August 2009

On the Prediction of Extreme Ecological Events

Mark W. Denny
Stanford University

Luke J. H. Hunt
Stanford University

Luke P. Miller
Stanford University, luke.miller@sjsu.edu

Christopher D. G. Harley
Stanford University

Follow this and additional works at: https://scholarworks.sjsu.edu/biol_pub

Part of the Biology Commons

Recommended Citation
On the prediction of extreme ecological events

MARK W. DENNY,1 LUKE J. H. HUNT, LUKE P. MILLER,2 AND CHRISTOPHER D. G. HARLEY3
Hopkins Marine Station of Stanford University, Pacific Grove, California 93950 USA

Abstract. Ecological studies often focus on average effects of environmental factors, but ecological dynamics may depend as much upon environmental extremes. Ecology would therefore benefit from the ability to predict the frequency and severity of extreme environmental events. Some extreme events (e.g., earthquakes) are simple events: either they happen or they don’t, and they are generally difficult to predict. In contrast, extreme ecological events are often compound events, resulting from the chance coincidence of run-of-the-mill factors. Here we present an environmental bootstrap method for resampling short-term environmental data (rolling the environmental dice) to calculate an ensemble of hypothetical time series that embodies how the physical environment could potentially play out differently. We use this ensemble in conjunction with mechanistic models of physiological processes to analyze the biological consequences of environmental extremes. Our resampling method provides details of these consequences that would be difficult to obtain otherwise, and our methodology can be applied to a wide variety of ecological systems. Here, we apply this approach to calculate return times for extreme hydrodynamic and thermal events on intertidal rocky shores. Our results demonstrate that the co-occurrence of normal events can indeed lead to environmental extremes, and that these extremes can cause disturbance. For example, the limpet Lottia gigantea and the mussel Mytilus californianus are co-dominant competitors for space on wave-swept rocky shores, but their response to extreme environmental events differ. Limpet mortality can vary drastically through time. Average yearly maximum body temperature of L. gigantea on horizontal surfaces is low, sufficient to kill fewer than 5% of individuals, but on rare occasions environmental factors align by chance to induce temperatures sufficient to kill >99% of limpets. In contrast, mussels do not exhibit large temporal variation in the physical disturbance caused by breaking waves, and this difference in the pattern of disturbance may have ecological consequences for these competing species. The effect of environmental extremes is under added scrutiny as the frequency of extreme events increases in response to anthropogenically forced climate change. Our method can be used to discriminate between chance events and those caused by long-term shifts in climate.

Key words: disturbance and extreme events; ecological surprises; environmental and thermal stress; environmental bootstrap; hydrodynamic forces; intertidal rocky shores; limpets; Lottia gigantea; mussels; Mytilus californianus; patch dynamics; statistics of extremes.

INTRODUCTION

The physical environment can be a controlling factor in ecological dynamics. In some cases, the pertinent characteristic of the environment is the average value of a particular factor such as temperature, precipitation, salinity, etc. As long as extreme thresholds are not exceeded (e.g., cooling to the point of ice nucleation within tissues, or heating to the point of irreparable protein damage), the performance of individuals, the behavior of populations, and composition of communities are often well described by mean conditions (e.g., Brown et al. 2004). However, environmental variables do exceed important biological bounds in nature, and there are many cases in which ecological dynamics depend more upon the extremes of environmental factors than on their means (Gaines and Denny 1993). Extreme levels of certain variables can lead to impairment of function or outright mortality of individuals, with important implications for populations, communities, and ecosystems. Extreme events can influence community dynamics and biodiversity by selectively removing community dominants, thereby freeing up resources for other species (e.g., Dayton 1971, Connell 1978, Sousa 1979). Similarly, disturbance associated with extreme events can reduce a community’s biotic resistance to invasive species and increase rates of invasion (Gross et al. 2005, Altman and Whitlatch 2007). Extreme events can cause sufficiently dramatic ecological change that recovery is greatly delayed or impossible. Such effects arise when populations are pushed below some minimum density threshold (e.g., the Allee effect), or when a community or
ecosystem enters an alternate stable state (Allee 1949, Folke et al. 2004). The effects of extremes are under ever-increasing scrutiny as the frequency, and thus the ecological importance, of extreme events continues to rise in response to anthropogenically forced climate change (IPCC 2007).

There is a growing realization that many extreme ecological events are caused not by the action of a single extreme environmental stressor, but rather by synergistic interaction among multiple run-of-the-mill stressors (e.g., Paine et al. 1998). For example, canyons in New Mexico are subjected to occasional heavy rain, but the effect of rain on stream insects is typically muted because vegetation retards runoff. Similarly, fires are common in the canyonlands, and by themselves have little direct effect on stream fauna. However, in 1996 a large wildfire killed the vegetation in several canyons, and was, by chance, immediately followed by repeated downpours. The resulting floods severely eroded the local streambeds, killing virtually all lotic insects in the affected streams, and they have been slow to recover (Vieira et al. 2004). Thus, the random co-occurrence of “normal” environmental factors led to an ecological surprise (sensu Paine et al. 1998): an extreme event. How likely is it that compound events such as this will occur?

Compound events have been analyzed extensively in physics, fluid dynamics, and oceanography. These systems can be relatively uncomplicated, allowing exact solutions to be obtained, for instance, for the maximum amplitude of sounds and the maximum height of ocean waves (Denny and Gaines 2000). Ecological compound events are more complex, but because they depend on the chance alignment of easily measured everyday phenomena, many compound ecological events are open to statistical analysis and prediction. Here, we describe a statistical approach to the prediction of extreme ecological events (a modification of the moving-block bootstrap) and illustrate its utility in two scenarios drawn from intertidal ecology. Our approach can be applied in a wide variety of ecological contexts.

Analysis of Compound Extreme Events

Why is a new approach needed?

There is an extensive literature exploring the probability of extreme events (see Gaines and Denny 1993, Denny and Gaines 2000, Coles 2001, Katz et al. 2005 for reviews), and for many types of problems statistical approaches are well established. In simple cases, the statistics of extremes analyzes the empirical record of a single variable to predict the probability that an extreme value will occur. Often the value of interest is more extreme than any in the empirical record, and statistics provides a method for reliably extrapolating beyond measured data (Coles 2001). More recently, this univariate theory has been extended to analyze the probability that extremes of two or more variables co-occur (for a pertinent example, see de Haan and de Ronde [1998]). Again, emphasis of the analysis is on extrapolation beyond existing data (Coles 2001).

There are two important limitations to the use of this type of extreme-value theory. First, standard extreme-value theory does not handle well the temporal autocorrelation and cross-correlation among variables; typically the occurrence times and realized values of the extremes for multiple variables are taken to be mutually statistically independent. This may not be appropriate when considering biological consequences, in particular when ecological extremes depend on the time history of the variables involved and not just on the instantaneous extremes. Second, standard extreme-value theory is typically applied to stationary time series, which makes for difficulties in handling series with temporal evolution and even seasonality. In addition, there is a practical consideration. The complexity of multivariate analysis increases rapidly with the number of variables under consideration (Coles 2001). For many ecological cases, where seven or more variables must be considered, this complexity may be prohibitive for the average ecologist.

As a practical alternative to multivariate extreme-value analysis, we propose a relatively simple “environmental bootstrap” procedure that is capable of incorporating the complexities of ecological systems. The focus of our method is not on extrapolation beyond the range of existing data, but rather on the probability that values within the range of existing data might randomly co-occur in a pattern that leads to an ecological extreme event.

The environmental bootstrap

For any given habitat, the relevant physical environment is defined by a set of factors, each of which varies through time. Our exploration of this variation proceeds in three steps. Given a short-term empirical record of environmental variables, we first identify the predictable aspects of each. We then separate this predictable part from the remainder, the stochastic part. Lastly, we divide the stochastic part of each signal into segments (= blocks) and rearrange these segments so that they can be recombined with the predictable part of the signal to yield new patterns. These new, hypothetical patterns of fluctuation allow us to analyze how the environment would be altered if chance had played out differently.

We approach the specifics of the analysis through an example drawn from intertidal shores, where certain combinations of wave height, wave period, and tidal height can impose extreme hydrodynamic forces on benthic organisms (see Plate 1). We begin with an analysis of significant wave height, H_s, the average height of the highest third of ocean waves. H_s is a statistical index of “waviness” (Kinsman 1965, Denny 1988, 1995), and serves well as an example of the type of environmental variable that can contribute to extreme events.

Consider the hypothetical time series of H_s shown in Fig. 1A, a 4-yr record of the wave climate at a particular location. In this series, H_s is measured at discrete times
(t = t₁, t₂, ..., tₙ), and we denote the series with the symbol \(H_s(t) \). Measurements are taken at constant interval \(\Delta t \) (in this example, 1 h). (Symbols are listed in Table 1.)

It is evident from inspection that there is an annual cycle of wave heights: on average, waves are small in summer (where the record begins) and large in winter. Similarly, wave heights are less variable in summer and more variable in winter. These predictable (=average, expected) seasonal cycles of the mean, \(\bar{H}_s(t) \), and standard deviation, \(\sigma_{H_s}(t) \), of \(H_s \) are shown in Fig. 1B, C. Details of the calculation of \(\bar{H}_s(t) \), and \(\sigma_{H_s}(t) \) are given in Appendix A. In short, we calculate \(\bar{H}_s(t) \) and \(\sigma_{H_s}(t) \) for points within a specific measurement window centered on the point at time \(t \).

Having identified these predictable aspects of \(H_s(t) \), our next task is to separate out the stochastic remainder, and to adjust that stochastic signal so that segments of it are statistically interchangeable. To this end, we need to ensure that all segments of the stochastic signal are identically distributed. For practical purposes, we consider the signal to be identically distributed if it meets four criteria: (1) the mean, (2) standard deviation, and (3) shape of the distribution of data within segments must be indistinguishable among segments anywhere within the record; and (4) the autocorrelation function of data must be indistinguishable among all segments.

We meet criterion 1 by calculating \(\Delta H_s(t) \), the difference between the measured \(H_s \) and the predicted \(H_s \) for each sampling time (Fig. 1D):

\[
\Delta H_s(t) = H_s(t) - \bar{H}_s(t). \tag{1}
\]

The mean of these residuals is approximately 0 for segments throughout the record. To meet criterion 2, we divide each measured \(\Delta H_s \) by the predicted standard deviation of \(H_s \) for that time in the year. That is, we calculate a standardized residual:

\[
\Delta H_{s,\text{std}}(t) = \frac{\Delta H_s(t)}{\sigma_{H_s}(t)}. \tag{2}
\]

The result is shown in Fig. 1E.

Our next task is to ensure that the shape of the distribution of standardized residuals is not correlated with \(\bar{H}_s(t) \), the annual mean cycle of \(H_s \). Shape can be quantified by a variety of indices, but for present purposes, it is most important that the skew of the distribution is not correlated with the annual mean cycle. To test for this possibility, a standard index of skew (Zar 1974) is calculated for each point in the \(\Delta H_{s,\text{std}} \) time series in the same fashion in which the standard deviation is calculated (see Appendix A):

\[
W(t) = \frac{\sum_{i=1}^{m} (H_s(t_i) - \bar{H}_s(t_i))^3}{(m-1)(m-2)\sigma_{H_s}^2}. \tag{3}
\]
Here m and σ_m are the number of data points and standard deviation of data in the measurement window, respectively. We then test this index for any correlation with the mean cycle. If there is a substantial correlation, the signal of standardized residuals must be adjusted and the validity of the adjustment must be verified (see Appendix A).

To this point, we have created a time series of standardized AHS_{std} values (Fig. 1E) with constant mean and constant standard deviation, and the shape of the distribution of residuals is effectively constant across the series. However, we must meet one last criterion before we can rearrange segments of this time series: we must ensure that the data in each segment have the same autocorrelation function (ACF). As is characteristic of physical measurements, each AHS_{std} is highly correlated with values measured a short time (a short lag) before or after, but the degree of correlation decreases with increasing lag (Fig. 2). It is not clear how one would adjust individual segments of the series to make their ACFs equal, but it is possible to empirically confirm the homogeneity among segments for a particular data set. Note in Fig. 2 that residuals separated by >4.5 days are effectively uncorrelated. The lag time at which the ACF settles to 0 is one measure of the decorrelation time, d.

We have now ensured that the time series of standardized residuals is effectively identically distributed. In light of this statistical similarity across the record, we are free to choose random segments of the AHS_{std} series and recombine them with the predictable seasonal variation ε_H to create a new wave-height record, a hypothetical realization of what the wave-height record might have been had the environmental dice rolled differently. To create this hypothetical realization, we carry out a moving-block bootstrap procedure (Carlstein 1986, Künsch 1989, Efron and Tibshirani 1993, Bühlman and Künsch 1995, 1999, Paparoditis and Politis 2003) as follows. We choose at random from the AHS_{std} series a segment of length equal to the decorrelation time (that is, $d/\Delta t$ points). Setting segment length to decorrelation time ensures that any relevant autocorrelation in the signal is retained in each segment. We then multiply the first AHS_{std} value in this segment by the standard deviation calculated for the first point in the time series, $\sigma_H(t_1)$, and add it to the expected value for that point, $x_H(t_1)$, to yield a new, hypothetical significant wave height value. We repeat this process with the second point in the segment and $\sigma_H(t_2)$ and $x_H(t_2)$, and so forth. At the end of this process, we have d days of hypothetical record. We then choose at random a second d-day segment from the AHS_{std} time series (sampling with replacement) and use this new random segment to calculate the next d-day segment of the hypothetical wave-height record. We proceed in this fashion until we have created an entire year-long record, a record that is statistically similar to, but randomly rearranged from, the original. We can repeat the entire process as many times as desired to provide an ensemble of year-long realizations of the wave record.

![Fig. 2.](image-url) The autocorrelation function for standardized residuals of significant wave height. The 95% confidence bounds are shown; values within these bounds are not significantly different from 0. The lag at which autocorrelation first reaches 0 is the decorrelation time, d.

Table 1. Symbols used in the text.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area (m^2)</td>
<td>4</td>
</tr>
<tr>
<td>C_f</td>
<td>force coefficient</td>
<td>5</td>
</tr>
<tr>
<td>d</td>
<td>decorrelation time (d)</td>
<td>6</td>
</tr>
<tr>
<td>d_{\max}</td>
<td>maximum decorrelation time (d)</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>water depth (m)</td>
<td>6</td>
</tr>
<tr>
<td>F_{\max}</td>
<td>maximum force (N)</td>
<td>6</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
<td>6</td>
</tr>
<tr>
<td>H_b</td>
<td>breaking wave height (m)</td>
<td>6</td>
</tr>
<tr>
<td>H_s</td>
<td>significant wave height (m)</td>
<td>6</td>
</tr>
<tr>
<td>AHS_{std}</td>
<td>standardized H_s</td>
<td>6</td>
</tr>
<tr>
<td>j</td>
<td>rank</td>
<td>13</td>
</tr>
<tr>
<td>L</td>
<td>lifetime</td>
<td>13</td>
</tr>
<tr>
<td>m</td>
<td>number of points in a window</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>total number of values</td>
<td>18</td>
</tr>
<tr>
<td>p</td>
<td>probability density ($1/R$)</td>
<td>18</td>
</tr>
<tr>
<td>P_{cum}</td>
<td>cumulative probability</td>
<td>18</td>
</tr>
<tr>
<td>R</td>
<td>return time (intervals)</td>
<td>15</td>
</tr>
<tr>
<td>R_{per}</td>
<td>periodic return time (intervals)</td>
<td>15</td>
</tr>
<tr>
<td>S_{\max}</td>
<td>maximum hydrodynamic stress (N/m^2)</td>
<td>5</td>
</tr>
<tr>
<td>S</td>
<td>annual maximum hydrodynamic stress (N/m^2)</td>
<td>13</td>
</tr>
<tr>
<td>t</td>
<td>time (s)</td>
<td>18</td>
</tr>
<tr>
<td>t_r</td>
<td>randomly chosen segment starting time (d)</td>
<td>18</td>
</tr>
<tr>
<td>Δt</td>
<td>time interval (s)</td>
<td>10</td>
</tr>
<tr>
<td>τ</td>
<td>wave period (s)</td>
<td>10</td>
</tr>
<tr>
<td>U_{\max}</td>
<td>maximum water velocity (m/s)</td>
<td>6</td>
</tr>
<tr>
<td>W</td>
<td>skew</td>
<td>3</td>
</tr>
<tr>
<td>ξ_H</td>
<td>mean H_s (m)</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>$100U/d(gT^2)$</td>
<td>9</td>
</tr>
<tr>
<td>σ</td>
<td>coefficient (N/m^2)</td>
<td>14</td>
</tr>
<tr>
<td>β</td>
<td>coefficient</td>
<td>14</td>
</tr>
<tr>
<td>γ</td>
<td>velocity amplification coefficient</td>
<td>11</td>
</tr>
<tr>
<td>ϵ</td>
<td>coefficient</td>
<td>14</td>
</tr>
<tr>
<td>ρ</td>
<td>density of seawater (kg/m^3)</td>
<td>4</td>
</tr>
<tr>
<td>σ_m</td>
<td>standard deviation of factor residuals</td>
<td>4</td>
</tr>
<tr>
<td>σ_{H_s}</td>
<td>predicted σ for H_s (m)</td>
<td>2</td>
</tr>
<tr>
<td>u_s</td>
<td>standard deviation of point in a window</td>
<td>3</td>
</tr>
<tr>
<td>τ</td>
<td>interval length (seconds)</td>
<td>10</td>
</tr>
<tr>
<td>ϕ</td>
<td>body temperature (°C)</td>
<td>16, 17</td>
</tr>
</tbody>
</table>
Now to the crux of the matter. We simultaneously apply the same procedure to other aspects of the environment measured at the same time and in the same location as wave heights—wave period and tidal height in this example—to create sets of coordinated, concurrent hypothetical realizations. For our purposes, it is important that the sampling that leads to this ensemble of sets is random in time but consistent across variables (see Fig. 3). That is, when we choose a random time \(t_r \) as the beginning of a segment of wave height residuals, we use the same start time for wave period and tide height. In this fashion, we maintain in the set of hypothetical realizations any cross-correlation among the standardized residuals of environmental factors. For example, if for some reason the tides tend to be higher than predicted when waves are higher than predicted, this cross-correlation is maintained as we resample blocks of the time series of standardized residuals.

When resampling standardized residuals from multiple environmental variables, we use the longest decorrelation time among the variables, \(d_{\text{max}} \), as the block length. This procedure ensures that pertinent autocorrelation is included in the sampled segments of all variables. (For details and exceptions, see Appendix A.) Moving-block bootstraps can be sensitive to block length (Efron and Tibshirani 1993, Bühlmann and Künsch 1999). To test for any obvious bias tied to the choice of \(d_{\text{max}} \) as block length, we repeat our whole analysis with blocks 1/2, 2, and 3 times \(d_{\text{max}} \).

Note that rearranging blocks of standardized residuals can result in calculated values of individual environmental variables that fall outside the empirically observed range. For instance, the highest predicted tide in the empirical record might have coincided with a negative tidal residual due to the chance passage of a high-pressure cell in the atmosphere, resulting in a lower-than-expected observed tidal maximum. If in our random rearrangement of residuals the highest predicted tide is coupled with a positive tidal residual, the result is a higher calculated tide than any in the empirical record. There is nothing physically implausible about this calculation: in reality, the predicted tide (which is set by celestial mechanics independent of meteorology) might easily have occurred during the chance passage of a low-pressure cell, resulting in an exceptionally high tide such as that predicted by our rearrangement. Although it is thus possible and reasonable that our resampling method predicts values of individual variables that are more extreme than those empirically measured, the possibility of calculating such out-of-range values is not the driving force in our analysis, as we will see below.

Once we have constructed an ensemble of realizations for the factors of interest, our final task is to ascertain how many of these realizations would have caused an extreme ecological event: in this example, the imposition of lethal hydrodynamic force. For some processes, we might need simply to search the realizations for the co-occurrence of values that individually are sufficiently extreme, a task that could be handled by multivariate extreme-value analysis. However, in this bootstrap approach we are not constrained to such simple explorations. Instead, we are free to use any mechanistic model that appropriately combines variables to tell us whether a given set of conditions will result in an extreme ecological event. This model can be as complex as necessary to capture the biologically relevant aspects of environmental variability; in particular, it can include
Fig. 4. A schematic diagram of waves breaking on a rocky shore. H is the height of an individual wave. U is the water velocity at the crest of the wave; U may be amplified by the local topography of the shore. D is the water depth at the toe of the shore, measured relative to still-water level. D varies with the tide. H_b, the breaking height limit, is set by wave period and water depth.

the role of history. Once this model is constructed, we can "play" each multivariable environmental realization through it, producing a univariate time series of biologically meaningful values (hydrodynamic force in the example here). Examination of the ensemble of these univariate time series allows us to tabulate extreme events. The total time in the ensemble divided by the number of extreme events provides an estimate of the return time for events of this type. For example, if 17 lethal hydrodynamic incidents occur in 1000 years of simulated nearshore environment, the return time, the average time between impositions of such an event, is $1000/17 = 58.8$ yr.

In summary, resampling a short time series of relevant factors provides a large bootstrap ensemble of hypothetical environmental realizations. We then use a mechanistic model of biological response as a tool to combine these environmental realizations, allowing us to analyze the resulting record for the occurrence of extreme ecological events. Here, we apply our approach to calculate return times for extreme hydrodynamic and thermal events on rocky shores, but we can apply the same methodology to a wide variety of environmental factors in virtually any ecological system.

Materials and Methods

With the exception of the tides, all measurements were conducted at Hopkins Marine Station (HMS), Pacific Grove, California, USA (36.62° N, 121.88° W). We recorded data continuously for 7 yr, from 1 August 1999 through 31 July 2006.

Terrestrial environment

We logged air temperature (Vaisala HMP45C, Campbell Scientific Incorporated, Ogden, Utah, USA; 2 m above ground), solar irradiance (LI-200SZ, LI-COR Incorporated, Lincoln, Nebraska, USA; CM3, Kipp and Zonen, Delft, The Netherlands), and wind speed (Wind Monitor 05103-5, R. M. Young Company, Traverse City, Michigan, USA; 3 m above ground) every 10 minutes using Campbell 23X dataloggers (Campbell Scientific) at two sites at HMS.

The marine environment

We measured significant wave height and peak wave period (T, the period corresponding to the peak in the spectrum of wave energy) every 6 hours at a site ~100 m seaward of Cabrillo Point at HMS using an SBE26 bottom-mounted wave gauge (Sea-Bird Electronics, Bellevue, Washington, USA). These 6-hour measurements were linearly interpolated to give H_s and T estimates at 10-minute and 1-hour intervals, as appropriate (see Appendix A). We measured sea surface temperature by hand to the nearest 0.1°C using an alcohol thermometer daily at 08:00 hours on Agassiz Beach at HMS. These daily measurements were linearly interpolated to give estimates at 10-minute and 1-hour intervals.

We obtained records of predicted and verified hourly tidal height from the NOAA tide station at Monterey, California, ~1.5 km from HMS. When needed, we linearly interpolated these hourly measurements to give height estimates at 10-minute intervals.

A model for extreme wave forces

As ocean waves break on shore, they are accompanied by high water velocities, which in turn impose large hydrodynamic forces on intertidal organisms (e.g., Koehl 1977, Denny 1988, 1995, Carrington 1990, Gaylord 2000, Boiler and Carrington 2006). For a given organism, the magnitude of these forces depends on four factors: wave height, wave period, nearshore water depth (which varies with the tides), and the topography of the shore. A simple model can be formulated to relate these four factors to imposed force.

The maximum force, F_{max} (in newtons), imposed on an individual intertidal organism is

$$F_{max} = 0.5 \rho U_{max}^2 A C_f$$

where ρ is the density of seawater (nominally 1025 kg/m³), A is some representative area exposed to flow, C_f is an appropriate dimensionless shape-dependent force coefficient (e.g., the lift, drag, or impingement coefficient), and U_{max} (in meters per second) is the maximum velocity (Denny 1988, 1995, Gaylord 2000). In other words, for an organism of a given size and shape, maximum force is proportional to the square of maximum velocity. To estimate maximum force on mussels (lift in this case), we set $C_f = 0.88$ (see Denny 1987). (For simplicity, we ignore accelerational effects, which for small organisms, such as mussels, are negligible [Gaylord 2000].)

It is convenient to remove the size of an individual from this relationship by normalizing force to the same representative area used in Eq. 4. This manipulation results in a quantity we refer to as the maximum stress, S_{max}, with units of newtons per square meter:
Eq. 7 implies that, for a given step depth, stress could increase without bound as wave height increases. However, the higher the wave, the lower its stability, and the farther from shore it breaks (U.S. Army Corps of Engineers 1984, Denny 1988, Helmuth and Denny 2003). After a wave breaks, it rapidly loses height as energy is dissipated by turbulence and viscous interactions within the water column, and this energy loss sets an upper limit \(H_b \) to the height of waves as they reach the wall (Fig. 4). If the height of a wave as it approaches shore is \(\geq H_b \), the wave breaks before reaching the wall, and the maximum stress imposed is as follows:

\[
S_{\text{max}} = 0.5pg(H_b + D)C_f. \tag{7}
\]

Our next task is to decide whether the actual maximum wave height impinging on the shore exceeds this breaking limit. In the ocean, wave height varies randomly from one wave to the next, and the distribution of wave heights can be characterized by the significant wave height, \(H_s \). But, as noted previously, \(H_s \) is the average of the highest one-third of waves. Instead, we desire to know \(H_{\text{max}} \), the height of the single highest wave. Theory developed by Longuet-Higgins (1952, 1980) and outlined in Denny (1995) shows that

\[
H_{\text{max}} \cong 0.6541 \left\{ \left[\ln \left(\frac{X}{T} \right) \right]^{1/2} + 0.2886 \left[\ln \left(\frac{X}{T} \right) \right]^{-1/2} \right\} H_s, \tag{10}
\]

where \(\tau \) is the interval over which waves are measured (in seconds). Thus, if we know the significant wave

\[
S_{\text{max}} = 0.5pg(H_b + D)C_f \quad H_{\text{max}} \geq H_b. \tag{8}
\]

If the maximum height of the wave as it approaches the shore is \(< H_b \), \(S_{\text{max}} \) is given by Eq. 7.

To calculate maximum stress for a given step depth, we thus need to know the maximum height of waves relative to \(H_b \). A variety of theoretical and empirical studies suggest that \(H_b \) is a function of both \(D \) (which is, in turn, a function of tidal height) and wave period, \(T \). Here we use the empirical relationship found by the U.S. Army Corps of Engineers (1984) for steeply sloped shores:

\[
H_b = -0.0561X^5 + 0.4152X^4 - 1.2534X^3 + 2.0573X^2 - 2.2433X + 2.3432 \tag{9}
\]

where \(X = D/gT^2 \). Eq. 9 is valid for \(0 \leq X \leq 2 \). Using Eq. 9, \(H_b \) can be calculated for given values of \(D \) and \(T \) (Fig. 5A). For a given step depth, the longer the wave period, the higher the breaking limit (Fig. 5B). For a given wave period, the deeper the water, the higher the breaking limit (Fig. 5C).
height present in a given interval (e.g., an hour, \(\tau = 3600 \) seconds) and \(T \), the dominant period of the waves present at that time, we can calculate the predicted height of the highest wave that strikes the shore in that interval. This maximum wave height can then be compared to the breaking limit appropriate for that time (set by the wave period and tidal height, Fig. 5A), and used in either Eq. 7 or 8 to calculate the maximum stress imposed on an individual organism.

Note that maximum hydrodynamic stress is not a monotonic function of wave period. As shown in Fig. 5B, increasing \(T \) increases the breaking height, potentially allowing for the imposition of larger stresses. But increasing \(T \) also decreases the number of waves encountered in any interval of time, which decreases \(H_{\text{max}} \) (Eq. 10) and, thereby, the stress. The overall effect depends on step depth \(D \), which in turn depends on the tide. If step depth is small, waves with any relevant height break before reaching shore, so \(S_{\text{max}} \) is set by \(H_b \), which increases with increasing period. For sufficiently deep \(D \), no waves break before reaching shore, so \(S_{\text{max}} \) is set by \(H_{\text{max}} \), which decreases with increasing period. For intermediate step depths, stress is maximal at some intermediate wave period.

Eq. 10 is itself based on a probabilistic analysis of wave-wave superposition similar to the analysis of co-occurring events presented here. As a consequence, if several intervals in a time series have the same large (but not maximal) \(H_a \), the combined time at this sea state could produce a larger maximum wave height than a single interval of maximal \(H_a \) (see Denny 1995). However, in practice, this scenario is unlikely. At the sites explored by Denny (1995), the maximum wave height associated with maximum \(H_a \) is less than the overall \(H_{\text{max}} \) only for \(H_a \) greater than 3.7 to 6.4 times the yearly average \(H_a \). At HMS, yearly average \(H_a \) is 0.88 m, so we expect maximum wave height at maximum \(H_a \) to be less than the overall \(H_{\text{max}} \) only for \(H_a > 3.3-5.6 \) m, heights greater than those encountered in our 7-yr time series.

One more detail is required. Often the crest velocity of a breaking wave is amplified through interactions with the small-scale topography of the shore. Denny et al. (2003) demonstrated that wave refraction and the subsequent formation of jets amplified local velocities 1.5–2.6 fold. Because wave-induced stress increases as the square of velocity (Eq. 5), these amplifications lead to a 2.25–6.76 fold increase in stress. In general, if water velocity is locally amplified by \(\gamma \), the stress predicted by our simple model is

\[
S_{\text{max}} = 0.5pg\gamma^2(\max+D_s)C_f \quad H_{\text{max}} < H_b \quad (11)
\]

\[
S_{\text{max}} = 0.5pg\gamma^2(H_b+D_s)C_f \quad H_{\text{max}} \geq H_b. \quad (12)
\]

Given concurrent time series for significant wave height, wave period, and tide level, the procedure outlined above for calculating \(S_{\text{max}} \) for a single measurement time can be repeated for each measurement in the record, allowing one to estimate the overall maximum wave-induced stress associated with a particular realization of the environment at a particular site. If, by chance, high waves with certain intermediate periods coincide with a high tide, exceptionally large stresses are imposed.

Implementing the model

We processed empirical \(H_a \), \(T \), and tidal height data from HMS to ascertain mean signals and calculate identically distributed standardized residuals. The time series of residuals were then resampled as described previously and combined with the mean annual signals to create 10000-year sets of concurrent hypothetical data.

We analyzed these results in two ways. First, we tabulated the probability of co-occurring conditions of wave height, tidal height, and wave period, and second, we recorded the annual maximum stresses calculated from the mechanistic model. Annual maxima were then further analyzed according to Gaines and Denny (1993) and Coles (2001) to calculate the return time for stress of a given magnitude: the average time between imposition of this magnitude of stress. This calculation is essentially a univariate extreme-value analysis of the stress data. The 10000 bootstrapped annual maximum stresses were ranked, with the smallest annual maximum having rank 1 and the largest annual maximum having rank \(n \). The estimated probability that an annual maximum stress \(\delta \) chosen at random from the recorded bootstrap values will have magnitude less than or equal to the value ranked \(j \) is

\[
\text{Prob}[\delta \leq \delta(j)] = P(\delta) = j/n + 1. \quad (13)
\]

This empirical cumulative distribution should asymptotically approach a generalized extreme-value distribution (Gaines and Denny 1993, Coles 2001, Katz et al. 2005):

\[
P(x) = \exp \left(\frac{x - \beta x^{\alpha}}{\alpha - \beta} \right)^{1/\beta}. \quad (14)
\]

We calculated maximum likelihood values for \(\alpha \), \(\beta \), and \(\varepsilon \) using Systat (SPSS 1998). Coles (2001) and Katz et al. (2005) use a modified (but equivalent) form of Eq. 14; see Appendix B.

The return time \(R \) for value \(x \) is

\[
R(x) = \frac{1}{1 - P(x)}. \quad (15)
\]

Return time as calculated here has units equal to the interval with which measurements are taken. For example, if maximum stress is measured for annual intervals, \(R \) has units of years.

Eq. 14 is often used in extreme-value analysis to extrapolate beyond the data in hand, for instance, to
extrapolate to return times in excess of the period of actual measurement. Here we use Eq. 14 primarily as a means to interpolate within the data provided by the bootstrap ensemble of environmental realizations.

Benchmarks of hydrodynamic stress

We used two benchmarks to judge the extremity of maximum hydrodynamic stress. The first benchmark is set by observed events. On 11 January 2001 an extreme wave/tide event occurred at HMS. Significant wave height was 2.80 m, wave period was 11.8 s, and tidal height was 2.15 m above MLLW (National Tidal Data Epoch [NTDE] 1960–1978, Monterey [NOAA 2000]). The co-occurrence of these high, intermediate-period waves with the second highest tide of the year resulted in substantial damage to the shore. Boulders weighing several tons were lifted more than 5 m and washed into the upper intertidal zone, and sections of previously intact rock substratum were broken loose and widely scattered. On 5 January 2008 a similar event occurred at HMS. In this case, significant wave height was 3.12 m, wave period was approximately 11–12 s (unfortunately, an apparent malfunction in the wave meter does not allow us to be more specific), and measured tidal height was 1.85 m above MLLW (NTDE 1983–2001, Monterey). Although some destruction occurs annually on this shore, these events were notably exceptional in the authors’ 26-yr experience at HMS, and we use them as standards against which to compare our calculations.

The second benchmark is set by the mechanical capabilities of bed-forming mussels. When water flows over an intertidal mussel bed, a lift force is applied, tending to pull individuals away from the substratum (Denny 1987), and this force is the principal source of disturbance for mussels living above the limit of predatory sea stars (Paine and Levin 1981). The ability of mussels to resist this force was measured at HMS for a bed of Mytilus calif ornianus 1.5 m above MLLW (NTDE 1960–1978, Monterey), as described by Denny et al. (2004). We recorded breaking stress values for 30 mussels each month from February 1999 to October 2006. Monthly values were pooled across years, and used to estimate the month-by-month cumulative distribution of breaking stress. We ranked the breaking stress values for a given month in ascending order, and used Eq. 13 to calculate the probability that a mussel chosen at random has a breaking stress less than that of a given rank. We then fitted this empirical cumulative probability distribution using Eq. 14, which in turn allows us to conveniently translate applied stress into the probability of mussel dislodgment. Note that in this case, \(P(S_{\text{max}}) \), the probability that an individual chosen at random will be dislodged by stress \(S_{\text{max}} \), approximates the fraction of the mussel population dislodged by the imposition of \(S_{\text{max}} \). Knowing both fraction dislodged and return time as functions of applied stress, we can then plot fraction dislodged directly as a function of return time. Because the distribution of mussel strengths varies from month to month, the largest stress does not necessarily dislodge the largest fraction of mussels; a smaller-than-maximum stress occurring in a month when mussels are weak could result in the maximum annual dislodgment. Consequently, to calculate maximum annual dislodgement, each individual calculated hydrodynamic stress value was used with the breaking stress distribution appropriate to the month in which the stress was imposed. This is one example of a type of seasonal effect that would complicate a traditional multivariate analysis of extremes.

A model for limpet body temperature

We used a similar approach to predict the return time of extreme thermal events for limpets. The owl limpet Lottia gigantea is territorial; it maintains a “garden” of microalgae by bulldozing away mussels, barnacles, and other limpets, and returns to a home scar at each low tide. When firmly attached to its scar, L. gigantea is virtually immune to dislodgment by wave forces (Denny and Blanchette 2000). At HMS, L. gigantea is the only species that can effectively compete for mid-intertidal space with M. calif ornianus, and therefore is an important influence on mid-intertidal community structure. Because of its homing behavior, adult L. gigantea are effectively immobile at low tide; they do not seek shelter on hot days, and are thus susceptible to overheating.

Denny and Harley (2006) constructed a heat budget model that predicts (within 0.3°C) the body temperature of L. gigantea from environmental data, and we use this model here. Briefly, we use the model to calculate the rate at which heat enters and leaves a limpet’s body for a given set of environmental values, and then calculate the body temperature at which heat influx equals heat efflux. For small organisms such as these limpets, this equilibrium temperature is an excellent estimate of actual body temperature. The heat budget model thus provides a means for translating a time series of environmental variables into the corresponding time series of body temperatures.

We resampled pertinent aspects of the 7-yr environmental record (air and seawater temperatures, wind speed, solar irradiance, tidal height, and significant wave height) as described above and in Appendix A, and we used them in conjunction with the heat budget model to calculate 1000 hypothetical annual maximum body temperatures for L. gigantea at nine substratum orientations: horizontal; 45° from vertical facing east, west, north and south; vertical facing east, west, north, and south. We assume that all limpets occur at 1.5 m above MLLW, a typical height on the shore for L. gigantea at HMS. We then used Eqs. 13, 14, and 15 to calculate the return time for given maximum body temperatures. The calculation of each 1000-year ensemble required >5 days of computer time; for this reason we use only 1000 years of hypothetical thermal data
rather than the 10,000 years of wave/tide data we used when exploring mussel dislodgment.

Two aspects of the heat budget model deserve note. First, instantaneous body temperature is closely tied to the temperature gradient in the rock substratum, and therefore depends on the history of heat flux in the several hours leading up to each temperature measurement. Second, the values of wind speed, wave height, and solar irradiance relevant to body temperature are bounded. During times of thermal stress, body temperature is typically higher than air temperature. As a result, the lower the wind speed, the higher the body temperature. However, wind speed can never go below 0, and convection imposes a practical lower bound of \(\sim 0.1 \text{ m/s} \). Similarly, body temperature can be high only in the absence of wave splash. Thus, the lower the wave height, the higher body temperature is likely to be. However, wave height can never fall below 0. The brighter the sunlight, the higher body temperature can be, but irradiance at sea level is limited by the output of the sun to \(\sim 1000 \text{ W/m}^2 \). Slightly higher values can be encountered for a few moments at a time as direct sunlight is augmented by light reflected off clouds, but these brief bright spells do not last long enough to substantially affect body temperature. The fact that these variables are bounded will be important when we consider the calculation of absolute maximum body temperature.

To aid in interpreting thermal data, we carried out an additional set of calculations to characterize the temporal pattern of heating corresponding to the imposition of maximal temperatures for limpets on horizontal substrata. We created 184 yr of resampled environmental data, and (using our heat budget model) recorded the body temperatures every 10 min within \(\pm 12 \text{ h} \) of the annual maximum for each year. These records allowed us to characterize each annual maximum temperature event into two categories: (1) abrupt cooling, in which the hot limpet was immersed in seawater within 30 min of reaching peak temperature, (2) gradual cooling, in which high temperature was maintained for longer periods.

Benchmarks of thermal stress

We use death as a benchmark for the severity of thermal stress. To do so, we measured the distribution of lethal limits of *L. gigantea* as described by Denny et al. (2006). In short, we gently detached limpets from the substratum and transferred them to a chamber in the laboratory in which substratum temperature, air temperature, wind speed, and relative humidity were varied separately to impose patterns of body heating that resemble those found in limpets emersed at low tide. Two heating protocols were used. First, starting at a typical seawater temperature of 14°C, we increased body temperature at a rate of 8°C per hour to the experimental temperature. (This rate is among the highest seen in our simulations.) We maintained this peak temperature until 3.5 h had elapsed from the initiation of the experiment, at which time the limpets were abruptly cooled by immersion in 14°C seawater. We assessed the status of the limpet (alive or dead) 24 h after immersion. The second protocol was similar to the first except that, after an appropriate interval at experimental temperature, we gradually cooled the limpets at 8°C per hour back to 14°C (rather than the abrupt decrease of the first protocol), and the limpet was then immersed in 14°C seawater. In this case, the total time of the experiment (from initial onset of heating to immersion) was 7 h. We then assayed limpet status 24 h later. Experimental peak temperatures were varied from 28°C to 40°C in 1°–2°C steps. For the 3.5-h exposures, we used 10 limpets in each trial at each temperature; for the 7-h exposures, we used 5 limpets in each trial. All experiments were repeated for three trials. Wind speed was 0.5 m/s and relative humidity was 50–60% in each trial. Air temperature tracked substratum temperature up to 30°C, and was then held constant.

The results of these experiments suggest that 28°C represents an approximate threshold for thermal death in *L. gigantea*. At or below 28°C, limpets can survive the longest single exposure they are ever likely to encounter in nature. Above this threshold, limpets are killed, the fraction killed increasing with both temperature and time of exposure. The limit of 28°C is also the temperature at which *L. gigantea* increases its production of heat-shock proteins (HSP 70) (Miller et al. 2009). For future reference, note that the "abrupt cooling" experiments maintain a body temperature \(>28°C \) for 1.75 h; the "gradual cooling" experiments, for 3.5 h.

We use the lethal limits measured here to calculate return times of thermal events in terms of the fraction of limpets killed rather than in terms of limpet body temperature.

Verification

It would be comforting to test our calculations against long-term empirical measurements. However, as with many predictions of rare environmental events, a direct test is problematic: long-term records of mussel dislodgment and limpet thermal death do not exist for the HMS shore. In lieu of these data, we tested our method in three ways.

First, we tested the ability of our method of calculating residuals (Appendix A) to accurately estimate the distribution of residuals. We took daily sea surface temperatures at Hopkins Marine Station from a record beginning in January 1919 and extending through 2004 (Breaker et al. 2006), allowing us to calculate residuals relative to the 86-yr average for each year day. We then compared the distribution of these residuals to the distribution of residuals calculated relative to the annual cycle of temperature estimated using our 7-yr data record and the averaging procedure outlined in Appendix A.

Next, we tested the internal accuracy of the statistical approach using simulated environmental data. We used
second-order autoregressive-moving-average (ARMA) models to calculate 10000-yr-long simulated time series of standardized residuals for tidal heights, wave heights, and wave periods (see Appendix C). When combined with the mean annual cycles measured from our 7-yr record, these time series of residuals provide the sort of lengthy data set not currently available from nature. A 7-yr segment of this hypothetical environmental record was then chosen at random and analyzed using our resampling method to estimate return times for extreme events. These calculations allowed us to compare the distribution of estimated return times (calculated from the 7-yr subseries) to the distribution of return times directly “observed” in the 10 000 years of the full-length simulated time series.

As a final means of testing the efficacy of our predictions for extreme events, we garnered hourly significant wave height and peak wave period from buoy 46042 of the National Data Buoy Center, located at 36.75° N, 122.42° W in the mouth of Monterey Bay, ~50 km from Hopkins Marine Station. With minor intermittent gaps, this record spans 20.5 yr, from 17 June 1987 to 31 January 2008, a total of 160 584 h of observation. We noted conditions at this buoy for the times of the known extreme events at HMS. We then searched the 20.5-yr record for the occurrence of similar events, and noted the intervals between these events.

RESULTS

Verification

Thermal residuals calculated using our averaging procedure are very similar to residuals calculated relative to the 86-yr average for each year day (Fig. 6).

Applying our statistical method to short-term (7-yr) simulated wave and tide data predicted a distribution of return times for hydrodynamic stress that closely matches the distribution observed directly in long-term (10 000-year) simulated data. On average, the estimates of annual maximum stress for a given return time overestimated the observed stress by 0.49% (Fig. 7). The fractional difference between estimated and actual stress generally decreased with increasing return time, and the maximum difference between predicted and actual stress was −3.62% at a return time of 5000 yr.

Wave events with individual characteristics as extreme as those observed on 11 January 2001 ($H_s > 2.80$ m, $T > 11.8$ s, tidal height > 2.15 m) occurred in only 1.07% of the 10 000 1-yr realizations of the wave and tide environment, corresponding to a return time of ~93 yr. Wave events with individual characteristics as extreme as those
observed on 5 January 2008 \((H_s > 3.12 \text{ m}, T > 11 \text{ s}, \text{tidal height} > 1.85 \text{ m})\) occurred in 1.86% of the 10000 1-yr realizations, corresponding to a return time of 54 yr.

These return times can be compared to those estimated from buoy records. The 2001 extreme wave event at Hopkins Marine Station occurred when conditions at buoy 46042 were \(H_s = 8.2 \text{ m}, T = 16.7 \text{ s}\). In the 20.5-yr history from this buoy, this was the only time when \(H_s \geq 8 \text{ m}\) and \(T \geq 16.7\) coincided with a measured tidal height >2.0 m. The 2008 extreme wave event at Hopkins Marine Station occurred when conditions at buoy 46042 were \(H_s = 9.9 \text{ m}, T = 17.0 \text{ s}\), the only time when \(H_s > 9 \text{ m}\) and \(T > 17\) coincided with a measured tidal height >1.85 m. If we use these two events as the benchmark for what constitutes an extreme wave/tide event, the buoy record implies return times for such events of >13.5 yr (from some undetermined time prior to June 1987 to January 2001) and 7 yr (January 2001 to January 2008).

Extreme stress events

As noted above, the combinations of wave height, wave period, and tidal height present in January 2001 and 2008 are only a subset of the possible conditions that might qualify as biologically extreme. Return time as a function of calculated imposed stress is shown in Fig. 8. Our simple model for wave stress suggests that stress equivalent to that imposed on 11 January 2001 has a return time of approximately 28 yr, and stress equivalent to that of 5 January 2008 has a return time of 47 yr. As expected, both values are lower than the return times estimated for specific combinations of waves and tides (93 and 54 yr, respectively).

Mussel strength distributions

Fig. 9 shows the cumulative distributions of mussel breaking stress. Tenacities are higher from October through February, with a peak in November, and lower in March through September, with a minimum in April. Monthly distributions of mussel breaking stress are described by the coefficients given in Table 2.

Fraction of mussels dislodged

The fraction of mussels dislodged by hydrodynamic forces is graphed as a function of return time in Fig. 10. Values are shown for three levels of velocity amplification \((\gamma = 1, 1.5, 2.6)\) and for two water depths \((D = 1 \text{ and } 5 \text{ m measured from MLLW})\), spanning the typical range for rocky shores. Without local amplification, wave-imposed stresses dislodge a miniscule fraction of the population even at long return times, regardless of water depth. With a 2.6-fold amplification of velocity, >80% of mussels are dislodged annually at \(D = 1 \text{ m}\), and >99% at \(D = 5 \text{ m}\). With intermediate velocity amplification, the fraction of mussels dislodged increases with both return time and water depth. There was negligible effect of varying block size (Fig. 11).

Fig. 12 shows the distribution of times of arrival of yearly maximum wave stress; maximal stress arrives most often in December when mussels are near their strongest, and least often in July and August when mussels are near their weakest. This correlation between imposed stress and byssal strength suggests that mussels may adjust their adhesive tenacity in response to the hydrodynamic environment.

Limpet thermal limits

The fraction of limpets killed by temperature \(\phi\) is shown in Fig. 13, where the data are described by the following equations:

\[
\text{Fraction killed} = \frac{1}{1 + \exp\left(-\frac{\phi - 32.85}{0.7978}\right)} \quad (16)
\]

for gradual cooling, and

\[
\text{Fraction killed} = \frac{1}{1 + \exp\left(-\frac{\phi - 36.73}{0.3863}\right)} \quad (17)
\]

for abrupt cooling. (Eq. 16 is taken from Denny et al. [2006].) A temperature of ~37°C is required to kill half the limpets when individuals are exposed to potentially lethal temperatures (temperatures above 28°C) for 1.75 h. In contrast, a temperature of only ~33°C is required to kill half the limpets when exposed to potentially lethal temperatures for 3.5 h.

Pattern of heating

Of the annual temperature maxima, 69% were associated with gradual cooling to seawater temperature; the remaining 31% were associated with abrupt cooling. Average patterns of heating are shown in Fig. 14. The higher the annual maximum body temperature, the longer the time spent above the threshold of 28°C, although there is substantial variation around this pattern (Fig. 15). As one might expect, time above
threshold is greater for gradual returns to seawater temperature than for abrupt returns.

Extreme thermal events

Table 3 presents a summary of the results of the heat budget model, and Fig. 16 shows annual maximum body temperatures as a function of return time and substratum orientation. Of the orientations tested, temperature reaches its maximum average on the south-facing surface with a slope of 45° (Fig. 16A). This angle is near the latitude of HMS (36°), thus placing the substratum nearly perpendicular to the midday sun. Temperatures on a horizontal surface are similar to temperatures reached on an east-facing 45° surface. Temperatures on vertical surfaces follow the same pattern with orientation as substrata sloped at 45°, but are slightly cooler (Fig. 16B).

Return times for death of given fractions of limpets are shown in Fig. 17. For the worst case of our spatial scenarios (a south-facing 45° surface), if a given maximum body temperature is associated with an abrupt cooling to seawater temperature, half the population would be killed with a return time of ~8.1 yr (Fig. 17A). If, however, a given maximum body temperature is associated with a gradual return to seawater temperature, temperatures sufficient to kill half the population occur only every 209 yr (Fig. 17B). Return times are longer regardless of substratum orientation if cooling is abrupt (Fig. 17A, C) than if cooling is gradual (Fig. 17B, D). There was a slight effect on our calculations of varying block size, but no apparent pattern to the effect (Fig. 18): results using a

Table 2. Coefficients describing the cumulative probability distribution of mussel strength (see Eq. 14).

<table>
<thead>
<tr>
<th>Month</th>
<th>α</th>
<th>β</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.0444</td>
<td>0.0688</td>
<td>0.1131</td>
</tr>
<tr>
<td>February</td>
<td>0.0475</td>
<td>0.0622</td>
<td>0.1068</td>
</tr>
<tr>
<td>March</td>
<td>0.0430</td>
<td>0.0469</td>
<td>0.0966</td>
</tr>
<tr>
<td>April</td>
<td>0.0352</td>
<td>0.1561</td>
<td>0.0934</td>
</tr>
<tr>
<td>May</td>
<td>0.0528</td>
<td>0.1607</td>
<td>0.0970</td>
</tr>
<tr>
<td>June</td>
<td>0.0516</td>
<td>0.1410</td>
<td>0.1030</td>
</tr>
<tr>
<td>July</td>
<td>0.0606</td>
<td>0.1980</td>
<td>0.1019</td>
</tr>
<tr>
<td>August</td>
<td>0.0576</td>
<td>0.2111</td>
<td>0.0907</td>
</tr>
<tr>
<td>September</td>
<td>0.0422</td>
<td>0.0651</td>
<td>0.0991</td>
</tr>
<tr>
<td>October</td>
<td>0.0609</td>
<td>0.1792</td>
<td>0.1068</td>
</tr>
<tr>
<td>November</td>
<td>0.0598</td>
<td>0.1553</td>
<td>0.1169</td>
</tr>
<tr>
<td>December</td>
<td>0.0672</td>
<td>0.2204</td>
<td>0.1128</td>
</tr>
</tbody>
</table>

Note: Values are used in Eq. 3, with x, the applied stress, measured in MPa.
block length of 39 days were very similar to those using the standard length of 13 days.

Discussion

Our results suggest that the co-occurrence of normal environmental factors can lead to extreme events, and that these environmental extremes can cause severe disturbance. For example, the average yearly maximum body temperature of *L. gigantea* on horizontal surfaces is 30.4°C, sufficient to kill <5% of individuals (Table 3). However, on one occasion in our 1000 simulated years, normal air temperatures, tidal levels, solar irradiances, and wind speeds aligned to produce an estimated body temperature of 40.1°C, sufficient to kill >99% of limpets at this orientation, an event that would open substantial primary space for invasion or settlement. Similar effects occur at most other substratum orientations, north-facing walls being the only reliable refuge from thermal disasters (Table 3). It is important to note that the environmental event chronicled here for limpets on a horizontal surface, a shift from benign to lethal, is a consequence of chance alone: in the year that produced the exceptional body temperature of 40.1°C, the mean values of air temperature, tidal level, solar irradiance, and wind speed were exactly the same as in all other years. By calculating the probability of rare events of this sort (a 1-in-1000-yr occurrence), our resampling method provides information about thermal dangers.
that would be difficult, if not impossible, to obtain through short-term observations.

Our results also provide details regarding the spatial patterns of environmental factors that would be difficult to obtain otherwise. For example, casual observation at HMS shows that *L. gigantea* are relatively scarce on south- and west-facing substrata. Denny and Harley (2006) have shown that in typical years maximum body temperature is highest for these orientations, but not sufficiently high to kill *L. gigantea*. Why, then, are limpets scarce at these orientations? A potential explanation becomes apparent only when rare, extreme thermal events are considered. We predict that events capable of killing owl limpets occur much more frequently on south- and west-facing slopes than on north- or east-facing slopes (Fig. 17). Perhaps it is these rare events, events that would be unlikely for an ecologist to observe, that control limpets’ distribution.

The pattern of disturbance is different for *M. californianus* subjected to hydrodynamic forces. At any particular site on the shore, temporal variation in applied stress spans only a small fraction of the broad range of mussel attachment strengths. Mussels at relatively protected sites on the shore (sites with a velocity amplification = 1) are exceedingly unlikely to be dislodged by even a once-in-10,000-yr wave/tide event (Fig. 10). Mussels at highly exposed sites (γ = 2.6) are unlikely to survive even the “normal” wave events that occur every year. For sites with intermediate velocity amplification (γ = 1.5), extreme wave events can indeed increase the fraction of mussels dislodged, but only within a narrow range. Thus, for mussels, physics (in the form of wave breaking) limits the range of environmental extremes possible at a given site, which, when coupled with the broad distribution of breaking stress in mussels (Fig. 9), in turn limits the range of possible ecological consequences. In contrast to limpets, for which the intensity of thermal disturbance can vary drastically in both space and time, the intensity of hydrodynamic disturbance for mussels can vary drastically from place to place on a shore, but disturbance at any given location is unlikely to vary as drastically through time.

What if?

The resampling method employed here allows us to answer a variety of “what if?” questions. In central California, where this study was conducted, summertime low tides typically occur early in the morning, while in Oregon and Washington, they can occur near midday, leading to the proposal that intertidal organisms are subjected to greater thermal stress at higher latitudes (reviewed in Helmuth et al. 2002, 2006). We can test one aspect of this hypothesis by running our model using the empirically measured air temperature, solar irradiance, wind speed, and sea surface temperature at HMS combined with tidal fluctuations that are shifted to later in the day (Fig. 19). A 3-h shift in the tides (simulating a
northward shift from California to Washington State) decreases the predicted return time of 50% thermal death from 8.8 to 6.2 yr, a surprisingly small shift. This finding reinforces the conclusion of Helmuth et al. (2002) that there may be little effective latitudinal variation in intertidal body temperatures.

What if air temperature were to rise, say, 2°C from those values measured at HMS? Increasing air temperature reduces the return time of lethal thermal events, but in a pattern that depends on orientation (Fig. 20). Only minor effects are predicted for south-facing 45° slopes (Fig. 20A) and north-facing vertical walls (Fig. 20B). In contrast, on horizontal surfaces, an increase in air temperature of 2°C would have substantial effect, reducing the return time for an event killing 50% of limpets from 9 to 2 yr (Fig. 20C). An increase in air temperature could thus affect the spatial distribution of limpets, and thereby the surrounding community.

Note that the uniform increase of air temperature used to calculate these results is at best a first approximation of the effect of increased average air temperature at HMS. If average air temperature rises as a part of global climate change, the effect is likely to vary with time of day and time of year. Furthermore, any shift in average air temperature is likely to be accompanied by other changes in the thermal environment. Increased air temperature in the inland valleys east of HMS is likely to increase the incidence and speed of onshore winds.

Fig. 14. Average patterns of heating and cooling observed for 184 yr of resampled environmental data: (A) gradual cooling and (B) abrupt cooling. Vertical bars indicate ±SD.

Fig. 15. Hours of exposure to potentially lethal temperatures (>28°C) for 184 yr of resampled environmental data. Key: solid symbols, gradual cooling; open symbols, abrupt cooling. Lines are least-squares regressions: gradual cooling, hours = 1.213 + 0.573 × degrees (r² = 0.593, n = 127); abrupt cooling, hours = 0.302 + 0.333 × degrees (r² = 0.553, n = 57).
Table 3. Mean and maximum predicted body temperatures and the estimated fraction of limpets killed, as a function of substratum orientation and "gradual" or "abrupt" cooling regimes.

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Mean (°C)</th>
<th>Fraction of limpets killed</th>
<th>Maximum (°C)</th>
<th>Fraction of limpets killed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abrupt cooling</td>
<td>Gradual cooling</td>
<td>Abrupt cooling</td>
<td>Gradual cooling</td>
</tr>
<tr>
<td>Horizontal</td>
<td>30.36</td>
<td>0.0000</td>
<td>0.0422</td>
<td>40.11</td>
</tr>
<tr>
<td>North 45°</td>
<td>26.01</td>
<td>0.0000</td>
<td>0.0002</td>
<td>36.73</td>
</tr>
<tr>
<td>East 45°</td>
<td>30.30</td>
<td>0.0000</td>
<td>0.0393</td>
<td>38.03</td>
</tr>
<tr>
<td>South 45°</td>
<td>33.77</td>
<td>0.0005</td>
<td>0.7601</td>
<td>42.99</td>
</tr>
<tr>
<td>West 45°</td>
<td>32.06</td>
<td>0.0000</td>
<td>0.2709</td>
<td>40.84</td>
</tr>
<tr>
<td>North vertical</td>
<td>22.43</td>
<td>0.0000</td>
<td>0.0000</td>
<td>32.47</td>
</tr>
<tr>
<td>East vertical</td>
<td>28.47</td>
<td>0.0000</td>
<td>0.0041</td>
<td>34.69</td>
</tr>
<tr>
<td>South vertical</td>
<td>31.66</td>
<td>0.0000</td>
<td>0.1837</td>
<td>43.08</td>
</tr>
<tr>
<td>West vertical</td>
<td>30.83</td>
<td>0.0000</td>
<td>0.7365</td>
<td>38.18</td>
</tr>
</tbody>
</table>

resulting in an increase in fog at the coast and a concomitant decrease in solar irradiance. Thus, in reality an increase in air temperature might actually result in a decrease in intertidal body temperature. Although these complications are not included here, if the change in solar irradiance (or any other factor that might vary with air temperature) can be predicted, its incorporation into our method is straightforward.

Return time: nonintuitive consequence

In the discussion above, we quantified the temporal pattern of extreme events in terms of the return time. As with many averages, return time must be interpreted with care, and it is worth taking a few moments to consider return time in detail.

If, in the absence of any long-term shift in the environment, the stochastic components of environmental factors combine randomly through time, we can suppose that compound extreme events occur with constant, small probability. If this is indeed the case, the intervals between extreme events in a static climate should conform to a Poisson interval distribution (for a derivation, see Berg [1983:87]):

\[p(t; R)dt = \frac{e^{-(t/R)}}{R} dt \]

\[\text{Prob}(x \leq t) = P(x) = 1 - e^{-t/(R)} \]

Here, \(p(t; R) \) is probability density for a given interval length \(t \) given return time \(R \), and \(P(x) \) is the probability that the actual interval between events is \(\leq t \). Eq. 18 is graphed in Fig. 21. Indeed, the distribution of inter-event intervals predicted by our method is accurately modeled by the Poisson interval distribution; an example is shown in Fig. 22.

Note that the Poisson interval distribution is highly skewed, with an abundance of short intervals and a few very long intervals (Fig. 21). This skew can lead to nonintuitive biological consequences. We use two hypothetical examples to demonstrate our point. Let \(N(x) \) be the probability of not encountering in any particular year an extreme event of magnitude \(x \). If \(N(x) \) is constant, the probability of not encountering an extreme of magnitude \(x \) in a lifetime of \(L \) yr is \(N(L) \). In other words, measured over many generations, \(N(L) \) is the average fraction of the population that avoids extreme event of magnitude \(x \). An example is shown by the solid line in Fig. 23 where we
assume that $N(x) = 0.95$, corresponding to a return time of 20 yr (Eq. 15). Because extreme events occur randomly, there are instances in which the interval between events is exceptionally long (the tail on the right side of Fig. 21B). As a consequence, even if individuals have a lifetime equal to the return time, in the long term, 36% of these individuals never encounter a catastrophic event.

Contrast this scenario with another in which extreme events arrive periodically with a fixed interval R_{per}. In this case, individuals born within $R_{\text{per}} - L$ yr immediately after an extreme event die blissfully of old age before the next catastrophe occurs. The fraction of individuals avoiding extreme events is $(R_{\text{per}} - L)/R_{\text{per}}$; it decreases linearly with increasing life span. This scenario is also depicted in Fig. 23 (the dashed line), where we have assumed that R_{per} (like R) is 20 yr. More individuals survive if extreme events arrive randomly than if they arrive periodically.

The average fraction of a population that encounters an extreme is only one index of an extreme’s effect on a population, however. What is the effect of extreme disturbance on the average population size? To address this question, we consider a hypothetical population growing according to the logistic equation (see Appendix D). The population is subjected to extreme events that arrive either at random or periodically at intervals equal to the return time. If disturbances arrive randomly in time, they may by chance be applied in quick succession. This sort of “double whammy” reduces population size to a level from which it can only slowly recover, and as a result, population size (averaged over 10,000 intervals) is smaller than if disturbance is applied periodically at the average rate (Fig. 24). The disparity

Fig. 17. Annual maximum fraction of limpets killed as a function of return time (in years) and heating regime (abrupt cooling vs. gradual cooling) for substrata of various orientations. Angled substrata were inclined 45° to horizontal.
of consequences between random and periodic events is small for small disturbance intensities, but large if disturbances are drastic. Examples of a similar effect have been noted in nature: Paine et al. (1998) show that two extreme events occurring in unusually quick succession can result in ecological surprises that would not accrue if the same events were repeated at longer or more consistent intervals. In summary, the skewed shape of the Poisson interval distribution of extreme events can lead to nonintuitive biological consequences.

In addition to providing insight into the interpretation of return time, Eq. 18 can be used to evaluate our method's ability to predict return times. For extreme wave/tide events with individual variables similar to those of January 2008, we predict a return time of ~54 yr, while the sole observed interval between events of similar magnitude was a mere 7 yr. However, even given a return time of 54 yr, the skew of the Poisson interval distribution is such that 12.2% of intervals are ≤7 yr. Thus, although our estimated return time seems high, we cannot reject (at the traditional 5% level) the hypothesis that our prediction is consistent with our single measured return interval.

In the same fashion, Eq. 18 can help us discriminate between extreme events that are due to chance alone in a constant climate and those that are due to shifts in climate itself. For example, if two extreme thermal events were imposed on limpets in quick succession, it might be tempting to attribute the occurrence to global warming. Because our method allows us to estimate the expected return time of such events in the absence of climate change, we can use Eq. 18 to test the validity of such an assertion. Unless there is a very low likelihood that back-to-back events occurred by chance alone, it would be inappropriate to invoke climate change as the definitive cause. Thus, our ability to legitimately resample a short time series of environmental factors can serve as a useful tool for discerning effects of long-term climate shifts.

Predictions vs. forecasts

It is important to distinguish the predictions made here from forecasts of what will happen in the future. Our method estimates how often, on average, a given extreme event would occur if one particular year could be repeated 1000 or 10000 times. For example, we predict maximum hydrodynamic stress using the same
annual pattern of tidal variation again and again. But we know that in reality tidal fluctuations vary from year to year, e.g., the lunar declination varies with a period of 18.6 yr, affecting the amplitude and timing of the highest predicted tides (e.g., Denny and Paine 1998). Thus, even if all other aspects of the environment remain the same as recorded by our 7-yr time series, the actual pattern of extreme wave events in the future will vary somewhat from the predictions made here due to the changing pattern of the tides.

This limitation can easily be overcome. Because long-term fluctuations in tides are accurately predictable from celestial mechanics, we could extend our method to take future fluctuations into account, combining our normalized tidal deviations with predicted celestial tides for the duration of the forecast. Predicted future variation in other factors can be incorporated in similar fashion.

We need better physiological models

The predictions made here of dislodgement and thermal death are only as good as the empirical data on which they are based, and these data have limitations. For example, our calculations of mussel breaking stress do not incorporate any intermussel influence. In mussel beds, once one mussel is dislodged, others nearby may be weakened, leading to the formation of local patches of disturbance, and overall greater disturbance than we have estimated. Similarly, it is currently unclear how

Fig. 20. The effect of a 2°C increase in air temperature depends on the orientation of the substratum. There is little effect for limpets on (A) south-facing, 45° substrata or (B) north-facing vertical substrata, but there is a substantial effect for (C) limpets on horizontal surfaces. In each panel, the solid line indicates mortality for the base air temperature, and the dotted line represents that for a 2°C increase in air temperature.

Fig. 21. The Poisson interval distribution. (A) The fraction of intervals less than or equal to a given value; values are measured in units of the return time. For example, 63% of intervals have lengths less than or equal to the return time. (B) The probability density function for the Poisson interval distribution. The probability of encountering an interval of a given length is greatest for intervals of short duration.
velocity amplification γ typically varies along a shore, and therefore how it contributes to patch formation. Further research is needed to elucidate these potential effects. More problematic is our current level of physiological insight. Our estimates of disturbance (both hydrodynamic and thermal) depend strongly on empirical measurements of physiology, and existing measurements are, at best, preliminary. For example, our measurements of the attachment strength of *M. californianus* are by far the most complete of any to date. Several thousand mussels were dislodged in the course of 7 yr to estimate the month-by-month distribution of breaking stress. However, we assume that it is the single, largest wave-induced stress that dislodges mussels. It is possible that repeated submaximal stresses may have the same effect. In addition, there is some evidence in our data (E. Carrington and M. W. Denny, unpublished data) that attachment strength at one time is correlated with average wave stress in the week prior to measurement.

Fig. 22. Cumulative probability of predicted intervals between mussel dislodgment events matches the predictions of the Poisson interval distribution. The 10,000-year random realizations of hydrodynamic stress were concatenated to simulate a long times series, and the intervals between events of a given severity were noted. Circles are data for $D = 5$ m, velocity amplification $= 1.5$, and stress events sufficient to dislodge 41.6% of mussels. These events have an observed return time of 10.05 yr. The solid line is the cumulative Poisson interval distribution (Eq. 18) calculated for a return time of 10.05 yr.

Fig. 23. Results from a hypothetical population. If lethal events arrived randomly (with a probability of 0.05/yr) rather than at a fixed interval of 20 yr, an increased fraction of the population avoids being killed before dying of old age.

Fig. 24. The effect of extreme events on the average size of a hypothetical population undergoing logistic growth. We subjected the population to occasional extreme events such that the size of the population after the event is $1/E$ of the size of the population before the event, where E is a disturbance intensity factor. Average population size is smaller when subjected to events that arrive at random than when the population is subjected to events that arrive periodically. Population size shown here is averaged over a length of time sufficient to contain ~500 extreme events. Error bars represent ±SD.
and there is evidence that the susceptibility of mussels to dislodgment varies with time since they were last disturbed (Paine 2002). This sort of temporal autocorrelation in breaking stress has not been well characterized, however, and is not included in our calculations.

Clearly, the more accurate our understanding of the physiological basis for mussel attachment strength, the more accurate our calculations of extreme events. In effect, what we need is a mechanistic model of the entire physiology underlying adhesive tenacity. Such a model would allow us to interpret any time series of applied stresses in terms of its biological consequences.

Our understanding of the thermal tolerances of limpets is even more limited. We measured thermal tolerances on relatively few individuals for only two heating regimes, and did not measure tolerance as a function of season. Other intertidal species exhibit seasonal variation in the physiology of thermal tolerance (Roberts et al. 1997, Halpin et al. 2002, Sagarin and Somero 2006), and it is possible that *L. gigantea* can adjust its thermal tolerance in ways that we have not taken into account. And, as with mussels, we have assumed that it is maximum stress that kills limpets. It is possible that lengthy or repeated submaximal temperatures can have the same effect.

Furthermore, our calculations do not take into account variations in shell shape among limpets (which can affect the transfer of heat by convection, and thereby, body temperature), the effects of microhabitat shading on realistic substrata, and the fact that some actual exposures to high body temperatures last for longer periods than those used in our laboratory experiments (Fig. 15). Until more is known about the mechanism(s) of thermal death in limpets, these potential effects cannot be incorporated into our calculations. Again, what we need is a detailed mechanistic model, in this case of limpet thermal physiology.

And finally, if we are to fully address the ecological effects of extreme events, it would be advantageous to incorporate all possible types of extremes. For example, as we have noted, *L. gigantea* is immune to hydrodynamic dislodgment when stationary. However, the limpet is highly susceptible when actively foraging (Denny and Blanchette 2000). Given sufficient information regarding limpet foraging behavior, we could predict return times of limpets' extreme hydrodynamic events for comparison with those of mussels, but this behavioral data is currently unavailable. Similarly, given an accurate model for mussel thermal physiology, we could predict the return times of thermal death for mussels for comparison with those of limpets. Helmuth (1998) formulated a heat budget model for *M. californianus*, but the thermal limits of this species have not been measured.

Our intent in noting these caveats is not to denigrate our findings, which, although not perfect, are by far the best available. Instead, our intent is to raise awareness of the need for, and the utility of, greater interaction among physiologists, ecologists, and evolutionary biologists. This interaction may be facilitated by recent advances; the genome of *L. gigantea* is currently being sequenced and annotated.
Details and caveats

Although the statistical approach we describe here is based on the standard moving block bootstrap, the coordinated sampling among variables seems to be a new innovation. A thorough theoretical assessment of our method and its potential limitations and caveats will require the attention of the statistics community. In the meantime, we address two potentially confusing aspects of our resampling approach.

1) Have we missed important information because our empirical records are short (7 yr)? The logic behind this question is as follows. It is unlikely that a short time series will capture the most extreme residuals possible in any particular factor, and in the absence of these extreme residuals, resampling the input data might never yield absolute maximal output of a given variable. Thus, due to the limited time series on which they are based, the extreme values calculated by our method may be conservative. Our simulation of hydrodynamic forces on mussels (Fig. 4) provides a hint of this effect. In this simulation, the distribution of standardized residuals is unbounded for each variable, making it probable that the longer the time series, the larger the residuals encountered. Indeed, predictions from a short (7-yr) data set underestimate the rarest stresses found in the long-term series. The magnitude of underestimation is quite small, however, (<4%) even for an event that occurs once in 10,000 yr.

Whether our method will similarly underestimate extremes when applied to real data depends on two factors. First, it depends on whether or not it is the extremes of the various factors that govern the extremity of the biological consequences. As we have seen, this is not the case for two of the variables contributing to wave-induced hydrodynamic forces. Waves with heights above the breaking limit impose no more force than smaller waves; so as long as our 7-yr series captures the statistical behavior of waves up to the breaking limit, larger values from a longer series would be irrelevant. Similarly, for most situations it is an intermediate wave period, rather than the extreme, that results in the highest hydrodynamic stress. Again, as long as our 7-yr series captures the statistics of these intermediate values, obtaining a longer series has no advantage. Thus, the accuracy of our method in predicting return times for long-term simulated wave and tide data may be due in large part to the fact that hydrodynamic stress is not governed solely by the extremes of wave height and period.

If extreme ecological consequences do depend on the extremes of each individual factor, the degree to which our method will underestimate reality depends on the characteristic of that extreme portion of the distribution of standardized residuals not included in the empirical data. In some cases, we know that the tails are physically bounded: wave heights and wind speeds cannot be lower than 0 and irradiance is limited by the output of the sun. In other cases, estimating the shape of this “missing tail” is a task for univariate extreme-value analysis, and we present a preliminary analysis of our data in Appendix E. In most cases, the standardized environmental residuals have distributions with definable upper limits that are not far in excess of values recorded in our short time series, suggesting that we have not missed important information because of the limited length of our empirical data.

2) Results presented here for limpets and mussels document the extreme consequences encountered in 1000 and 10,000 random realizations of a particular year, respectively. How much more extreme might these values be if we created more realizations? Is it possible to calculate the absolute extreme that one can obtain by resampling a finite set of standardized residuals?

In Appendix F, we present a method for extrapolating to maxima beyond the realizations in hand, yet another application of univariate extreme-value analysis. However, for the phenomena we deal with here (hydodynamic stress, body temperature), this exercise has little practical value. For example, in our 1000-year-long realizations of limpet body temperature, the highest temperature recorded for any substratum orientation was 43.1°C. If there is a definable absolute maximum temperature, it must be higher still. But 43.1°C by itself is sufficient to kill all limpets, so any higher temperature can have negligible biological effect. However, the situation may be different in other systems. If in a given system the maximum stress encountered in a practical number of realizations is not sufficient to have biological consequences, it may be reasonable to ask whether stress could ever be sufficiently severe. In a case such as this, the techniques described in Appendix F may be useful.

Conclusions

Our statistical method for resampling a short-term time series provides a practical mechanism for estimating the return time of those extreme ecological events that owe their existence to the chance co-occurrence of normal factors. Knowledge of these return times augments our understanding of ecology and evolution. In the case of mussels, for instance, extreme hydrodynamic events are unlikely to have much ecological effect: the variation in disturbance is likely to be much greater from place to place than from time to time, and this temporal stability may play an important role in the evolution of community dynamics and life-history strategies in the mid-intertidal zone. In the case of limpets, spatial variation in thermal stress is important, but temporal variation in thermal disturbance can be equally important. These findings provide a useful historical perspective for existing populations, and our resampling method provides a tool for predicting the effects of future environmental change. The method used here for mussels and limpets is applicable to virtually any system in which extreme ecological
disturbance can occur through the chance alignment of "normal" events.

Acknowledgments

We gratefully acknowledge the advice and assistance of Brit Turnbull and Brad Efron in formulating the basic resampling procedure. James Rohlf and Larry Hunt provided critical insight, and Eric Berlow suggested the simulation. We thank Paul Switzer for productive discussions regarding the limitations of multivariate extreme-value analysis and two anonymous reviewers for constructive comments. This study was funded by NSF Grant OCE-9985946 to M. Denny. This is Contribution 322 from PISCO, the Partnership for Interdisciplinary Studies of the Coastal Ocean, a consortium funded by the David and Lucile Packard Foundation and the Gordon and Betty Moore Foundation.

Literature Cited

Darwin, G. H. 1962. The tides and kindred phenomena in the solar system. W. H. Freeman, San Francisco, California, USA.

August 2009 PREDICTION OF EXTREME ECOLOGICAL EVENTS 421

SPSS. 1998. SYSTAT version 8.0. SPSS, Chicago, Illinois, USA.

APPENDIX A
Details of the resampling method (Ecological Archives M079-014-A1).

APPENDIX B
Translating the generalized extreme value distribution (Ecological Archives M079-014-A2).

APPENDIX C
Simulated time series (Ecological Archives M079-014-A3).

APPENDIX D
Disturbance effects on logistic growth (Ecological Archives M079-014-A4).

APPENDIX E
Estimating the shape of tails (Ecological Archives M079-014-A5).

APPENDIX F
Estimating absolute maxima (Ecological Archives M079-014-A6).