 
• minor axis 

1.5 

f 
i=ao· 

0 0.5 1.5 

--1-1 

.~.:-:-.,.,... --1-2 

--1-3 

I 

' ,'; : T I T -1150 
-~ 

q.=0.99 

q.=O.B 

q.=0.6 

x major axis 

• minor axis 

100 

i=30. 

0 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 ° 
log10(y) [arc sec] log10(y) [arc sec] !og10(y) [arc sec] 

60 

40 

1 
N 

20 

Ml)JJ.)l!.l\ )i'_lld ~ .1 1. 1 .. ',!. 1. r, 1 , ~',.. 1 , 1 e1 n'r. 11 . 1 1 O 

Figure 8. Deprojection solutions and resultant projected velocities for NGC 1439, for varying inclination and bias function. Velocity data are from FIHb. Labels are the same as in Fig. 7. There are 24 contour levels, 
from v = 0.25 to 6.3 x 10-6

. The solid lines indicate a solution with a qb = 0.8 bias function; the dotted lines, qb = 0.99; the dashed lines, qb = 0.6. 

~ 
~ --;::;· 

Ot) 

~ 

l 
(1:> 

~ 
(=i• 
(1:> --"B" ..... 
(=i• 
~ -
~ 
~ 
~· 

"' 
.j:::.. 
-...) 

1997MNRAS.287...35R



http://adsabs.harvard.edu/abs/1997MNRAS.287...35R


48 A. J. Romanowsky and C. S. Kochanek 

We find that axisymmetric galaxies have large deprojection uncertainties at modest inclinations even when we are restricted to 
positive-definite, monotonic density distributions. The uncertainties are not due to numerical projection errors, insufficient grid resolution 
or observational noise, although increasing the noise in the observations increases the uncertainty. Even when the observational error in the 
surface brightness points approaches 10-4 mag, it is possible to have density distributions fitting the data with rms fractional variations of 
46 per cent for i = 30°. The differences between the model densities are the konus densities, and they resemble the analytic solutions found 
by Gerhard & Binney (1996) and Kochanek & Rybicki (1996). If the bias function used to produce variations in the model density is not 
too spherical or too elliptical compared with the true density, the resulting model density looks reasonable. Solutions biased toward very 
high ellipticities show strong 'disc-like' structures with a feature at angle i from the equatorial plane, and could be rejected as physical 
inversions. Because of the noise and konus degeneracy, the solutions are quite sensitive to the choice of the bias function; we chose simple 
functions which do not reproduce well some of the more complicated features in the data (e.g. the radial kink in NGC 7619), but one could 
easily implement a more 'accurate' bias by using Lucy's method or a parametrized approximate deprojection method to arrive at an initial 
bias function. 

We have evaluated the dynamical variations allowed by the deprojection uncertainties in the constant mass-to-light ratio, axisymmetric, 
two-integral dynamical model (Binney et al. 1990; van der Marel 1991). Although the velocities in the meridional plane can have large 
variations, the variations in the projected mean square velocities are modest for all inclinations when compared with typical measurement 
errors. Given our structural and dynamical assumptions, current velocity measurements are not helpful in reducing the deprojection 
degeneracy- the konus densities are associated with what we might term 'konus velocities'. We infer mass-to-light ratios for NGC 1439 and 
7619 that are comparable to those of van der Marel (1991 ), but with larger uncertainties. None of the constant mass-to-light models fits the data 
well, with typical x21Nctor= 1.5-3. 

The implications of our results for more complicated models are unclear. Statler (1994a,b) and Statler & Fry (1994) have used dynamical 
models to tightly constrain the deprojection of a triaxial galaxy, but they have assumed axis ratios that are constant with radius, severely 
limiting the generality of the solution. Merritt (1996) has developed a technique for deriving a unique two-integral distribution function from 
surface brightness and velocity moment measurements, but only at the non-degenerate edge-on inclination; presumably, the large uncertainty 
in the density due to the degeneracy must also affect the inferred distribution function. 
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APPENDIX A: FIRST-ORDER PROJECTION SCHEME 

From the interpolated density of equation (6), we find its contribution to the projection: 

(Al) 

Since?= ui + i, 

I r 2 2
rdz = (m + il dz 

2 

=~vm2 +z2 +~ m(z+vm2+z2
) 

2 
zr m

=2+21n(z+r), (A2) 

which leads to the first-order approximation in equation (7). 

APPENDIX B: GRADIENT EXPRESSIONS 

The derivatives of the l statistic are 

(Bl) 

21 

2 11 _ Xin + ,. 2 "'(Ainlm )2 
Xm - Vzn L...J ' (B2) 

Pin lm (Jim 

where 

Ainlm = .6.zi-1nlm - .6.zinlm 

+ 1 [ Z2r2- z1r1 + lil"[m 2 1n (Z2 ---+ r2)] · (B3) 
rn - rn-1 Z! + r1 in-llm 
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The derivatives of the radial and angular smoothness parameters H1 and H2 are 

11
h;n ( h;n ;n n>O 

~ 
= 

h;n-JP;n-! 

(1 
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1 
(H!).n 4pm L., 
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i>O 

i <Na- 1 
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hin ) i>O 

H )(
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(H )II 2m gv 
2 in = --+ 11in X N t -2 v v 

Pin hj+ln"~+!n [hj+!n (3"j+ln + ) _ ], 2 2 i < N.- 1. 
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-1), 
(B4) 

(B5) 
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